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Abstract 

The macro- and microstructural architecture of human brain white matter undergo substantial 

alterations throughout development and ageing. Most of our understanding of the spatial and 

temporal characteristics of these lifespan adaptations come from magnetic resonance imaging 

(MRI), in particular diffusion MRI (dMRI), which enables visualization and quantification of 

brain white matter with unprecedented sensitivity and detail. However, with some notable 

exceptions, previous studies have relied on cross-sectional designs, limited age ranges, and 

diffusion tensor imaging (DTI) based on conventional single-shell dMRI. In this mixed cross-

sectional and longitudinal study (mean interval: 15.2 months) including 702 multi-shell dMRI 

datasets, we combined complementary dMRI models to investigate age trajectories in healthy 

individuals aged 18 to 94 years (56.98% women). Using linear mixed effect models and 

machine learning based brain age prediction, we assessed the age-dependence of diffusion 

metrics, and compared the prediction accuracy of six different diffusion models, including 

diffusion tensor (DTI) and kurtosis imaging (DKI), neurite orientation dispersion and density 

imaging (NODDI), restriction spectrum imaging (RSI), spherical mean technique multi-

compartment (SMT-mc), and white matter tract integrity (WMTI). The results showed that the 

age slopes for conventional DTI metrics (fractional anisotropy [FA], medial diffusivity [MD], 

radial diffusivity [RD]) were largely consistent with previous research, and that all diffusion 

models indicated lower white matter integrity with older age. Linear mixed effects models and 

brain age prediction showed that the ‘FA fine’ metric of the RSI model and ‘orientation 

dispersion’ (OD) metric of the NODDI model showed highest sensitivity to age. The results 

indicate that advanced diffusion models (DKI, NODDI, RSI, SMT mc, WMTI) yield the 

capability of detecting sensitive measures of age-related microstructural changes of white 

matter in the brain that complement and extend the contribution of conventional DTI. 
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1. Introduction 

The architecture of human brain white matter undergoes constant remodelling throughout the 

lifespan. Age-related trajectories of white matter macro- and microstructure typically reflect 

increases during childhood, adolescence and early adulthood (Krogsrud et al., 2016; Westlye et 

al., 2010), and subsequent deterioration and degradation in senescence (Cox et al., 2016; Davis 

et al., 2009). While the field has primarily been dominated by cross-sectional studies, which by 

design lack information on individual trajectories (Schaie, 2005), longitudinal studies in the 

last decade have shown corresponding white matter changes in both development and ageing 

(Barrick et al., 2010; Bender et al., 2016; Bender & Raz, 2015; de Groot et al., 2016; 

Likitjaroen et al., 2012; Racine et al., 2019; Sexton et al., 2014; Storsve et al., 2016; Teipel et 

al., 2010). However, studies that have evaluated individual differences in change across a wide 

age range are rare (Bender et al., 2016). 

 Age-related white matter deterioration in older age is, in part, due to axonal 

demyelination, which compromises the efficiency and communication of the brain’s widely 

distributed neural networks (Bartzokis et al., 2004; Cox et al., 2016; O’Sullivan et al., 2001). 

Subsequently, ageing-related white matter alterations are associated with cognitive decline 

(Gold et al., 2010; Kennedy & Raz, 2009), and better tools to study white matter changes in 

vivo is integral in the process of fully understanding cognitive ageing and white matter 

architecture in health and disease (Cox et al., 2016). 

White matter properties have commonly been investigated using traditional diffusion 

tensor imaging (DTI), and DTI based fractional anisotropy (FA) as well as mean (MD), axial 

(AD), and radial (RD) diffusivity are highly sensitive to age (Cox et al., 2016; Sexton et al., 

2014; Westlye et al., 2010; Yap et al., 2013). However, limitations of conventional DTI 

metrics such as mixed intracellular and extracellular water signal (Brunsing et al., 2017) have 

motivated continued development of more advanced diffusion MRI (dMRI) models including 

diffusion kurtosis imaging (DKI) (Jensen et al., 2005), which was developed to resolve the 

issue of intra-voxel fibre crossings (Lazar et al., 2008; Pines et al., 2019); neurite orientation 

dispersion and density imaging (NODDI) (Zhang et al., 2012), which models three types of 

microstructural environments: intra-cellular, extra-cellular, and an isotropic water pool 

responsible for the space occupied by cerebrospinal fluid (CSF); white matter tract integrity 

(WMTI) (Chung et al., 2018; Fieremans et al., 2011), which derives microstructural 

characteristics from intra- and extra-axonal environments (Chung et al., 2018; Fieremans et al., 

2011); restriction spectrum imaging (RSI) (White et al., 2013), which applies linear mixture 

modelling to resolve a spectrum of length scales while simultaneously acquiring geometric 

information (White et al., 2013); and spherical mean technique multi-compartment (SMT mc) 
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(Kaden, Kruggel, et al., 2016), a method for microscopic diffusion anisotropy imaging that is 

unconfounded by effects of fibre crossings and orientation dispersion (Kaden, Kelm, et al., 

2016). Usually based on multi-shell acquisitions with several diffusion weightings (Andersson 

& Sotiropoulos, 2015; Jbabdi et al., 2012), these models can be broadly split into “signal” and 

“tissue” models (Alexander et al., 2019). Signal representations describe the diffusion signal 

behaviour in a voxel without assumptions about underlying tissue, but the estimated parameters 

lack specificity, meaning its characterisation of tissue microstructure remains indirect (Jelescu 

& Budde, 2017). Tissue models however, are assumed to provide a geometry of underlying 

tissue (Novikov et al., 2019), and thus may provide higher biological specificity and more 

precise measures of white matter microstructure and architecture (Jelescu & Budde, 2017; 

Novikov et al., 2019; Pines et al., 2019). 

Building on the opportunities from big data in neuroimaging (Smith & Nichols, 2018), 

age related brain changes have recently been investigated using machine learning techniques 

such as brain age prediction; the estimation of the ‘biological’ age of a brain based on 

neuroimaging data (J. H. Cole et al., 2018; de Lange et al., 2019; Kaufmann et al., 2019; 

Franke et al., 2010;  Richard et al., 2018). Predicting the age of a brain, and subsequently 

looking at the disparity between predicted and chronological age, can identify important 

individualised markers of brain integrity that may reveal risk of neurological and/or 

neuropsychiatric disorders (Kaufmann et al., 2019). While brain age prediction has grown 

more popular in recent years, most studies have used grey matter features for brain age 

prediction, while only few have exclusively (Tønnesen et al., 2018), or partly (James H Cole, 

2019; Maximov et al., 2020; Richard et al., 2018; Smith, Elliott, et al., 2019; Smith, Vidaurre, 

et al., 2019) utilised dMRI. However, the brain-age prediction accuracy of advanced diffusion 

models such as RSI and NODDI are not known. 

 Including cross-sectional and longitudinal data obtained from 575 healthy subjects 

(with 702 multi-shell dMRI datasets) aged 18-94 years, the aim of the current study was to 

estimate age trajectories and compare the age sensitivity of conventional (DTI) and advanced 

(DKI, NODDI, RSI, SMT mc, and WMTI) diffusion models based on multi-shell acquisition. 

First, we estimated each of the diffusion metrics across the age range. Based on previous 

findings using conventional DTI metrics, we predicted curvilinear global trajectories with both 

conventional and advanced dMRI models. Secondly, we utilised three separate methods to 

compare the age-sensitivity of the diffusion models: i) we used linear mixed effect models 

including age, sex, and timepoint, ii) for each model, we ran fits with and without age terms 

and compared the fit likelihood values using Wilk's theorem (Wilks, 1938), iii) we used 

machine learning to predict age based on the diffusion metrics, and compared the prediction 
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accuracy of the models. We expected all metrics to be highly age-sensitive and for longitudinal 

evidence to support age-related white matter microstructural changes present in individuals 

after one follow-up session (mean interval = 15.24 months, SD = 3.48). Thirdly, we looked at 

the derivatives of each function of the linear mixed effects models’ age curve to identify the 

point of change in trajectory for each diffusion metric. We expected advanced dMRI metrics to 

reveal changes at points in line with previous research. 

 

2. Methods and material 

2.1. Description of sample 

The initial sample included 754 multi-shell datasets of healthy subjects from two integrated 

studies; the Tematisk Område Psykoser (TOP) (Tønnesen et al., 2018) and StrokeMRI 

(Richard et al., 2018). Following the removal of 52 datasets after quality checking (QC, see 

section 2.4), the final sample comprised 702 scans from 575 individuals, including longitudinal 

data (two time-points with 15.2 months interval) for 127 of the participants. Demographic 

information is summarised in Table 1 and Figure 1. 
Exclusion criteria included neurological and mental disorders, and previous head 

trauma. Ethical guidelines followed those in line with the Declaration of Helsinki. The study 

has been approved by the Regional Ethics Committee and all participants provided written 

informed consent. 

 
Table 1. Demographics of descriptive statistics pertaining to the study sample. N refers to datasets. 

Age 
 Mean ± SD Min Max 

Full (mixed) sample (n = 702) 50.86 ± 16.61 18.52 94.67 
Male (302, 43.02%) 49.42 ± 17.46 18.52 92.05 
Female (400, 56.98%) 51.00 ± 15.86 18.63 94.67 

Cross-sectional sample (n = 448) 47.61 ± 16.59 18.52 94.67 
Male (213, 47.54%) 46.79 ± 16.74 18.52 92.05 
Female (235, 52.46%) 48.35 ± 16.46 18.63 94.67 

Longitudinal sample (n = 254) 56.60 ± 15.03 20.30 85.82 
Male (45, 35.43%) 55.71 ± 17.65 20.30 85.82 
Female (82, 64.57%) 57.08 ± 13.43 23.37 80.62 
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Figure 1. Interval between timepoint 1 and timepoint 2 for complete longitudinal sample, n = 254 (127 subjects). 

Histogram representing density of data points. 

 

2.2. MRI acquisition 

Imaging was performed at Oslo University Hospital on a General Electric Discovery MR750 

3T scanner with a 32-channel head coil. dMRI data were acquired with a spin echo planar 

imaging (EPI) sequence with the following parameters: TR/TE/flip angle: 8,150 ms/83.1 

ms/90◦, FOV: 256 × 256 mm, slice thickness: 2 mm, in-plane resolution: 2 mm2. We obtained 

10 volumes of b value = 0 diffusion weighted data along 60 (b = 1000 s/mm2) and 30 (b = 2000 

s/mm2) diffusion weighted volumes. In addition, 7 b value = 0 volumes with reversed phase-

encoding direction were acquired. 

 

2.3. Diffusion MRI processing 

Processing steps followed a previously described pipeline (Maximov et al., 2019), including 

noise correction (Veraart et al., 2016), Gibbs ringing correction (Kellner et al., 2016), 

corrections for susceptibility induced distortions, head movements and eddy current induced 

distortions using topup (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup) and eddy 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy) (Andersson & Sotiropoulos, 2016). Isotropic 

smoothing was carried out with a Gaussian kernel of 1 mm3 implemented in the FSL 

function fslmaths. DTI was estimated using dtifit in FSL. Employing the multi-shell data, DKI 

and WMTI metrics were estimated using Matlab code (https://github.com/NYU-
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DiffusionMRI/DESIGNER), (Veraart et al., 2016)). NODDI metrics were derived using the 

AMICO algorithm implemented in Matlab (https://github.com/daducci/AMICO). SMT mc 

metrics were estimated with the original code from Kaden and colleagues 

(https://github.com/ekaden/smt). RSI metrics were estimated using Matlab tools in-house. 

In accordance with the first main aim of the study, we selected 19 scalar metrics from 

the six models (DTI, DKI, NODDI, RSI, SMT mc, WMTI) based on recent studies (Benitez et 

al., 2018; De Santis et al., 2011; Hope et al., 2019; Jelescu et al., 2015; Kaden, Kelm, et al., 

2016; Maximov et al., 2019; Pines et al., 2019). Figure 2 shows each of the included metrics 

for one participant, for illustrative purposes. All metrics and their corresponding abbreviations 

are summarised in the Supplementary material (SI; Table 1). In accordance with the second 

main aim of the study (iii), brain age prediction was performed for each model, using all 

available metrics extracted from a range of regions-of-interest (see section 2.5 and Table 2). 

 
Figure 2. Diffusion metrics illustrated using one subject from the sample. DTI: FA (Fractional anisotropy), MD 

(Medial diffusivity), RD (Radial diffusivity). DKI: AK (Axial kurtosis), MK (Mean kurtosis), RK (Radial 

kurtosis). NODDI: ICVF (Intracellular volume fraction), ISOVF (Isotropic volume fraction), OD (Oriental 

dispersion). RSI: CI (cellular index), Fine (FA fine scale/slow compartment), rD (Restricted diffusivity 

coefficient). SMT mc: exMD (Extra cellular space), exTr (Extra-cellular space transverse), Intra (Intra axonal 

diffusivity). WMTI: aEAD, aIAD (Axial extra and intra axonal diffusivity), rEAD, rIAD (Radial extra and intra 

axonal diffusivity). 
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2.4. Quality checking procedure 

Prior to statistical analyses, a rigorous QC procedure was implemented to ensure data quality 

was optimal and not contaminated by motion, noise, or artefacts. Using a published approach 

(Roalf et al., 2016), we derived various quality assurance (QA) metrics (see Supplementary 

material; SI table 2), including temporal-signal-to-noise-ratio (TSNR). Detected outliers were 

manually checked and subsequently removed if deemed to have unsatisfactory data quality. A 

total of 54 datasets were removed, leaving the dataset at n = 702 scans. This dataset was put 

through the same inspection of metrics to ensure that quality assurance procedures were 

rigorous. As an additional step, images were also manually inspected if TSNR Z scores 

deviated minus or plus 2.5 standard deviations from the mean. Following this step, the final 

dataset remained at 702 scans from 575 individuals. 

 

2.5. Tract-Based-Spatial-Statistics 

Voxelwise statistical analysis of the FA data was carried out using Tract-Based Spatial 

Statistics (TBSS) (Smith et al., 2006), as part of FSL (Smith et al., 2004). First, FA images 

were brain-extracted using BET (Smith, 2002) and aligned into a common space (FMRI58_FA 

template) using the nonlinear registration tool FNIRT (Andersson, Jenkinson, & Smith., 2007; 

Jenkinson et al., 2012), which uses a b-spline representation of the registration warp field 

(Rueckert et al., 1999). Next, the mean FA image of all subjects was created and thinned to 

create a mean FA skeleton that represents the centres of all tracts common to the group. Each 

subject's aligned FA data was then projected onto this skeleton. The mean FA skeleton was 

thresholded at FA > 0.2. This procedure was repeated for all metrics. fslmeants was used to 

extract the mean skeleton and 20 regions of interest (ROI) based on a probabilistic white matter 

atlas (JHU) (Hua et al., 2008) for each metric. Including the mean skeleton values, 798 features 

per individual were derived. 

 

2.6. Diffusion metric reproducibility 

The validity and sensitivity of the different diffusion models essentially rely on the richness, 

quality and specific properties of the data used for model fitting. In order to assess the 

reproducibility of the included metrics (Maximov et al., 2015), we estimated the dMRI models 

using data obtained using different acquisition schemes varying the number of directions and 

maximum b value in 23 healthy subjects with mean age 35.77 years (SD = 8.37, 56.5% 

women). The following three acquisition schemes were compared: i) b=[1000,2000] with 

[60,30] directions, which is identical to the acquisition scheme used in the main analysis, ii) 

b=[1000,2000] with [60,60] directions and iii) b=[1000,2000,3000] with [60,60,60] directions. 
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For each scheme we processed the data using an identical pipeline (Maximov et al., 2019) as 

described above and extracted the mean skeleton values for each of the included metrics. The 

main comparisons were performed using means of simple Pearson’s correlation coefficients. 

 

2.7. Statistical analysis 

All statistical analyses were carried out using the statistical environment R, version 3.6.0 

(www.r-project.org/) (R Core Team, 2012) and Python 3.7.0 (www.python.org/). 

 

2.8. Linear mixed effects models (lme) 

To investigate the relationship between age and global mean skeleton values for each diffusion 

metric, lme analyses were performed using the lme function (Bates & Pinheiro, 1998) in R (R 

Core Team, 2012). In fitting the model, we scaled (z normalised) each variable and entered 

age, orthogonalised polynomial age2, sex, and timepoint (TP) as fixed effects. Subject ID was 

entered as a random effect. For each diffusion metric M, we employed the following function: 

 

𝑀 = 𝐴 + 𝐵 × 𝐴𝑔𝑒 + 𝐶	 ×	𝐴𝑔𝑒! + 𝑆𝑒𝑥 + 𝑇𝑃  (1) 

 

where A is the intercept, B is the age coefficient, and C is the coefficient of the orthogonalised 

polynomial quadratic age term (expressed as poly(age,2)[,2] in R). Age curves were obtained 

with predictions from the fitted model using the predict function in R. Visual inspection of 

residual plots did not reveal any obvious deviations from homoscedasticity or normality. The 

significance threshold was set at p < 0.05, and the results were corrected for multiple 

comparisons using the false discovery rate (FDR) adjustment (Benjamini & Hochberg, 1995).  

To investigate the rate of change for each of the age curves at any point, we calculated 

their derivatives using numerical differentiation with finite differences (Burden & Faires, 

2011). To compare the age-sensitivity of the models, we ran lme fits with and without age 

terms, and calculated the difference in likelihood ratios (Glover & Dixon, 2004). The 

significance of the age dependence was calculated using Wilk's theorem (Wilks, 1938) as 

/2(𝐿! 	− 	𝐿"), where L2 is the likelihood ratio obtained from the models with age terms, and 

L1  is the likelihood ratio obtained from the models without age terms. 

 

2.9. Brain-age prediction  

The XGBoost regressor model was used to run the brain age prediction 

(https://xgboost.readthedocs.io/en/latest/python/index.html), including a decision-tree-based 

ensemble algorithm that has been used in recent large-scale brain age studies (A.-M. G. de 
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Lange et al., 2019; Kaufmann et al., 2019). Parameters were set to max depth = 3, number of 

estimators = 100, and learning rate = 0.1 (defaults). For each diffusion model (DTI, DKI, 

NODDI, RSI, SMT mc, WMTI), predicted age was estimated in a 10-fold cross validation, 

assigning a model-specific brain age estimate to each individual, as well as a multimodal brain 

age estimate based on all diffusion features. To investigate the prediction accuracy of each 

model, correlation analyses were run for predicted versus chronological age, and model-

specific R2, root mean square error (RMSE) and mean absolute error (MAE) were calculated. 

To statistically compare the prediction accuracy of the models, Z tests for correlated samples 

(Zimmerman, 2012) were run on the model-specific correlations between predicted and 

chronological age in a pairwise manner using 

 

𝑍 = (𝛽m1 − 𝛽m2}/9𝜎m1! + 𝜎m2! − 2𝜌𝜎m1𝜎m2 

 

where “m1” and “m2” represent model 1 and model 2, the b terms represent the beta value 

from the regression fit, the s terms represent their errors, and r represents the correlation 

between the two sets of associations. In order to assess the complementary value of the 

different models, we computed the correlations between the brain age predictions (Figure 6). 

The predictions were first corrected for age-bias using linear models (Le et al., 2018), and the 

residuals were used in the correlation analysis.  

To evaluate the importance of each diffusion modality in the multimodal model, we ran an 

additional prediction model including only mean-skeleton values to reduce the number of 

highly correlated features in the regressor input, and calculated a) the proportion of the total 

weight contributed by each modality, where weight represents the number of times a feature is 

used to split the data across all trees, and b) gain values, which represent the improvement in 

accuracy added by a feature to the branches it is on. To assess the significance of the general 

model performance, average RMSE was calculated for the multimodal model using cross 

validation with ten splits and ten repetitions, and compared to a null distribution calculated 

from 1000 permutations. 

 

3. Results 

3.1. Diffusion metric reproducibility 

The reproducibility of the estimated diffusion metrics based on data obtained with different 

acquisition schemes (described in 2.6) revealed overall high correlations between the mean 

skeleton values for all the model metrics. Highest overall reproducibility was observed for 
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NODDI OD (r(22) = 0.97, p < 0.001) and RSI rD (r(22) = 0.96, p < 0.001). The lowest 

reproducibility was observed for WMTI radEAD (r(22) = 0.44, p = 0.597). Supplementary 

Table 4 and Supplementary Figures 4, 5, 6, and 7 show the results from the comparisons. 

 

3.2. Age trajectories 

Figure 3 shows the linear mixed effect model-derived age curves for each diffusion metric 

plotted as a function of age, where age curves are fitted with the predicted values of the lme 

models. Figure 4 shows all lme model-derived age curves from Figure 3 in standardised form 

in one plot. Figure 5 shows the derivatives of the lme fits, providing the estimated rate of 

change at every point (of age), including the point of change in trajectory for each model curve 

and the steepness of the turning point. Correlations between the metrics are available in the 

supplementary material (SI Figures 2 and 3) for both raw and standardised values respectively. 

 

3.3. Comparing age curves 

FA decreased steadily after the age of 30, with a steeper decline after the age of 50. MD and 

RD followed a reverse profile, with decreases in diffusivity until the 40’s, whereby the 

trajectories subsequently increased thereafter. DKI metrics revealed patterns that closer 

resemble curvilinear trajectories, with NODDI ICVF, RSI CI, and SMT mc intra metrics 

following similar trajectories. RSI rD, NODDI ISOFV, RSI FA fine, and WMTI axIAD 

metrics followed decreasing trajectories from the offset. SMT mc extramd and extratrans, and 

WMTI radEAD followed similar trajectories to MD and RD. NODDI OD revealed a steady 

increase until older age where the slope stabilised thereafter. Lastly, WMTI axEAD and 

radIAD showed u-trajectories (Figure 3). 
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Figure 3. Age curves where each diffusion metric’s standardised (z-score) mean skeleton value (y-axis) is plotted 

as a function of age (x-axis). Fitted lines made with lme-derived predicted values. Shaded areas represent 95% CI. 

Points connected by lines represent longitudinal data where circle is TP1 and triangle is TP2. Male subjects are 

represented by pink and female subjects by green. 
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Figure 4. Plot displaying all lme-model derived age curves from Figure 3 in standardised form. 

 

 

 
 

 

 

 

 

 
 

 

 

 
 
 
 

Figure 5. The derivative for each diffusion model, providing the estimated rate of change at every point. The 
point on the x-axis where the fitted line crosses 0 on the y-axis represents the turning point of the age trajectory 
for each metric. 
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3.4. Age sensitivity estimated using lme models 

Results from the lme models revealed significant main effects of age on the global mean 

skeleton values for all diffusion metrics except WMTI radIAD (see Table 2). An examination 

of the fixed effects estimates (β) and t-statistics for the age term allows for interpretation of the 

extent and direction of the linear association with age. Overall, the FA fine compartment of the 

RSI model was most sensitive to age (β(123) = -0.69, t = -22.00, p < 0.001). NODDI OD was 

the second most sensitive to age (β(123) = 0.67, t = 21.39, p < 0.001). The model least 

sensitive to age was WMTI radIAD (β(123) = -0.12, t = -2.91, p = 0.08). For conventional DTI 

metrics, FA was the most age sensitive (β(123) = -0.66, t = -20.84, p < 0.001). No main effects 

of timepoint survived correction for multiple comparisons. 

 

Table 2. Linear mixed effect model results for each metric, where variables are displayed with corresponding fixed effect estimates (β), 
(standard error), t-statistic, and FDR corrected P value. 

 FA MD RD DKI ak DKI mk DKI rk NODDI 
icvf 

NODDI 
isovf 

NODDI 
OD RSI CI RSI fa 

fine RSI rD SMT mc 
extramd 

SMT mc 
extratrans 

SMT 
mc intra 

WMTI 
axEAD 

WMTI 
axIAD 

WMTI 
radEAD 

WMTI 
radIAD 

Age -0.66*** 0.46*** 0.59*** -0.13* -0.24*** -0.32*** -0.34*** 0.48*** 0.67*** -0.49*** -0.69*** -0.54*** 0.50*** 0.56*** -0.27*** 0.14* -0.58*** 0.57*** -0.12 

 (0.03) (0.04) (0.03) (0.04) (0.04) (0.04) (0.04) (0.04) (0.03) (0.04) (0.03) (0.04) (0.04) (0.03) (0.04) (0.04) (0.04) (0.03) (0.04) 

 -20.84 13.18 18.04 -3.34 6.05 -8.14 -8.61 13.16 21.39 -13.88 -22.00 -14.81 14.22 16.73 -6.79 3.41 -16.41 17.01 -2.91 

 6.86 x 
10-41 

5.35 x 
10-24 

4.44 x 
10-35 0.02 3.08 x 

10-07 
6.98 x 
10-12 

5.39 x 
10-13 

5.88 x 
10-24 

5.38 x 
10-42 

1.76 x 
10-25 

3.45 x 
10-43 

7.78 x 
10-28 

1.88 x 
10-26 

3.34 x 
10-32 

8.01 x 
10-09 0.02 1.74 x 

10-31 
7.88 x 
10-33 0.08 

Age2 -0.17*** 0.34*** 0.29*** -0.42*** -0.25*** -0.17*** -0.32*** 0.12* -0.07 -0.36*** -0.15*** -0.11* 0.22*** 0.34*** -0.26*** 0.15** 0.11* 0.22*** 0.21*** 

 (0.03) (0.03) (0.03) (0.04) (0.04) (0.04) (0.04) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.04) (0.04) (0.03) (0.03) (0.04) 

 -5.50 10.25 9.31 -11.87 -6.86 -4.60 -8.74 3.43 -2.43 -10.79 -4.92 -3.15 6.67 10.81 -7.10 3.93 3.38 7.11 5.70 

 4.02 x 
10-06 

6.52 x 
10-17 

1.16 x 
10-14 

7.47 x 
10-21 

5.54 x 
10-09 

1.98 x 
10-04 

2.73 x 
10-13 0.02 0.31 3.12 x 

10-18 
5.18 x 
10-05 0.04 1.49 x 

10-08 
2.88 x 
10-18 

1.65 x 
10-09 0.003 0.02 1.52 x 

10-09 
1.56 x 
10-06 

Sex -0.09 0.05 0.06 0.15*** 0.16*** 0.14** 0.09 0.11* 0.09 0.03 -0.05 0.07 0.11* -0.04 0.16*** 0.07 -0.03 0.10* -0.20*** 

 (0.03) (0.03) (0.03) (0.04) (0.04) (0.04) (0.04) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) (0.04) (0.04) (0.03) (0.03) (0.04) 

 -2.99 1.54 1.91 4.21 4.44 3.74 2.42 3.18 3.03 1.00 -1.83 2.07 3.23 -1.29 4.35 1.84 -0.96 3.17 -5.40 

 0.06 1 1 9.12 x 
10-04 

3.81 x 
10-04 0.005 0.32 0.04 0.06 1 1 0.76 0.03 1 0.001 1 1 0.04 6.32 x 

10-06 

Timepoint 0.01 0.02 0.01 0.06 0.04 0.02 0.04 0.05 0.01 0.02 0.002 -0.01 0.06 -0.02 0.04 0.03 -0.02 0.05 -0.04 

 (0.01) (0.01) (0.01) (0.03) (0.03) (0.03) (0.03) (0.03) (0.01) (0.01) (0.01) (0.02) (0.03) (0.01) (0.03) (0.03) (0.02) (0.03) (0.04) 

 0.79 1.77 1.22 2.10 1.09 0.52 1.43 1.49 1.00 1.68 0.19 -0.43 2.12 -1.28 1.19 0.89 -0.73 2.02 -1.22 

 1 1 1 0.72 1 1 1 1 1 1 1 1 0.68 1 1 1 1 0.87 1 

Observations 702 702 702 702 702 702 702 702 702 702 702 702 702 702 702 702 702 702 702 

Log 
Likelihood -653.91 -744.03 -674.24 -893.01 -942.69 -945.28 -888.05 -883.40 -692.93 -753.04 -666.56 -829.85 -833.59 -706.20 -933.48 -965.63 -818.38 -796.32 -954.72 

Akaike Inf. 
Crit. 1,321.82 1,502.06 1,362.48 1,800.03 1,899.38 1,904.56 1,790.10 1,780.80 1,399.86 1,520.07 1,347.12 1,673.70 1,681.17 1,426.41 1,880.97 1,945.27 1,650.76 1,606.65 1,923.43 

Bayesian 
Inf. Crit. 1,353.65 1,533.89 1,394.31 1,831.86 1,931.21 1,936.39 1,821.93 1,812.63 1,431.69 1,551.90 1,378.95 1,705.53 1,713.00 1,458.24 1,912.79 1,977.09 1,682.59 1,638.47 1,955.26 

Note: Age2 represents the orthogonalised polynomial quadratic age term (Eq. 1)  *p<0.05; **p<0.01; ***p<0.001 
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3.5. Age sensitivity estimated using Wilk’s theorem 

Table 3 shows the strength of the overall age variation for each metric estimated by the 

difference in likelihood values (described in Section 2.8). All metrics showed significant age 

dependence, with RSI FA fine as the most age sensitive (z = 18.81), followed by NODDI OD 

(z = 18.40) and DTI-based FA (z = 18.15). WMTI radIAD (z = 5.55) was the least age-

dependant metric. 

Table 3 Likelihood values from the lme models without age terms (L1) and with age terms (L2). The significance 
of the age dependence is estimated by the difference in likelihood values using Wilk's theorem. FDR corrected p-
values = pcorr. 

Model L1 L2 Difference (z) p-value pcorr 
DTI      

FA -818.71 -653.91 18.15 2.69 x10-72 5.11 x 10-71 
MD -850.51 -744.01 14.59 5.73 x 10-47 1.09 x 10-45 
RD -823.02 -674.24 17.25 2.44 x 10-65 4.63 x 10-64 

DKI      
AK -955.36 -893.01 11.17 8.36 x 10-28 1.59 x 10-26 
MK -976.71 -942.69 8.25 1.68 x 10-15 3.20 x 10-14 
RK -981.21 -945.28 8.48 2.49 x10-16 4.74 x 10-15 

NODDI      
ICVF -949.05 -888.05 11.05 3.22 x 10-27 6.12 x 10-26 

ISOVF -957.93 -883.40 12.21 4.30 x 10-33 8.17 x 10-32 
OD -862.24 -692.93 18.40 2.95 x 10-74 5.61 x 10-73 

RSI      
CI -869.81 -753.04 15.28 1.93 x 10-51 3.66 x 10-50 

FA fine -843.56 -666.56 18.81 1.35 x 10-77 2.56 x 10-76 
rD -921.99 -829.85 13.58 9.63 x 10-41 1.83 x 10-39 

SMT mc      
Extra md -930.17 -833.59 13.90 1.13 x 10-42 2.14 x 10-41 

Extra trans -850.48 -706.20 16.99 2.20 x 10-62 4.18 x 10-62 
Intra -972.93 -933.48 8.88 7.37 x 10-18 1.40 x 10-16 

WMTI      
axEAD -973.91 -962.36 4.81 9.56 x 10-06 1.82 x 10-04 
axIAD -932.39 -818.38 15.10 3.07 x 10-50 5.84 x 10-49 

radEAD -923.99 -796.32 15.98 3.61 x 10-56 6.85 x 10-55 
radIAD -970.13 -955.72 5.55 2.03 x 10-07 3.86 x 10-06 

 

3.6. Age sensitivity estimated using brain age  

The model performances for the multimodal and model-specific brain age predictions are 

shown in Table 4. SI Figures 8 and 9 show the associations between predicted age and 

chronological age for each of the models. Figure 6 shows the correlations between predicted 

brain age for each model, indicating the amount of shared variance explained by the models. 

Pairwise differences in the age prediction accuracy of the models are shown in Figures 7 and 8. 
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SI Figure 1 shows the RMSE of the multimodal model prediction compared to a null 

distribution. 

 

Table 4. Number of MRI variables, root mean square error (RMSE), mean absolute error (MAE), correlation 

between predicted and chronological age (Pearson’s r), and R2 for each of the models. CI = confidence interval. 

Model MRI variables RMSE MAE r [95% CI] R2 [95% CI] 
DTI 105 9.26 7.29 0.83 [0.81, 0.85] 0.69 [0.66, 0.72] 
DKI 63 12.57 10.03 0.66 [0.61, 0.70] 0.43 [0.37, 0.49] 
NODDI 63 9.56 7.65 0.82 [0.79, 0.84] 0.67 [0.63, 0.71] 
RSI 252 9.18 7.28 0.84 [0.81, 0.86] 0.70 [0.66, 0.74] 
SMT mc 231 11.03 8.60 0.75 [0.71, 0.78] 0.56 [0.52, 0.61] 
WMTI 84 9.81 7.77 0.81 [0.78, 0.83] 0.65 [0.62, 0.69] 
Multimodal 798 8.67 6.78 0.85 [0.83, 0.87] 0.73 [0.70, 0.76] 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Correlation matrix for predicted brain age of each modality and the multimodal model, indicating the 

amount of shared variance explained by the models. The prediction values were first corrected for chronological 

age using linear models, and the residuals were used in the correlation analysis. 
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Figure 7. Matrix showing pairwise differences between the model prediction accuracies (correlations between 

predicted and chronological age), based on z tests for correlated samples. 

 
 

 

Figure 8. Log10(p) values of the pairwise differences between the model prediction accuracies. Higher numbers 

represent more significant differences. Left: uncorrected p-values. Right: P-values corrected for multiple 

comparisons using FDR, with non-significant (> 0.05) values masked out. 
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As visible from Table 4, the multimodal model showed the most accurate age prediction (r = 

0.85, p < 0.001, 95% CI = [0.83, 0.87]), while the DKI model performed the worst (r = 0.66, p 

< 0.001, 95% CI = [0.61, 0.70]). As shown in Figures 7 and 8, the multimodal prediction 

accuracy was significantly higher than the accuracy of each of the other models, with the 

largest difference seen between the multimodal model and DKI. The differences in prediction 

accuracy between DTI and RSI, and WMTI and NODDI did not survive correction for multiple 

comparisons. Figure 6 showed correlation coefficients of mean r = 0.62 (Std = 0.07) between 

the DTI, RSI, NODDI, SMT and WMTI predictions, while the DKI showed lower correlations 

with the other model predictions (mean r = 0.30, Std = 0.03).  

To evaluate the relative importance of each modality, we ran an additional multimodal 

model including only mean-skeleton values to reduce the number of highly correlated features 

in the regressor input. Table 5 shows the total gain and the proportion of weight contributed by 

each modality to the total weight, indicating their relative contribution in the model training. 

The results revealed that the machine favoured the DTI model in the training. 

 
Table 5. Feature importance evaluated using a reduced multimodal model that 

included only mean skeleton values for each modality. Number of MRI variables, 

percentage contribution to the total weight, and total gain for each modality. 

Model MRI variables % of total weight Total gain 
DTI 5 56.11 472003.79 
DKI 3 2.56 21571.76 
NODDI 3 12.65 106449.79 
RSI 11 16.01 134648.91 
SMT mc 10 7.56 63582.37 
WMTI 4 5.10 42979.12 

 

 

4. Discussion 

Ageing confers a range of structural brain alterations, affecting micro- and macrostructural 

properties of the neurocircuitry supporting cognitive and other complex brain functions. In the 

current mixed cross-sectional and longitudinal study, we compared advanced and conventional 

dMRI models in their ability to investigate brain white matter age trajectories across the adult 

lifespan, with specific interest in understanding the how and to what extent each model is 

sensitive to the process of ageing. In summary, the results from our comprehensive analysis 

approach, including age-curve trajectories, linear mixed effects models, Wilk’s theorem 

analysis, and brain age prediction, showed high age sensitivity for all diffusion metrics, with 

comparable sensitivity between the highest performing advanced dMRI models and 

conventional DTI. The mixed effects analyses and corresponding derivatives revealed 
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variations in age trajectories between models, indicating that they may pick up different 

underlying aspects of white matter ageing. 

Our results showed that increasing white matter trajectories of FA plateaued around the 

third decade with a steady decline in slope following the age of ~40, and an accelerated 

decrease in senescence (Figure 3). The other DTI metrics of MD and RD revealed decreases in 

diffusivity up until the 40-50-year age mark, where the trajectories subsequently increase 

following a steady period. While these results to a large extent correspond with trajectories 

observed in previous studies (Cox et al., 2016; Davis et al., 2009; Westlye et al., 2010), a more 

defined inverted U-shape (Westlye et al., 2010) was less prominent in our study, likely due to a 

lack of younger participants below the age of 20. 

While several of the dMRI models including conventional DTI showed comparable 

results in terms of age sensitivity, the inclusion of the advanced dMRI models offer new 

insight, with visibly different age trajectories (Figure 3), including variation in turning points 

(Figure 4) and gradient of change (Figure 5). Although diffusion imaging cannot give direct 

access to neuronal processes on a cellular level, the findings could reflect that the dMRI 

models show differential sensitivity to biological mechanisms involved in white matter ageing, 

given that they are good approximations to the underlying white matter fiber organisation 

(Jelescu & Budde, 2017). Investigating multiple dMRI models in combination with histological 

studies and animal research could be valuable for comparison of fibre architecture (Jbabdi & 

Johansen-Berg, 2011), which could help identifying tissue-specific biomarkers of white matter 

ageing and disease. 

While conventional DTI is limited by mixed intracellular and extracellular water signal 

(Brunsing et al., 2017) and lacks geometric specificity to allow for inference regarding tissue 

properties, advanced (tissue) models come with the potential to better characterise the 

underlying biology (Jelescu & Budde, 2017). These advanced models thus represent a 

promising contribution to the investigation of brain development and ageing, and aberrant 

brain biology in various clinical conditions (Alexander et al., 2019). Interestingly, FA based on 

the relatively simple DTI model utilising only single-shell data offered one of the highest 

sensitivities to age, which was also supported by the brain age prediction analysis. While the 

metrics based on the RSI model yielded highly similar age sensitivity, the overall strong 

performance of the DTI metrics supports that DTI provides sensitive measures of gross white 

matter anatomy. However, it should be emphasised that DTI is a model of signal representation 

sensitive to the whole richness of the diffusion signal, while the tissue models are more 

susceptible to artefacts and noise due to the model assumptions relevant for characterising 

tissue geometry, which limit their ability to detect subtle changes in the diffusion signal. 

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 23, 2020. ; https://doi.org/10.1101/2020.04.21.053850doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.21.053850
http://creativecommons.org/licenses/by-nd/4.0/


 20 

Additionally, metrics of biophysical models are biologically specific, which limits their 

sensitivity typically to one white matter feature, such as the axonal water fraction or the extra-

axonal space, in contrast to FA which is sensitive to all of the diffusion signal estimated as one 

single compartment. As such, the DTI model’s sensitivity to age does not necessarily imply 

biological relevance or specificity. Considering a range of complementary diffusion models 

may thus offer benefits in terms of biological interpretations and individualized predictions in 

clinical studies. Further studies including clinical samples are needed to pursue this hypothesis. 

The main strength of the current study is that it utilises a combination of advanced 

dMRI models based on multi-shell acquisition, which turn over more detailed features of the 

cellular environment from differential tissue responses elicited by the different b-values (Assaf 

& Basser, 2005; Clark et al., 2002; Pines et al., 2019). Another strength concerns the direct 

tests of the reproducibility of the included dMRI metrics across different acquisition schemes 

with a higher number of directions and b-values, which supports the use of advanced 

computational dMRI models for data obtained using a clinically feasible acquisition protocol.  

The study also included a relatively large sample size and benefitted from all participants 

having been scanned with the same MRI scanner. Additionally, with cross-sectional studies 

being limited by between-subject variance and possible cohort effects (Schaie, 2005), the 

current study profits from a mixed cross-sectional and longitudinal design, where subjects can 

be used as their own baseline (Sexton et al., 2014) and better inform us of the ageing process, 

as well as providing a better indication of estimates we can make about an individual’s ageing 

trajectory. 

However, the longitudinal aspect of our study had some limitations, including the short 

interval duration, and the low sample size compared to the cross-sectional sample. 

Consequently, the main results were largely driven by cross sectional data despite the mixed 

cross-sectional and longitudinal nature of the design. Future research should aim to adopt fully 

longitudinal designs over several time points in order to evaluate individual differences in 

change over time, preferably over wide age ranges. 

Although the advanced dMRI models offered new insight into age sensitivity (such as 

the use of brain-age prediction accuracy of RSI and NODDI) and differences in age 

trajectories, the biological interpretation of these metrics remain vague (Hope et al., 2019). 

Continued development and validation of more optimal diffusion models that better reflect 

biological properties of the brain is needed, and future research should take into account the 

impact of a range of potential factors that may mediate brain and cognitive development 

(Alnæs et al., 2019) and aging (Lindenberger, 2014), such as pre- and perinatal events, socio-

demographical factors, education, lifestyle, cardiometabolic risk factors and genetics.  
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In conclusion, characterising changes in white matter microstructure over the human 

lifespan is critical for establishing robust baseline measures of normative development and 

ageing, which in turn can help us to better understand deviations from healthy age trajectories. 

The current study demonstrates that while advanced and conventional dMRI models show 

comparable age-sensitivity, multi-shell diffusion acquisition and advanced dMRI models can 

contribute to measuring multiple, complementary aspects of white matter changes across age. 

Further developing dMRI models in terms of biological tissue specificity remains a challenging 

yet important goal for understanding white matter development across the human lifespan. 
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