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Abstract
Gapped k-mer kernels with Support Vector Machines (gkm-SVMs) have achieved strong predictive
performance on regulatory DNA sequences on modestly-sized training sets. However, existing
gkm-SVM algorithms suffer from slow kernel computation time, as they depend exponentially on
the sub-sequence feature-length, number of mismatch positions, and the task’s alphabet size. In this
work, we introduce a fast and scalable algorithm for calculating gapped k-mer string kernels. Our
method, named FastSK , uses a simplified kernel formulation that decomposes the kernel calculation
into a set of independent counting operations over the possible mismatch positions. This simplified
decomposition allows us to devise a fast Monte Carlo approximation that rapidly converges. FastSK
can scale to much greater feature lengths, allows us to consider more mismatches, and is performant on
a variety of sequence analysis tasks. On 10 DNA transcription factor binding site (TFBS) prediction
datasets, FastSK consistently matches or outperforms the state-of-the-art gkmSVM-2.0 algorithms in
AUC, while achieving average speedups in kernel computation of ∼ 100× and speedups of ∼ 800×
for large feature lengths. We further show that FastSK outperforms character-level recurrent and
convolutional neural networks across all 10 TFBS tasks. We then extend FastSK to 7 English-
language medical named entity recognition datasets and 10 protein remote homology detection
datasets. FastSK consistently matches or outperforms these baselines. Our algorithm is available as
a Python package and as C++ source code1.

1 Introduction
String kernels in conjunction with Support Vector Machines (SK-SVM) achieve strong prediction performance across
a variety of sequence analysis tasks, with widespread use in bioinformatics and natural language processing (NLP).
SK-SVMs are a popular technique for DNA regulatory element identification [22, 10, 25, 7, 19, 27, 8], and bio-medical
named entity recognition [23, 15]. SK-SVMs are also popular baselines for evaluating the quality of deep learning
models [3, 10, 25] for analyzing variant impacts.
The key to the success of string kernel methods is their use of simple, yet expressive, substring features to compute a
similarity function between sequences. In turn, the similarity function defines an inner product space, where an SVM
classifier can be trained. The approach easily enables comparison of arbitrary length sequences, obviates sequence
alignment issues, captures task-relevant pattern information, and is simpler than other pattern detection tools, such as
position-weight matrices [28, 2]. Viewed as a type of "feature engineering", string kernels yield simpler and lower
variance models than deep learning. One consequence is that they show strong performance without consuming vast
amounts of training data (for example, see Figure 4).
In greater detail, string kernels use substring features to map sequences to fixed-dimension feature vectors. Such a
mapping is referred to as a feature map. For example, one of the most popular string kernels is the k-spectrum kernel
[21], which maps sequences to vectors using contiguous length-k substrings, or k-mers. In this vector space, the i-th
component of a sequence’s feature vector is simply the number of times the i-th possible k-mer occurs in that sequence.
The kernel function then takes a pair of sequences and returns their similarity score—the inner product of their feature
vectors in the vector space induced by the feature map. Importantly, a kernel function serves a "kernel trick" in the
Support Vector Machine framework. In turn, this provides several benefits of its own: SVMs learn an optimal separating

1Available for download at https://github.com/Qdata/FastSK/ . Install with the command make or pip install
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hyperplane to classify sequences and show excellent generalization [29]. Moreover, they obtain excellent prediction
performance without needing as many training samples as state-of-the-art deep learning models (shown by Figure 4).
The spectrum string kernel and derivatives such as the Gapped K-Mer kernels via Support Vector Machine (gkm-SVMs)
[7] and (k,m)-mismatch kernel [4] are responsible for many of the successes of string kernels. However, a major
problem for spectrum kernels is that the dimensionality of the feature space is |Σ|k, where |Σ| is the alphabet of
characters appearing in the sequences. This presents three major problems. First, kernel computation becomes infeasible
for even modest values of |Σ| or k. For example, spectrum kernels are infeasible for roughly k > 10, yet many
transcription factor binding sites are up to 20 basepairs long. Furthermore, spectrum methods scale poorly to large
alphabets, such as protein or natural language [4, 20, 30]. The second challenge is that as k increases, the odds of
observing any particular k-mer within a sequence rapidly goes to zero. Therefore, the feature vectors are both extremely
large and extremely sparse, which makes models trained on these feature vectors highly prone to overfitting and poor
generalization. Third, existing algorithms that overcome these challenges leave much to be desired; for example,
popular trie-based approaches (e.g., [7, 4]) still exhibit exponential dependence on |Σ| [20, 27], k, and m. On the other
hand, counting-based methods rely on complex "mismatch statistics" to indirectly obtain feature counts [17, 6, 27],
however still fail to scale to greater feature lengths.
Together, these issues present major limitations to the practical utility of k-mer string kernel methods. To solve these
problems, we introduce a novel string kernel algorithm called FastSK . It makes four high-level contributions:

1. We take inspiration from [7] and use gapped k-mer features, or gkmers for short, which are a more compact
feature set that greatly reduces the size of the feature space and risk of overfitting. These gapped k-mer features
consist of an overall length of g = k + m, length-k non-contiguous substrings within the features, and m
mismatch positions.

2. We decompose the kernel function into a set of
(
g
m

)
independent counting operations to count the gapped

k-mer features shared between sequences. This formulation is simpler and faster than the state-of-the-art
string kernel algorithms. Furthermore, the independence of the counting operations mean that the algorithm is
naturally parallelizable. We exploit this advantage to create a fast multithreaded implementation.

3. We take advantage of the independence of each mismatch position to create a scalable Monte Carlo approxi-
mation algorithm. This approach randomly samples the possible mismatch positions until the variance of the
kernel matrix converges. We show the approximation algorithm, called FastSK -Approx, converges rapidly
irrespective of the parameters g and m. Therefore, FastSK -Approx allows scaling to greater feature lengths.

4. Empirically, we show that FastSK matches or outperforms state-of-the-art string kernel methods, convolutional
neural networks (CNN) and LSTM models in test performance across 10 DNA TFBS datasets, 10 protein
remote homology detection datasets, and 7 medical named entity recognition tasks.

FastSK provides a list of benefits compared to previous works: (1) It scales to greater feature lengths, effectively
running in O(1) time with respect to the feature length. (2) It does not show AUC decay at greater feature lengths. (3)
Its running time is independent of the alphabet size |Σ|, allowing it to generalize to any sequence analysis task. (4) It
outperforms two deep learning models when using modestly-sized training sets. (5) Finally, FastSK has a nice bonus
property: it is a much simpler algorithm because it directly computes the kernel function instead of using complicated
"mismatch statistics." (6) Most importantly, we make our algorithm available as a toolkit via C++ source code in Github
and via a Python package.

2 Background
2.1 Support Vector Machines
Support Vector Machines learn a linear predictive model f(x) = ŷ = x ·w + b. In the case of linearly-separable data,
SVMs optimize the parameters w by learning a pair of max-margin hyperplanes given by:

x · w + b = 1 (1)
x · w + b = −1 (2)

This is achieved by minimizing ||w||2; because we want to maximize the distance between the planes, which is 2/||w||2,
we minimize ||w||2. To keep training points from being inside the margin, we also impose the constraint:

yi(w · xi) ≥ 1 for 1 ≤ i ≤ n (3)

where n is the number of training samples.
A non-linear, or kernelized, SVM follows roughly this same structure, but uses a kernel function K(·, ·) to compute
the pair-wise similarities between samples. As such, a string kernel function K is easily applied in the Support Vector
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Machine (SVM) framework [29]. In this case, the predicted class of a sample x is given by

f(x) =
n∑
i=1

αiyiK(xi, x) + b (4)

where xi and yi are the ith training sample and its label, respectively. Each αi is a weight, where if αi 6= 0, αi
corresponds to a support vector and b is a learned additive bias.

2.2 String Kernels
String kernel methods compare arbitrary-length sequences by mapping them to a fixed inner product space. The key
component is the feature map φ : S → Rp, where S is the set of all strings composed from the alphabet Σ. The
dimensionality p of the vector space depends on the particular string kernel’s feature map. The canonical example is
the spectrum kernel by [21], which uses simple length-k substrings, or k-mers. Given a string x = (s1, s2, ..., s|x|)
with each si ∈ Σ and a substring size k, the spectrum kernel φS maps x to a vector indexed by all possible length-k
substrings from Σk. Under this feature map, the ith dimension of the vector φS(x) holds the number of times the ith
possible k-mer ∈ Σk occurs in x. The spectrum kernel function KS then provides a similarity score of two sequences x
and y as the inner product of their spectrum feature vectors:

KS(x, y) = 〈φS(x), φS(y)〉 (5)

A string kernel function K is easily applied in the Support Vector Machine (SVM) framework [29]. Importantly, the
inner product of a string kernel can be defined implicitly as part of the kernel function. That is, without invoking the
explicit mapping of strings to their full feature vectors in the vector space. For example, the spectrum kernel is also
given by

KS(x, y) =
∑
α∈Σk

cx(α)cy(α) = 〈φS(x), φS(y)〉 (6)

where cx(α) and cy(α) return the counts of k-mer α in sequences x and y, respectively. This view provides an important
intuition: the feature function φ(·) can be evaluated implicitly; that is, without fully mapping the sequences to their
feature vectors. Another important intuition is that a k-mer α only contributes to KS(x, y) if it is present in both
sequences; that is, both cx(α) and cy(α) have to be non-zero. Therefore, evaluation of KS(x, y) reduces to counting
the co-occurrences of each possible α. In fact, this view shows we must compare the k-mers between samples in order
to determine if some α is present in both. Finally, to allow imprecise matching (e.g., permitting robustness to noise or
single nucleotide polymorphisms), we can permit some number of mismatches when comparing the k-mers between
sequences. This approach, called the (k,m)-mismatch kernel, defines the kernel function as

K(k,m)(x, y) =
∑
α∈Σk

cx(α;m)cy(α;m) (7)

where cx(α;m) is the number of times the k-mer α appears in the sequence x with up to m mismatches. In the next
section, we further elaborate upon this formulation.

2.3 (k,m)-mismatch Kernel
Since the introduction of the spectrum kernel, many string kernel variants and generalizations have been proposed,
usually involving mismatches to incorporate noise into string comparisons. For example, the (k,m)-mismatch kernel
from [20] retains the k parameter for substring lengths, while adding an m parameter to denote a number of mismatches
permitted when comparing the k-mers of a pair of sequences.
A simple generalization of the k-spectrum kernel is the (k,m)-mismatch kernel [20], which permits up tom mismatches
when determining if a pair of k-mers should contribute to the similarity of their respective sequences. Under the
(k,m)-mismatch feature map, a string x is mapped to a |Σ|k-dimensional space by

φ(k,m)(x) =
(∑
α∈x

Im(α, γ)
)
γ∈Σk

(8)

where Im(α, γ) = 1 if the kmer γ is in the "mismatch neighborhood" of α, denoted by Nk,m(α). The mismatch
neighborhood Nk,m(α) is simply the set of all kmers that differ from α by at most m characters. The ith index of
φ(k,m)(x) is simply a count of how many times the ith possible kmer occurs in x if we allow up to m mismatches.
An influential approach by [17] uses this formulation to compute the kernel function indirectly. Intuitively, the similarity
of sequences x and y is given by how many "neighboring" k-mers they share. Following this intuition, the trick
is to compute the kernel function by counting how many k-mers from sequence x are contained in the mismatch
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neighborhoods of sequence y’s k-mers. As shown in [17], this reduces to counting the number of k-mers shared between
x and y at each Hamming distance d ∈ ({0, 1, ...,min(2m, k)} and then multiplying the counts (which the authors call
"statistics") by an appropriate combinatorial coefficient. We dub this approach and its derivatives "mismatch statistic
string kernels." The upside of the mismatch statistic approach is that it works well in the case of the (k,m)-mismatch
kernel and is not computationally dependent on the alphabet size |Σ| (the feature space, however, is). The downside is
that it has been applied to situations where it is not actually beneficial. We show this in section 3.5.
As for the (k,m)-mismatch kernel generally, there are significant shortcomings. First, because the feature space is of
size |Σ|k, operating in this space becomes deleterious for even moderately sized Σ or k. Second, this is an extremely
sparse feature space, as the probability of any particular k-mer appearing in a sequence quickly approaches 0 as k grows.
As such, (k,m)-mismatch SK-SVMs are highly prone to overfitting. Third, most implementations use trie-based data
structures, which also grow exponentially with Σ and k [4, 20, 30]. Implementation that do not use tries often use a
complex set of mismatch statistics to indirectly compute the co-occurrence counts [16, 17, 6].
Ultimately, none of these approaches are effective at meeting all of the following three criteria: (1) Feature set that is
not exponential in the alphabet size |Σ|. (2) Fast kernel computation algorithm that is scalable in Σ, and conceptually
simple. (3) It should scale to greater feature lengths and numbers of mismatches. For example, efficiently handling
transcription factor binding sites with 20 basepairs.

3 Proposed Algorithm: FastSK
3.1 Gapped k-mer Kernel
Like [7], we use a gapped k-mer, or gkmer, feature set. These features have three parameters: an overall feature
length g, m mismatch (or gap2) positions, and k informative, non-mismatch positions (note that k + m = g). For
example, as shown in figure 1, the string S = ACACA, contains the g-mer g1 = ACA, where g = 3. Now, the
parameter k specifies a number of informative, non-mismatch positions within the g-mer. For example, if k = 2, then
{AC_, A_A, _CA} are the set of possible gapped k-mers within g1. We use m (in this case m = 1) to denote the
number of mismatch positions inside the k-mers. As with the k-spectrum and (k,m)-mismatch kernel, our kernel
function is determined by the co-occurrences of k-mers, except in our case the k-mers are not contiguous features. The
gapped k-mer string kernel function is given by

KGSK(x, y) =
∑

γ∈Θg,m

cx(γ)cy(γ) (9)

where Θg,m is the set of gapped k-mers with m mismatch positions appearing in the dataset; in contrast to the spectrum
methods, we do not need to consider the entire feature space. Function cx(γ) gives the count of gapped k-mer γ in x.

3.2 Sort-and-Count Kernel Algorithm
We decompose equation 9 into a summation of multiple independent counting operations, where each operation handles
a combination of mismatch positions. Our kernel function is given by:

KFSK(x, y) =

gCm∑
i=1

∑
γ∈Θi

cx(γ)cy(γ) (10)

Here gCm =
(
g
m

)
, Θi denotes the set of gapped k-mers induced by the ith combination of m mismatch positions. Note

that the sets Θi compose the full feature set Θg,m. We give a demonstration of our algorithm for computing equation
10 in figure 1 and briefly summarize the algorithm here. First, we extract all g-mers from the dataset and store how
many times each g-mer occurs in each sequence. Then for each of the

(
g
m

)
combinations of mismatch positions, we

remove m mismatch positions from the g-mers to obtain a set of gkmers. Next, we sort the gkmers and count when they
are shared in common between pairs of sequences. When we find that a gkmer γ occurs in both sequences x and y, we
store the product cx(γ)cy(γ) in a partial kernel matrix Pi. Denoting Pi as a function, the partial similarity score of x
and y is given by:

Pi(x, y) =
∑
γ∈Θi

cx(γ)cy(γ) (11)

Importantly, we compute each Pi independently. This way the algorithm is both easy to parallelize and easy to
approximate using random sampling. We demonstrate this experimentally in section 3.3. Ultimately, once each Pi for

2We hereafter use “gap" and “mismatch" interchangeably.
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Figure 1: A demonstration of the FastSK -Exact algorithm for g = 3, m = 1, and k = 2 using a small dataset with only
two sequences (S and T). (1) All g-mers are extracted from the dataset and stored in a table, along with the IDs of the
sequences from which they were extracted. (2) One of the possible

(
g
m

)
combinations of mismatch positions is removed

to produce the gkmers. (3) The gkmers are sorted lexicographically. (4) Co-occurrences of the gkmers are counted and
stored in the corresponding partial kernel matrix Pi. Steps (2-4) are repeated until each Pi is computed. (5) Once all
partial matrices are computed, they are summed to produce the unnormalized kernel matrix K. (6) Kernel values are
normalized.

i ∈ {1, 2, ...,
(
g
m

)
} is computed, the full kernel matrix is given by

KFSK =

gCm∑
i=1

Pi (12)

where gCm =
(
g
m

)
. We show these steps in algorithm 0. Finally, we normalize the kernel matrix using

KFSK(x, y)← KFSK(x, y)√
KFSK(x, x)KFSK(y, y)

(13)

for pair of sequences (x, y). We refer to this algorithm as FastSK -Exact.

3.3 FastSK via fast Monte Carlo Approximation

Because FastSK -Exact runs with a coefficient of
(
g
m

)
, it is exponential in g and m. As such, it is unable to handle

features roughly of size g > 15. However, many TF binding sites are up to 20 basepairs. If we let k = 6, we would
have to compute more than 38,000 partial mismatch kernels. Moreover, even if g = 20 is not optimal, a thorough
grid-search must include large values of g in the search space in order to rule them out. Therefore, there is a strong
need to create gapped k-mer algorithms that can scale to greater feature lengths. To solve this problem, we introduce a
Monte Carlo approximation algorithm called FastSK -Approx. FastSK -Approx is extremely fast even for large values
of g, as it requires only a small random subset of the

(
g
m

)
partial kernels Pi. Empirically, we show that FastSK -Approx

is roughly O(1) with respect to g.

To compute FastSK -Approx, we sample possible mismatch combinations for up to Imax ≤
(
g
m

)
iterations. That is, at

iteration 1 ≤ t ≤ Imax, we randomly sample (without replacement) a mismatch combination i←
(
g
m

)
and compute
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Figure 2: Only a small proportion of the possible mismatch combinations are needed
for strong performance. We use the EP300 TFBS (DNA) dataset with g = 10 and
m = 4, hence 210 possible mismatch combinations. On the x-axis, we show the number
of mismatch positions used and the percentage of the total possible below each one. The
left y-axis shows the performance metric (AUC and accuracy) on the test set, while the
right y-axis shows the variance of the kernel matrix. Together, these show that the FastSK
approximation algorithm converges rapidly, which corresponds to strong performance.

Algorithm: FastSK Exact:
Require: L, g, k (L=matrix of all g-mers from the dataset)

1: procedure CALCULATEKERNEL(L,g,k)
2: M ← g − k
3: N ←MISMATCHPROFILE(L,g,M )
4: K ← 0
5: procedure MISMATCHPROFILE(L,g,M )
6: npos ←

(
g
m

)
. Number of positions

7: for i : 0→ npos do
8: Pi ← 0
9: Li ← removePosition(L, i)

10: Li ← sort(Li)
11: Pi ← countAndUpdate(Li)

12: for i : 0→ npos do
13: K ← K + Pi

return K
Ensure: K . Kernel Matrix

the corresponding partial kernel matrix Pi. We then compute the online mean kernel matrix K̄(t) using Pi and K̄(t−1).
Furthermore, we compute a matrix of online standard deviations corresponding to the entries of K̄(t) and use the
average of these values, which we denote as σ(t), to satisfy a convergence condition. Convergence is achieved when
there is an approximately 95% probability that the online sample mean kernel K̄(t) is within δ units of the true mean
kernel matrix µK . Here, δ is a user-determined parameter. In practice, we use δ = 0.025.
The idea rests on the Central Limit Theorem: we assume that for sufficiently large t, the sample mean kernel is normally
distributed. Standardizing the variable K̄(t), we have Pr[| K̄

(t)−µK

σ(t) | > 1.96] ≈ Pr[|z| > 1.96] = 0.05, where 1.96 is
the z-score for a 95% confidence interval. Therefore, the convergence condition is satisfied when

1.96σ(t) < δ (14)

We show that FastSK -Approx converges rapidly, even for large values of g or m; it typically converges when t ≈ 50,
which roughly corresponds to the number of samples needed to invoke the Central Limit Theorem. Furthermore, this
means that FastSK -Approx is roughly O(1) with respect to g.
In Section 4.1.1 and Figure 6, we empirically show that FastSK -Approx converges rapidly across all datasets we tried.
Our results show that FastSK -Approx consistently matches FastSK -Exact in prediction performance along with a
significant speedup in time cost. Therefore FastSK -Approx is our default choice of FastSK .

3.4 Software Details

Our algorithms are easily available as a PyPi package3 for Python. The package, called "fastsk", consists of a well-
optimized C++ implementation with a Python interface. We bind the C++ backend and Python interface using the
Pybind11 library4 [13]. Therefore, we combine the simplicity and convenience of Python with the speed and low-level
control of C++. To our knowledge, this is the only string kernel package that does so. We believe FastSK is the best
string kernel toolbox for use within modern data science/machine learning toolboxes.

UsageUnlike virtually all extant string kernel toolboxes, FastSK is designed to be easy to use in modern data
science/machine learning workflows. For one, it is installed using a simple command (pip install fastsk). Two, kernel
matrices can be computed in just a few lines of Python. Three, it is easy to use FastSK in conjunction with the standard
classifiers in the Scikit-Learn library, including linear SVM (LinearSVC), kernel SVM (SVC), stochastic gradient
descent (SGDClassifier), and logistic regression (LogisticRegression). Finally, evaluation and analysis are also quite
simple, as metrics such as AUC and F1 score are trivial to compute using the Scikit-Learn metrics library. We illustrate
a typical use-case in Figure 3.

3Available at https://github.com/QData/FastSK or with the command "pip install fastsk"
4https://github.com/pybind/pybind11
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from fastsk import Kernel
from sklearn .svm import LinearSVC

# Train and test samples can be Python lists or numpy arrays
x_train , y_train , x_test , y_test = read_samples(" train . fasta " ,

" test . fasta ")

# Set the parameters for computing the gapped string kernel
g, m, threads = 8, 4, 20
kernel = Kernel(g=g, m=m, t=threads, approx=False)

# Compute the train and test kernels
kernel .compute(x_train , x_test )
train_kernel , test_kernel = kernel . train_kernel () ,

kernel . test_kernel ()

# Train and evaluate linear SVM
svm = LinearSVC(C=1)
svm. fit ( train_kernel , y_train )
accuracy = svm.score( test_kernel , y_test )

Figure 3: FastSK is easy to use in Python in conjunc-
tion with the Scikit-Learn library. Here, we show an
example of computing a gapped string kernel and then
using the train and test kernels to train and evaluate a
linear SVM. Training many other models (kernel SVM,
logistic regression, etc.) is straightforward as well.
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Figure 4: We vary the proportion of training samples used
for a DNA sequence classification task (TFBS prediction
on the ZZZ3 ENCODE ChIP-Seq dataset). Training sizes
vary from 1,000 to 9,996 samples (the maximum). Each
point is the average of 5 runs, with the shaded region
showing standard error.

Lower Triangular KernelBecause a kernel matrix is symmetric by definition, we only store the lower triangle to save
memory. In practice, the lower triangular kernel matrix is actually treated as a one-dimensional contiguous array in
memory. This simplifies the code and improves cache utilization through better access locality.

3.5 Connecting to Related Work
Mismatch Statistic-Based String KernelsWhile FastSK directly counts the gapped k-mers shared between sequences,
previous works (e.g. [7, 8, 18, 19, 27]) indirectly compute the kernel function by inferring the counts from a set of
mismatch statistics. These methods take inspiration from [17], which uses the notion of a mismatch neighborhood to
efficiently compute the (k,m)-mismatch kernel. A mismatch neighborhood Nd(x, y) is simply the number of pairs of
g-mers from sequences x and y that have a Hamming distance ≤ d. Using this "statistic," the kernel function is inferred
by multiplying Nd(x, y) with an appropriate coefficient for each value of d. Given a value of d, the required coefficient
is some kernel-dependent combinatorial value. Though the mismatch statistic idea was created to improve the efficiency
of the (k,m)-mismatch kernel, we argue that it actually harms efficiency in the case of the gapped k-mer kernel.
To compute the gapped string kernel, gkmSVM [7] applies the mismatch neighborhood idea to gapped k-mers. The key
observation is that a pair of g-mers with a Hamming distance of d share

(
g−d
k

)
gkmers. Using this observation, the

gkmSVM kernel is given by

Kgkm(x, y) =

g∑
d=0

Nd(x, y)hgk(d) (15)

where

hgk(d) =

{(g−d
k

)
g − d ≥ k

0 otherwise
(16)

The key point is that this kernel function does not count the features of interest, which are gapped k-mers, or gkmers.
Rather, it counts g-mers at various Hamming distances d and uses a coefficient hgk(d) to infer the gkmer counts.

Theorem 1. The FastSK kernel function is equivalent to the gkmSVM kernel function [7, 8].

Proof. Because hgk(d) = 0 for d > m = g − k, equation 15 is equal to

Kgkm(x, y) =

m=g−k∑
d=0

Nd(x, y)hgk(d) =

m=g−k∑
d=0

(
g − d
k

)
Nd(x, y) (17)

To directly count the gkmers, we replace
(
g−d
k

)
Nd(x, y), d ∈ 0, 1, 2, ...,m with

(
g
m

)
, the number of possible mismatch

positions. Therefore, at the ith mismatch position, we simply count the gapped k-mers in the set Θi. Therefore, we

7

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2020. ; https://doi.org/10.1101/2020.04.21.053975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.21.053975
http://creativecommons.org/licenses/by-nc-nd/4.0/


have

Kgkm(x, y) =

m=g−k∑
d=0

(
g − d
k

)
Nd(x, y) =

gCm∑
i=1

∑
γ∈Θi

cx(γ)cy(γ) (18)

as desired. Our method is both faster and simpler because we cut out the middleman: we directly count the gkmers.
It also allows us to create a better approximation algorithm than what is possible using equation 15, because we can
sample mismatch positions to estimate the kernel function.

Trie-based ImplementationsSeveral implementations, including gkmSVM and gkmSVM-2.0 [7, 8], use a k-mer tree
(or trie) to compute the mismatch neighborhood Nd(x, y) for each d ∈ {0, 1, 2, ..., g} and pair of sequences (x, y).
These approaches have a branching factor equal to the alphabet size |Σ| (e.g., 4 for DNA) and depth of g. As such,
they are impractical for tasks with larger alphabets, such as protein (Σ = 20) or English text (Σ ≥ 26) classification.
Furthermore, they scale poorly with the parameter g and m.

Counting ImplementationsGaKCo [27] is similar to FastSK in that it uses uses a sort-and-count algorithm. However,
it differs from FastSK in that it follows the mismatch statistic formulation from [7]. The result is that GaKCo’s time
complexity has a

∑m=g−k
d=0

(
g
d

)
coefficient. In contrast, we simply have a coefficient of

(
g
m

)
.

4 Experimental Setup and Results
DatasetsWe evaluate FastSK using 10 transcription factor binding site (TFBS) DNA datasets derived from the
ENCODE project, 10 protein remote homology datasets from the SCOP project, and 7 English-language medical named
entity recognition datasets. Summary statistics and speedup results for our DNA, protein, and NLP datasets are shown
in Tables 1, 2, and 3, respectively (tables 2 and 3 in appendix).

BaselinesWe compare the prediction accuracy and efficiency of FastSK with 3 state-of-the-art string kernel baselines.
For DNA and protein data, we baseline against gkmSVM-2.0 [8] and GaKCo [27]. For an NLP string kernel baseline,
we use the Blended Spectrum Kernel [12, 11], as it has recently achieved strong results in natural language processing.
For FastSK , gkmSVM-2.0, and GaKCo, we perform a grid search over the hyper-parameters g ∈ {5, 6, ..., 15},
m ∈ {0, 1, ..., g − 1}, and the SVM margin parameter C ∈ {0.001, 0.01, 0.1, 1, 10, 100}. We use 5-fold cross-
validation on each training set. For the Blended Spectrum Kernel, we use the authors’ string kernel package 5 and use
the parameters kmin = 3 and kmax = 5, as recommended by the authors.
We also compare FastSK with bidirectional Long Short-Term Memory (LSTM) memory networks and Character-level
CNNs. We select these two straight forward deep learning baselines because we use small-scale datasets. Though
models such as AlphaFold or BERT are popular deep learning models for sequence analysis, they require more training
data than our datasets contain.

LSTM TrainingTo train an LSTM model on each dataset, we perform a grid-search over the embedding and hidden
dimensionality ∈ {32, 64, 128, 256}, and number of layers ∈ {1, 2, 3, 4}. We use the Adam optimizer[14] with a
learning rate of 0.001. We perform 5-fold cross-validation on each training set. We use the probability scores of the
final layer to compute AUC.

CharCNN TrainingTo train CharCNN models, we use an architecture with 6 layers; 3 convolutional layers and 3
fully-connected layers.

SVM TrainingTo train SVM models using each string kernel method, we use Liblinear [5] via the Scikit-Learn
LinearSVC implementation6 with L2 regularization. In order to use a kernel method with a linear SVM, we use the
empirical kernel map (EKM) strategy. That is, K ← KGSK

>KGSK . To evaluate the SVM models, we use area under
the ROC curve (AUC) with Platt Scaling [24] to obtain probabilities. We focus on the AUC metric because many
biological sequences datasets are highly imbalanced (very few positive samples in the test set), while a high AUC
reflects strong ability to discriminate between true and false positives.
Unless otherwise noted, we run FastSK -Approx with Imax = 50 and δ = 0.025. All timing experiments are performed
on a server with 12 Intel i7-6850K 3.60GHz CPUs.

5Available for download at: http://string-kernels.herokuapp.com/
6https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
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4.1 Comparing Prediction Performance
FastSK achieves excellent prediction performanceFigure 5 shows the AUC results of all baselines across our 27
datasets. Our results prove that FastSK rivals or outperforms previous string kernel algorithms on DNA, protein, and
NLP tasks. Moreover, FastSK also outperforms our LSTM and Character-level CNN baselines across all three tasks.
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Figure 5: FastSK matches or outperforms the baselines across (a) DNA datasets, (b) protein datasets, and (c) medical
NLP datasets. Please note that results in (b) relied on sequence information, therefore may be improved with more
features like PSSM. In our context, experiments on 10 protein and 7 biomedical NLP datasets mainly serve to validate
that FastSK can scale to sequence inputs with a larger alphabet.
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Figure 6: (a) FastSK -Approx with Imax = 50 achieves almost identical test AUC as FastSK -Exact. This is because
very few partial kernels Pi are needed to achieve an excellent approximation of the kernel matrix. On average, the test
AUC of FastSK -Approx is just 0.003 points lower than that of FastSK -Exact. (b) We plot AUC vs kernel computation
time, where each point shows the AUC and kernel timing for a different value of g ∈ {6, ..., 20}. I.e., 14 points for each
FastSK and gkmSVM-2.0-Approx. We show that FastSK consistently retains both excellent AUC and low kernel
computation times. On the other hand, gkmSVM-2.0-Approx degrades in AUC as the time needed to compute the
kernel matrix increases. (c) The gkmSVM-2.0-Approx strategy results in severely degraded performance as g increases.
It is therefore unreliable for searching the parameter space.

4.1.1 Ablation Study on Approximation Strategy
In this section, we first validate the correctness of our approximation algorithm and then compare our approximation
strategy with that of gkmSVM-2.0.
First, our approximation algorithm (FastSK -Approx) is nearly identical to an exact gapped k-mer string kernel SVM.
As shown in figure 6 (a), a comparison of FastSK -Approx and FastSK -Exact reveals that FastSK -Approx obtains test
AUCs only 0.003 points lower than FastSK -Exact. The approximation works so well because, in fact, only a small
proportion of the possible mismatch combinations are necessary for excellent performance. We validate this theory in
figure 2, as well as figure 12 (appendix).
Second, we show that our approximation algorithm is favorable compared to that of gkmSVM. Figure 6 (b) shows
that FastSK-Approx consistently maintains excellent AUCs and low kernel timings. Meanwhile, we show that
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Figure 7: (a) We vary the feature length parameter g from 6 to 20 and measure the average speedup achieved by FastSK
for each DNA dataset. (b) FastSK achieves maximum speedups of almost 3 orders of magnitude. These are typically
achieved when g is large.

gkmSVM-Approx is actually optimized for kernel computations that are already fast; as the g parameter increases,
gkmSVM-Approx both slows down and dramatically drops off in AUC. It therefore works best when g is small, but
these are precisely the cases where an approximation algorithm is unnecessary. Figure 6 (c) further illustrates this
problem: as g increases, gkmSVM-Approx’s AUCs deteriorate rapidly. In contrast, FastSK’s AUCs remain quite stable.
We therefore conclude that FastSK-Approx is both fast across the parameter space and produces reliable results. These
conclusions are further explored in section 4.2.

4.2 Comparing Speed and Scalability

In this section, we experimentally analyze the scalability of FastSK and compare with the primary baseline, gkmSVM-
2.0. First, we show that on average FastSK is between 1 and 3 orders of magnitude faster than gkmSVM-2.0. Second,
we show that FastSK easily scales to larger numbers of mismatches m, while gkmSVM-2.0 does not. Third, we
show that FastSK easily scales to larger feature lengths g, while gkmSVM-2.0 does not. Taken together, these results
demonstrate a major contribution of this work: unlike previous works, FastSK is practical and easily navigates the
gapped k-mer parameter space of g and m values.

FastSK is orders of magnitude fasterAs illustrated in table 1, tables 2 and 3 (appendix), and figure 7, FastSK achieves
large speedups over the baselines. We vary the feature length g and time kernel computation for each value. This
simulates the necessary process of searching the full space of parameters in a grid search. We show that on average,
FastSK is hundreds of times faster than gkmSVM. Maximum speedups are over 800×.

Table 1: 10 DNA Datasets (Data Statistics and Speedups)
Dataset Train Test Total Avg

Speedup×
Max
Speedup×

CTCF 2000 2000 4000 151 723
EP300 2000 2000 4000 16 92
JUND 2000 2000 4000 151 757
RAD21 2000 2000 4000 161 808
SIN3A 2000 2000 4000 16 88
Pbde 4500 5500 10000 18 107
EP300_47848 6506 724 7230 162 833
KAT2B 6318 702 7020 161 809
TP53 4432 494 4926 23 81
ZZZ3 9966 1108 11074 18 111

We evaluate FastSK using 10 DNA sequence
based transcription factor binding site classifica-
tion datasets (downloaded from the DeepBind
[1]). We measure the factor of speedup in ker-
nel computation time relative to gkmSVM-2.0,
showing that FastSK is typically hundreds of
times faster than gkmSVM-2.0. Specifically, for
each dataset, we vary g from 6 to 20, while fixing
k = 6, and then time the kernel computations
to obtain the speedups. We run FastSK -Approx
with Imax = 50, as was used to obtain the results
shown in figures 5 and 6. Timing figures for all
10 DNA datasets are shown in figure 9

4.2.1 Scalability Analysis When Varying Mismatches m and Feature length g
FastSK scales in mWe show that FastSK scales more efficiently than gkmSVM-2.0 with respect to the mismatch
parameter m. Figure 8 shows gkmSVM-2.0 is exponential in m, as discussed in section 3.5. On the other hand,
gkmSVM-Approx attempts to circumvent this problem by using a parameter mmax = 3. However, this has the
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Figure 8: We fix g = 16, vary m ∈ {0, 1, ..., 14}, and obtain the kernel computation times for FastSK , gkmSVM-2.0-
Exact, and gkmSVM-2.0-Approx. We observe that gkmSVM-2.0-Exact shows exponential slowdowns with respect to
m, while FastSK remains fast across m. Moreover, we point out that gkmSVM-2.0-Approx does not scale to larger to
m > 3, as it works by limiting the number of mismatch positions to an mmax = 3.
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Figure 9: We vary the feature length g while keeping the number of informative feature positions fixed at k = 6 for each
of the 10 DNA TFBS datasets. We run FastSK with the maximum number of mismatch combinations set to Imax = 50
and run gkmSVM-2.0 using 20 threads. We stop each algorithm early once the kernel computation time exceeds 1800s
(30 minutes). We demonstrate that FastSK is effectively O(1) with respect to the feature length g.

downside of severely curtailing the size of the parameter space. The decision comes at the expense of flexibility and
performance, as we showed in figure 6. The approximation algorithm used by FastSK overcomes these challenges.

FastSK scales in gWe show in figure 9 that gkmSVM-2.0 grows exponentially with the feature length g, while FastSK
is effectively O(1) with respect to g. Moreover, FastSK does not exhibit dramatic AUC decay as g increases. Therefore,
FastSK is able to span the gapped k-mer parameter space.

5 Conclusion
In this work we introduced a fast and scalable string kernel SVM algorithm called FastSK . FastSK rivals state-of-the-art
string kernel SVMs in test performance, while running 1-3 orders of magnitude faster on average. Unlike previous
methods, FastSK is scalable with respect to the g and m gapped k-mer parameters. Moreover, it outperforms two deep
learning baselines. FastSK makes three high-level contributions:

1. Across 10 DNA based transcription factor binding site (TFBS) prediction datasets, FastSK consistently
matches or outperforms the state-of-the-art gkm-SVM-2.0 algorithms in AUC, while achieving average
speedups in kernel computation of ∼ 100× and speedups of ∼ 800× for large feature lengths.

2. We showed that FastSK outperforms character-level recurrent and convolutional neural networks across all 10
DNA tasks.

3. We further demonstrated the utility and robustness of FastSK by testing it on 10 protein remote homology detec-
tion tasks and 7 English-languaged medical named entity recognition tasks. We showed FastSK outperformed
the baselines across all 17 datasets.
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6 Appendix
6.1 More Details for Implementation
MultithreadingAs shown in equation 12, we decompose the kernel function into a summation of

(
g
m

)
partial kernel matrices Pi,

with each Pi holding the gkmer counts for a single combination of mismatch positions. Observing that each Pi is a completely
independent subproblem, we exploit the decomposition to create a multithreaded implementation.

To map threads to subproblems, we create a "work queue"—a length
(
g
m

)
array, where each element indicates a mismatch combination

subproblem to solve. If there are t threads (a user-specified argument), we divide the work queue into t equally sized portions. In
practice, each thread simply moves forward t positions in the work queue when it completes a subproblem. An illustration is shown
in figure 10. A thread’s local results are aggregated into its own temporary matrix; since all Pi are added together in the end, each
thread simply aggregates its partial results as it finishes them. Then once each thread finishes, it adds its partial results into the full
kernel matrix K.

0 1 2 3 4 5 6 7 8 9Subproblems

Figure 10: An illustration of how subproblems
(partial kernel matrices Pi) are divided between
threads. If there are 9 mismatch position combi-
nations and t = 3 threads, then thread 0 (solid
arrow and yellow cells) handles the combina-
tions/subproblems 0, 3, 6, and 9. After finishing
each subproblem, it aggregates the results into a
local sub-sum matrix and skips forward t posi-
tions. The dashed arrow (green cells) shows the
procedure for thread 1. Once each thread has
run out of subproblems to handle, it proceeds to
aggregate its results into the full kernel matrix
K.

SynchronizationOnce each thread finishes computing its subset of the
(
g
m

)
partial kernel matrices, these are aggregated into the

kernel matrix K as per equation 12. But because each thread must access the same K in memory, we must obviate potential race
conditions. To ensure synchronization and maximize the number of threads able to access K simultaneously, we use a set of mutex
locks. Intuitively, the idea is to create a set of evenly sized memory regions such that only one thread is allowed in each region at a
time; a thread enters a region, locks it, and performs its aggregations. When it finishes it unlocks the previous regions, permitting a
new thread to enter, and then locks the next region. An illustration using a small kernel matrix is shown in figure 11.

0
Mutex

1 2

3 4 5
Mutex

6 7 8 9

10
Mutex 11 12 13 14

Finished

Figure 11: An example of our matrix aggregation and syn-
chronization scheme using the lower triangle of a kernel
matrix. The indexes show the order in which cells are ac-
cessed by the threads. Each time a thread reaches one of
the red cells (labeled "Mutex"), it locks the indices up until
the next mutex location. When it reaches the next mutex
location, it unlocks the previous memory region to permit a
new thread to enter. It also locks the next memory region.
Though shown here as a triangular matrix, the kernel ma-
trix is actually a single contiguous array in practice. This
maximizes cache performance.
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6.2 Protein and NLP Dataset Details and Speedups

Table 2: Protein Datasets

Name Train Test Total Speedup ×
1.1 2339 1235 3574 3.4
1.34 2075 1237 3312 3.1
2.19 1345 1215 2560 3.4
2.31 2298 1202 3500 426.6
2.34 1501 1237 2738 0.9
2.41 1427 1219 2646 10.4
2.8 1241 1239 2480 24.5
3.19 2103 1238 3341 6.7
3.25 2395 1242 3637 464.4
3.33 1680 1238 2918 3.6

Table 3: NLP Datasets

Name Train Test Total Speedup ×
AIMed 1500 1500 3000 6.5
BioInfer 2534 2534 5068 43.6
CC1-LLL 3785 330 4115 13.1
CC2-IEPA 3298 817 4115 8.6
CCC3-HPRD50 3682 433 4115 4.5
DrugBank 2472 2472 4944 7.7
MedLine 635 635 1270 20.7

We evaluate FastSK using 10 SCOP project protein remote homology detection datasets and 7 medical named entity
recognition datasets. We show the kernel computation time factor of speedup achieved by FastSK over GaKCo and
Blended Spectrum on each dataset. The average factors of speedup are 94.7× and 15.0×, respectively.

6.3 More Experimental Results
6.3.1 More Ablation Analysis when Varying approximation parameter I
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Figure 12: We vary the maximum number of mismatch positions sampled (determined by the Imax parameter) used for kernel
computation. We then train and test an SVM and show the resultant test accuracy and AUC. These results show that extremely few
mismatch positions for kernel computation usually results in poor test performance, but that test performance increases with the
mismatch positions sampled up until several dozen. This finding provides insight into why FastSK -Approx works so well. However,
these results also showcase an unexpected property of gapped k-mer SVMs: in some cases extremely few mismatch combinations
are actually necessary for excellent performance. We propose exploring this phenomenon as a direction for future research.
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Figure 13: We vary the number of iterations (i.e., the number of mismatch combinations sampled) used by the
approximation algorithm to compute the kernel matrix. The x-axis shows the percent of the maximum number of
iterations (determined by the optimal g and m parameters for each dataset). In addition, it shows the number of
iterations used. The left y-axes show the AUC obtained after each number of iterations. The right y-axes shows the
average variance of the kernel matrix. These results confirm our hypothesis that the approximation algorithm converges
rapidly with the number of iterations and shows that very few iterations are needed for excellent test AUC. Each point
shows the average of 5 runs of the approximation algorithm, with the shading indicating 95% confidence interval. These
results are shown for: (a) The EP300 TFBS dataset (DNA classification) and (b) the 1.1 protein classification dataset.

6.3.2 More Scalability Analysis when Varying m
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Figure 14: Across each of the protein datasets, we fix g = 16 and vary m ∈ {0, 1, ..., 14}. All gkmSVM-2.0-Exact
experiments took over an hour and timed out. As noted in figure 8, the gkmSVM approximation algorithm does not
work for m > 3. Therefore, we argue FastSK efficiently scales across the parameter space for both DNA and protein
classification tasks.

16

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2020. ; https://doi.org/10.1101/2020.04.21.053975doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.21.053975
http://creativecommons.org/licenses/by-nc-nd/4.0/


6.3.3 More Scalability Analysis when Varying g
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Figure 15: We explore how test AUC changes with varying g for FastSK and gkmSVM-2.0 across DNA and protein
datasets. Here we show that optimal AUC is often obtained when g is large. Moreover, we note that even in cases when
large g is suboptimal, those values must still be searched in a thorough grid search. Though FastSK easily scales to
large values of g, gkmSVM-2.0 is unable to do so, as its AUC values rapidly degrade as g increases. Note: we use
gkmSVM-Approx in this figure, as using their exact algorithm is impractical, as figure 9 makes clear.

6.3.4 Multithreading
In this section we examine how kernel computation time is a function of the number of threads for FastSK -Exact, FastSK -Approx,
and gkmSVM-2.0. To start, we point out that FastSK -Approx generally does not benefit from using multiple threads. There are
two reasons. First, our primary implementation of the multithreaded FastSK -Approx algorithm improves approximation quality,
not speed. This is because each thread simply iterates independently until it converges. After all threads converge, their mean
kernels are aggregated and normalized. Nothing about this improves speed per se. Second, we did create an option to accelerate
FastSK -Approx, but the speedups were marginal. This option is identical to FastSK -Exact, except with the Imax parameter set to a
user-specified value. That is, it simply skips the variance and mean kernel matrix computations, using t threads to compute Imax

partial kernels Pi in total. In other words, each thread computes ≈ Imax/t partial kernels. However, we have shown Imax ≈ 50 is
usually sufficient. This is such a small number of iterations that it does not stand to benefit much from multithreading. In fact, the
synchronization overhead in use-cases like this typically negate the benefits of multithreading.

That being said, FastSK -Approx with just one thread is still vastly faster than either FastSK -Exact or gkmSVM-2.0 with twenty
threads. Unlike FastSK -Approx, these algorithms benefit greatly from more threads, as we show. But nevertheless, FastSK -Approx
is much faster. We claim this is one of the key merits of this work: fast kernel computation without multithreading at all. Yet even in
the case of exact kernel computation, we claim another key merit: at each number of threads FastSK -Exact is significantly faster
than gkmSVM-2.0, which we show in 16.

FastSK outperforms gkmSVM-2.0 for any number of threadsAs shown in figure 16, FastSK -Exact is substantially faster
than gkm-SVM2.0 for each number of threads. FastSK -Approx is vastly faster still, even when using just 1 thread. We show similar
behavior across all 10 DNA datasets in the appendix in figure 16.

FastSK is better for multithreading than GaKCo or Blended SpectrumNeither GaKCo nor the Blended Spectrum
kernel make adequate use of multithreading. GaKCo limits the number of possible threads to m, while Blended Spectrum only
allows one thread.
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Figure 16: We vary the number of threads used for kernel computation across all 10 DNA datasets. Each kernel is
computed using the optimal parameters.

6.4 Future Directions
We identify several promising areas where future work could be directed.

1. Finding even simpler gapped k-mer formulations. The success of FastSK -Approx and the curiously small number of
mismatch combinations needed in many cases suggest simpler exact algorithms could exist. The goal here would be to
shed the

(
g
m

)
coefficient from the exact algorithm. An intuition is that it seems only a few mismatch positions are necessary

to obtain most or all of the unique gapped k-mers and that the number of unique gapped k-mers is what ultimately matters.

2. Reducing memory usage. We currently use O(n2) memory to store the kernel matrix. This is intractable for n greater than
several tens of thousands. Future work should implement techniques to avoid storing the full kernel matrix in memory at
once. For example, [18] only computes small batches of the kernel matrix at a time, greatly reducing the memory footprint.

3. Capitalizing on interpretability. String kernel methods have interpretable features and many works have identified the
important features from string kernel methods [26, 19]. Future work can use methods such as Data Shapley [9] to analyze
the most salient features. The fact that so few features appear to be necessary in our results suggests a small number of
features are critical, while most are disposable. Future interpretability work could study this hypothesis.

4. Low rank approximations of the gram matrix K. The efficiency of kernelized SVMs can be improved via the Nyström
method [31], which creates a low-rank approximation of the kernel matrix. This method still requires O(n2) space for the
kernel matrix K, but it ultimately provides an approximation K̃ to be used by the SVM optimizer. For inspiration, [32]
shows a linear SVM method inspired by Nyström’s method.
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