1	Convergent evolution of p38/MAPK activation in hormone resistant prostate
2	cancer mediates pro-survival, immune evasive, and metastatic phenotypes
3	
4	Kathryn E. Ware ^{1,2} , Santosh Gupta ^{1,2} , Jared Eng ^{1,2} , Gabor Kemeny ¹ , Bhairavy J.
5	Puviindran ¹ , Wen-Chi Foo ³ , Lorin A. Crawford ⁴ , R. Garland Almquist ¹ , Daniella
6	Runyambo ¹ , Beatrice C. Thomas ¹ , Maya U. Sheth ¹ , Anika Agarwal ¹ , Mariaelena
7	Pierobon ⁵ , Emanuel F. Petricoin ⁵ , David L. Corcoran ¹ , Jennifer Freedman ^{1,2} , Steven R.
8	Patierno ^{1,2} , Tian Zhang ^{1,2} , Simon Gregory ¹ , Zoi Sychev ⁶ , Justin M. Drake ^{6,7,8} , Andrew J.
9	Armstrong ^{1,2,9} *, and Jason A. Somarelli ^{1,2} *, *=co-corresponding authors
10	
11	Affiliations: ¹ Department of Medicine, Division of Medical Oncology, Duke University
12	Medical Center, Durham, NC; ² Duke Cancer Institute Center for Prostate and Urologic
13	Cancers, Duke University Medical Center, Durham, NC; ³ Department of Pathology,
14	Duke University Medical Center, Durham, NC; ⁴ Department of Biostatistics, Brown
15	University, Providence, Rhode Island; ⁵ Center for Applied Proteomics and Molecular
16	Medicine, George Mason University, Fairfax, Virginia; ⁶ Department of Pharmacology
17	and ⁷ Urology, University of Minnesota, Minneapolis, MN. ⁸ Masonic Cancer Center,
18	University of Minnesota, Minneapolis, MN; ⁹ Department of Pharmacology and Cancer
19	Biology, Duke University, Durham NC
20	
21	Correspondence: jason.somarelli@duke.edu; andrew.armstrong@duke.edu
22	
23	

24 Summary (120 words)

25	Adaptation of cancer cells to targeted therapy follows ecological paradigms		
26	observed in natural populations that encounter resource depletion and changing		
27	environments, including activation of pro-survival mechanisms, migration to new		
28	locations, and escape of predation. We identified the p38 MAPK pathway as a common		
29	molecular driver of these three responses during the adaptation to hormone therapy		
30	resistance in prostate cancer. The p38 pathway is activated in therapy-resistant cells and		
31	mechanistically drives these three convergent responses through sustained AR activity,		
32	enhanced invasion and metastasis, and immune evasion. Targeting p38 signaling may		
33	represent a new therapeutic strategy to treat men with metastatic, hormone therapy-		
34	resistant prostate cancer.		
35			
36	Keywords		
37	drug resistance; androgen receptor; enzalutamide; prostate cancer; phenotypic		
38	convergence; convergent evolution; Snail; castration resistance; PD-L1		
39			
40	Introduction		
41	Populations of individuals within an ecological niche must acquire the necessary		
42	resources to survive and propagate their genetic material to the next generation.		
43	Individuals have adapted a wide range of strategies to ensure resource acquisition in an		
44	ever-changing environment. Some of these strategies include dormancy (Varpe, 2017),		
45	hibernation (KIlduff, 2004), migration, and avoidance of predation (Skov et al., 2010).		

46	Cancer cells adapt similar strategies within the context of the ecological niche of
47	the body to cope with variations in resource availability that promotes their survival. A
48	major resource for cancer cells is the oncogene signaling pathway to which they are
49	addicted. For prostate cancer cells, this critical lineage oncogene is most often the
50	androgen receptor (AR) (Mills, 2014). AR activity is pharmacologically targeted through
51	blocking the ligand binding domain or inhibition of androgenic ligand biosynthesis.
52	Enzalutamide, a 2 nd generation inhibitor of the androgen receptor, and abiraterone
53	acetate, an androgen synthesis inhibitor, each delay progression and improve the survival
54	of men with both early and late castration-resistant prostate cancer (Beer et al., 2014; de
55	Bono et al., 2011; Penson et al., 2016; Ryan et al., 2013; Scher et al., 2012). These potent
56	hormonal therapies significantly prolong the overall survival of men with metastatic,
57	castration-resistant prostate cancer; however, acquired resistance to these drugs over a
58	median of one to two years is inevitable.
59	Upon disease progression with enzalutamide or abiraterone treatment, most
60	tumors remain AR dependent and have a rise in serum levels of prostate-specific antigen
61	(PSA) (Bluemn et al., 2017; Bryce et al., 2017). Multiple mechanisms of AR signal
62	restoration have been identified that directly impact the AR gene, including AR
63	amplification, AR mutations, genomic structural rearrangements (Li et al., 2011b; Li et
64	al., 2012; Liu et al., 2013; Ware et al., 2014), and alternative splicing events (Liu et al.,
65	2014). Additionally, alternative mechanisms can promote the AR transcriptome or
66	promote AR activity through substitute methods of AR activation (Arora et al., 2013;
67	Ware at al. 2014) to generate a pro-survival response (Chap at al. 2004; Viswapathan at

Ware et al., 2014) to generate a pro-survival response (Chen et al., 2004; Viswanathan etal., 2018).

69	In addition to AR activation, complementary pro-survival responses focus on
70	metabolic plasticity, such as dormancy and hibernation. Cancer cells adapt their energetic
71	needs to accompany survival and fitness in hostile environments (Lehuede et al., 2016),
72	and disseminated tumor cells can be found in many prostate cancer patients prior to any
73	clinical symptoms (Ruppender et al., 2013; van der Toom et al., 2016). Furthermore,
74	organisms and cancer cells alike must avoid predation to ensure their survival in any
75	environment. Prostate cancer cells avoid the predation of the immune system in a number
76	of ways, including 1) secretion of immunosuppressive molecules, such as TGF- β (Yang
77	et al., 2010; Yoshimura and Muto, 2011) and soluble WNT ligands (Robinson et al.,
78	2015), and 2) expression of cell surface or cellular immune checkpoint molecules
79	(Antonarakis et al., 2020; Gao et al., 2017; Graff et al., 2016). For example, TGF- β has
80	been identified as a potent immunosuppressive ligand, which can be regulated through
81	Snail to mediate downregulation of HLA-I and promote immune escape (Chen et al.,
82	2015). Similarly, the immunosuppressive ligand PD-L1 is upregulated in response to
83	enzalutamide-resistant progression, both in tumor cells and in circulating immune subsets
84	(Bishop et al., 2015; Graff et al., 2016). Additionally, we have shown that PD-L1
85	expression is more prevalent on circulating tumor cells from metastatic prostate cancer
86	patients who are progressing on abiraterone acetate or enzalutamide treatment (Zhang et
87	al., 2018).
88	In the present study we sought to understand the adaptations to hormone therapy
89	resistance in prostate cancer. Using an integrated genomics approach we observed that
90	enzalutamide-induced AR signaling blockade induces convergent phenotypic evolution

91 on three ecological responses: 1) altered resource acquisition to promote cellular

persistence and survival through oncogene re-activation, 2) upregulation of
migratory/invasive factors, and 3) avoidance of predation by immune evasion and
immune suppression (Fig. 1). All three of these phenotypes converge across different
model systems on the p38/MAPK stress response pathway, which is highly activated in
human prostate cancer metastases and can be therapeutically leveraged to simultaneously
target and limit these pro-survival responses to overcome enzalutamide resistant growth
and survival.
Results
Enzalutamide resistant cells exhibit diverse genomic adaptations
Enzalutamide is a potent inhibitor of AR activity (Tran et al., 2009) that initially
induces a response in most men with metastatic castration resistant prostate cancer;
however, progression on enzalutamide typically develops within 1-2 years (Beer et al.,
2014). A deeper understanding of the mechanisms underlying the evolution of
enzalutamide resistance is needed to target these resistance mechanisms. To identify
common molecular mechanisms of enzalutamide resistance we developed a panel of four
enzalutamide-resistant (enzaR) cell lines, LNCaP-enzaR, CS2-enzaR, LN95-enzaR, and
MDA-PCa-2b-enzaR, by chronic, long-term exposure to increasing doses of
enzalutamide. For LNCaP and MDA-PCa-2b cells, the cells were initially exposed to 1
μ M enzalutamide and allowed to grow to confluence. The dose of enzalutamide was
doubled at each subsequent passage until cells were capable of sustained growth in the
presence of 50 μ M enzalutamide (Fig. 2A), which is above the concentration observed in
men with metastatic, castration resistant prostate cancer (Scher et al., 2010). In parallel

115	with development of these enzalutamide-resistant models, we also created enzalutamide-
116	resistant populations of LNCaP sublines, CS2 and LN95. Both CS2 and LN95 (Hu et al.,
117	2012) cells were first adapted to androgen deprivation therapy (ADT) by passaging in
118	media supplemented with an increasing ratio of androgen-depleted media. Following
119	evolution of ADT resistance, cells were then adapted to enzalutamide with increasing
120	doses as described above (Fig. 2A). All enzaR cell lines are characterized by a significant
121	increase in cell growth and a decrease in apoptosis in response to enzalutamide treatment
122	(Fig. 2B).
123	Analysis of these enzaR cells revealed several clinically-relevant genotypes and
124	phenotypes. All cell lines had persistent AR expression (Fig. 2C-D) and did not have
125	notable morphologic changes or consistent neuroendocrine differentiation
126	(Supplementary Fig. S1A). The enzalutamide-resistant LNCaP model acquires the
127	F876L mutation in AR that converts enzalutamide into a partial agonist (Balbas et al.,
128	2013; Korpal et al., 2013) (Supplemental Fig. S2), but lack additional novel AR
129	mutations. The enzaR LNCaP and CS2 cells express full-length AR, but do not produce
130	the AR splice variant, AR-V7, which is a known enzalutamide-resistance driver
131	(Antonarakis et al., 2014) (Fig. 2C-E). On the other hand, enza-R LN95 cells upregulate
132	both full length AR and AR-V7 (Fig. 2C-E). Enza-R CS2 cells display upregulation of
133	the glucocorticoid receptor mRNA and genomic loss of RB1 and BRCA2, which are
134	known drivers of resistant and aggressive prostate cancer (Arora et al., 2013; Chakraborty
135	et al., 2019). None of these lines have upregulation of biomarkers of neuroendocrine
136	lineage plasticity as measured by co-RB1 and TP53 genomic loss or transcriptional
137	upregulation of SOX2, and none of these lines expresses markers of neuroendocrine

138	lineage plasticity (Mu et al., 2017) at the mRNA level (Supplemental Fig. S1B). We also	
139	did not observe changes in the stemness markers CD133, NANOG, or OCT4 in the enzaR	
140	cell lines (Fig. 2E, Supplemental Fig. S3). Thus, this panel of cell lines parallels the	
141	heterogeneous spectrum of AR-positive prostate cancer phenotypes most commonly	
142	observed in the clinic upon progression on enzalutamide.	
143	To further understand the evolution of enzalutamide resistance in these	
144	heterogeneous models of prostate cancer, we analyzed the genome, transcriptome and	
145	phospho-proteome of these paired cell lines prior to enzalutamide exposure and following	
146	adaptation to enzalutamide resistance. Genetically, the enzaR models were all remarkably	
147	unique. While enzaR CS2 and LN95 cells share just one copy number alteration – a gain	
148	in chromosome 20p13-p11.1 – this gain is not present in enzaR LNCaP cells	
149	(Supplemental Fig. S4). Likewise, enzaR models acquired relatively few single	
150	nucleotide variants in the exome between paired parental and enzaR cell lines, and of	
151	these alterations, none were shared across all enzaR cells (Supplemental Fig. S5A-B).	
152	Together, these data suggest that the enzaR lines do not harbor shared genetic alterations	
153	that contribute to their adaptation to enzalutamide.	
154		
155	Enzalutamide resistance converges on MAPK signaling and stress response	
156	pathways	
157	Given the diversity of genetic lesions in the enzaR models, we next sought to	
158	determine the molecular drivers underlying the evolution of enzalutamide resistance.	
159	Across each parental and resistant model system, we performed whole transcriptome	
160	RNA Sequencing to identify consistent changes in RNA expression and pathways	

161	associated with resistance. Similar to our DNA-level analyses, we observed relatively	
162	few gene expression changes common to all cell line models (4-5% overlap; Fig. 3A).	
163	We also performed a reverse phase protein array (RPPA) and evaluated a subset of	
164	proteins and phosphoproteins that are implicated in cancer progression (Akbani et al.,	
165	2014). The proteomics data revealed phospho-p38, a key signaling node in the cellular	
166	stress response, as the top upregulated phospho-protein in all three enzaR cell lines (Fig.	
167	3C). Reanalysis of our RNA-Seq data at the pathway level revealed common	
168	transcriptional enrichment of MAPK signaling, DNA repair, and several stress-response	
169	pathways (Fig. 3B). Importantly, we observed the same enrichment of stress-response	
170	pathways and MAPK signaling in a fourth enzalutamide-resistant cell line, MDA-PCa-2b	
171	(Fig. 3D, E). MDA-PCa-2b is an independent androgen responsive and AR positive	
172	prostate cancer cell line. These data suggest that AR-positive enzaR cells exhibit unique	
173	genetic and transcriptional landscapes at the gene level that converge on p38 signaling	
174	and stress response signaling at the pathway level. These pathways are activated as a	
175	consequence of adaptation to enzalutamide and not an acute response, as a short-term (5	
176	day) treatment with enzalutamide does not activate this same p38-mediated response	
177	pathway (Supplemental Fig. 6B). This pathway-level convergence is reminiscent of	
178	convergent evolution observed in ecological contexts during resource depletion,	
179	including the conserved activation of the p38 MAPK pathway itself (Gatenby et al.,	
180	2011; Harrison et al., 2004; Li et al., 2011a).	
181	Considering the convergent evolutionary behavior of the enzaR cells at the gene	
182	expression/signaling levels, we next attempted to better understand if these changes also	

183 promoted phenotypic convergence during the acquisition of enzalutamide resistance. To

184	do this, we first explored the phenotypic consequences of p38/MAPK pathway activation.
185	The p38/MAPK pathway is a key regulator of the stress response (Igea and Nebreda,
186	2015), and a regulator of tumor cell dormancy in many cancer types, including prostate
187	cancer (Decker et al., 2017; Yu-Lee et al., 2018). Consistent with the role of p38 in a
188	dormancy phenotype, enzaR cells exhibited a significant downregulation in the ratios of
189	pERK:p38 α , an important indicator of the shift from a proliferative (high ERK) to
190	dormant (high p38 α) phenotype (Supplemental Fig S7A). Likewise, enzaR cells also
191	upregulated p21, a cyclin dependent kinase inhibitor induced during stress response to
192	regulate cell cycle progression (Sosa et al., 2011) (Supplemental Fig S7B). Interestingly,
193	unlike enzalutamide-sensitive cells that induce beta-galactosidase activity, a marker of
194	dormant cells, enzaR cells do not increase beta-galactosidase activity in response to
195	enzalutamide treatment. However, enzaR cells have a higher baseline level of beta-
196	galactosidase activity compared to enzalutamide sensitive cells (Supplemental Fig
197	S7C). These data suggest that cells adapt to survival during enzalutamide treatment by
198	regulating cell cycle progression and escaping from treatment induced dormancy
199	programs.
200	
201	Activation of p38/MAPK is enriched in metastatic disease and drives cell growth in
202	prostate cancer

203 Our results indicate that enzaR cells converge on p38 activation, which is 204 functionally associated with dormancy and a pro-survival phenotype. Prior work has 205 suggested activation of the p38 pathway in disseminated prostate and breast cancer cells 206 from patients (Chery et al., 2014; Werden et al., 2016). Based on our preclinical data and

207	these observations, we hypothesized that p38 activation would be associated with	
208	aggressive and metastatic disease. To test our hypothesis we compared, by	
209	immunohistochemistry, 30 primary tumors and 20 metastatic biopsies from prostate	
210	cancer patients (Ware et al., 2016) for phospho-p38 expression. These tumors were all	
211	positive for AR expression. Importantly, as compared to localized prostate cancer,	
212	metastases show a strong activation of p38 (Fig. 3F).	
213	To validate these findings, we performed kinase substrate enrichment analysis	
214	(KSEA) on our published phosphoproteomic dataset (Drake et al., 2016) consisting of 16	
215	metastatic prostate cancer patients. KSEA demonstrated significantly enriched	
216	hyperphosphorylation of p38 substrates in metastatic castration-resistant prostate cancer	
217	(CRPC) tissues compared to localized hormone-naïve prostate cancer tissue (Fig. 3G,	
218	Supplemental Table 1). Independent data sets analysis shows p38 activation as the	
219	central hub of cell signaling convergence in human prostate cancer metastases,	
220	particularly during the evolution of metastasis and hormone therapy resistance.	
221	Next, we tested whether inhibition of p38 signaling impacted cell growth in our	
222	models of enzalutamide resistance. In all enzaR cell line models, treatment with a small	
223	molecule p38 inhibitor (SB203580) led to a significant decrease in cell proliferation over	
224	time (Fig. 4A-C). These data highlight the p38 signaling pathway as important and	
225	activated in enzalutamide resistant prostate cancer.	
226		
~~-		

229 Activation of p38/MAPK promotes sustained AR signaling in the presence of

230 enzalutamide

231 Previous studies have shown that enzalutamide induces lineage reprogramming 232 toward an AR null, neuroendocrine-like phenotype (Ku et al., 2017; Mu et al., 2017; 233 Paranjape et al., 2016). However, neither the RNA-Seq nor qRT-PCR analyses revealed 234 consistent changes in neuroendocrine biomarkers across our four paired enzalutamide 235 resistant cell lines (Supplemental Fig. 4). On the contrary, all enzaR cell line models 236 maintain AR protein expression (Fig 2C, D), indicating that phenotypic shifts to AR-null 237 (Bluemn et al., 2017) or neuroendocrine lineages (Aparicio et al., 2011; Dardenne et al., 238 2016) have not occurred in our four model systems. Thus, our models may recapitulate 239 the common occurrence of AR positive metastatic castration-resistant prostate cancer 240 post-abiraterone/enzalutamide, observed in the majority (>60-70%) of men with lethal 241 prostate cancer (Bluemn et al., 2017) (Fig. 2). Consistent with this, treatment with 242 androgen (R1881) induces AR activity as measured by PSA expression (Fig. 4D-F), 243 implying that enzaR cells remain androgen dependent and responsive to AR signaling. 244 To understand how enzalutamide-induced p38 activation may impact AR activity, 245 we treated control and enzaR cells with the p38 inhibitor, SB203580. Inhibition of p38 246 led to dramatic down regulation of AR activity in both sensitive and resistant cell lines, 247 which suggests p38 plays a role in promoting AR activity in the setting of CRPC. 248 Additionally, treatment with the p38 inhibitor, SB203580, partially blocked and rogen-249 stimulated *PSA* and *NKX3.1* expression (Fig. 4D-F, S6A). Taken together, our data 250 indicates p38 activation promotes convergent AR-dependent enzalutamide resistance, at 251 least in part, by facilitating persistent AR activation.

252	To further validate the importance of p38 signaling in promoting enzalutamide		
253	resistant growth we performed population-level p38 knockout or p38 constitutive		
254	activation in LNCaP and LN95 cells. CRISPR/Cas9-mediated knockout of p38 delayed		
255	outgrowth of enzalutamide-resistant cells (Fig. 5A, B) and constitutive activation of p38		
256	promoted resistance to enzalutamide treatment (Fig. 5C, D). Likewise, treatment with the		
257	p38 inhibitor, SB203560, in vivo significantly reduced the growth of enzaR xenografts		
258	(Fig. 4G). Consistent with the decreased tumor growth over time, histology from tumor		
259	tissues treated with the p38 inhibitor indicated acute inflammation and necrosis with little		
260	viable tumor compared to diluent (control) treated tumors (Fig 4H). Together, these data		
261	suggest a causal mechanistic relationship between p38 activation and acquired resistance		
262	to AR inhibition in prostate cancer that can be overcome by p38 blockade <i>in vivo</i> and		
263			

264 A p38/MAPK axis induces pro-metastatic and immuno-evasive phenotypes

265 The observation that p38 activity was increased in metastatic tissues suggested 266 that p38 may facilitate metastatic progression or is upregulated during the metastatic 267 cascade. To better understand the mechanisms by which p38 activity may promote 268 metastasis, we interrogated known drivers of metastatic prostate cancer. One of these 269 drivers of metastasis is Snail, a master regulator of epithelial plasticity that promotes 270 migration and invasion and is strongly expressed in 100% of metastatic prostate cancer 271 biopsies (Ware et al., 2016). We have previously shown that Snail activates AR nuclear 272 localization to drive plasticity, invasion, and enzalutamide resistance (Ware et al., 2016). 273 Snail has also been implicated in epithelial plasticity and loss of AR activity in prostate 274 cancer models of AR therapy resistance as well through direct binding to the AR gene

275	locus (Miao et al. 2017)	. We observed Snail upregulation in the p38-activated,
2/5	10cus (11110 ct al., 2017)	. We observed blian apregulation in the p30 detivated,

enzalutamide-resistant cell lines (Fig. 6A) as compared to enzalutamide sensitive models,

suggesting that enzalutamide-induced p38 activation induces Snail upregulation.

278 Consistent with Snail upregulation, enzalutamide-resistant cells displayed an increase in

279 repressive phosphorylation at serine 9 on the upstream Snail destabilizing protein and

known p38 target, GSK3β (Bikkavilli et al., 2008) (**Supplemental Fig. S8A**). These

results provide a mechanistic link connecting p38 activation to increased Snail through

suppression of GSK3β activity, which may lead directly to altered AR activity and

283 nuclear localization.

284 Prior studies have demonstrated an association between enzalutamide resistance 285 and PD-L1 expression on tumor and immune cells, as well as the potential benefits of 286 combined enzalutamide and PD-1 inhibition (Bishop et al., 2015; Graff et al., 2016; 287 Zhang et al., 2018), suggesting a connection between AR inhibition and immune evasion. 288 Interestingly, we also observed a significant positive correlation in gene expression data 289 in prostate cancer tissues from The Cancer Genome Atlas between Snail expression and 290 expression of the immune checkpoint molecule, PD-L1 (**Fig. 6B**). To identify Snail as an 291 effector molecule upstream of PD-L1 expression, we used an inducible system to activate 292 Snail in LN95 prostate cancer cells (Ware et al., 2016). Snail activation led to 293 upregulation of PD-L1 mRNA and protein (Fig. 6C, D). We also noted common 294 upregulation of PD-L1 by reverse phase protein array analysis, qPCR, and western 295 blotting in all enzaR models as compared to the parental models (Fig. 7A-C). 296 Given the positive relationship between p38 phosphorylation, PD-L1, and Snail

297 expression in both our models and clinical samples, we next sought to determine the

298	mechanistic links between p38, Snail, and PD-L1. To do this we assessed the
299	consequence of inhibiting or activating p38 signaling on Snail and PD-L1 expression.
300	Remarkably, p38 α knockdown led to downregulation of both Snail and PD-L1 (Fig. 7D)
301	and constitutive activation of $p38\alpha$ induced Snail and PD-L1 upregulation (Fig. 7E).
302	These experiments suggest that p38 activation can promote a pro-metastatic, immune
303	evasive phenotype by stabilizing Snail expression (Ryu et al., 2019) and leading to
304	downstream PD-L1 upregulation. Together, our data suggest that p38 may provide a
305	common mechanistic explanation for evolutionary convergence of cancer cell survival,
306	metastasis, and immune evasion phenotypes in AR positive metastatic castration-resistant
307	prostate cancer, which could be therapeutically targeted through p38 blockade to treat
308	men with hormone therapy resistant prostate cancer (Fig. 7F).
309	
309 310	Discussion
	Discussion Hormone therapy-resistant prostate cancer cells undergo convergent evolution onto
310	
310 311	Hormone therapy-resistant prostate cancer cells undergo convergent evolution onto
310 311 312	Hormone therapy-resistant prostate cancer cells undergo convergent evolution onto a pro-survival, metastatic, immuno-evasive gene regulatory network
310311312313	Hormone therapy-resistant prostate cancer cells undergo convergent evolution onto a pro-survival, metastatic, immuno-evasive gene regulatory network Our integrated, multi-omics analysis of the evolution of enzalutamide resistance in
 310 311 312 313 314 	Hormone therapy-resistant prostate cancer cells undergo convergent evolution onto a pro-survival, metastatic, immuno-evasive gene regulatory network Our integrated, multi-omics analysis of the evolution of enzalutamide resistance in prostate cancer revealed consistent activation of the p38/Snail/PD-L1 gene regulatory
 310 311 312 313 314 315 	Hormone therapy-resistant prostate cancer cells undergo convergent evolution onto a pro-survival, metastatic, immuno-evasive gene regulatory network Our integrated, multi-omics analysis of the evolution of enzalutamide resistance in prostate cancer revealed consistent activation of the p38/Snail/PD-L1 gene regulatory network in the context of persistent AR expression and activity. Activation of this gene
 310 311 312 313 314 315 316 	Hormone therapy-resistant prostate cancer cells undergo convergent evolution onto a pro-survival, metastatic, immuno-evasive gene regulatory network Our integrated, multi-omics analysis of the evolution of enzalutamide resistance in prostate cancer revealed consistent activation of the p38/Snail/PD-L1 gene regulatory network in the context of persistent AR expression and activity. Activation of this gene expression pathway was observed in the face of heterogeneous and unique acquired
 310 311 312 313 314 315 316 317 	Hormone therapy-resistant prostate cancer cells undergo convergent evolution onto a pro-survival, metastatic, immuno-evasive gene regulatory network Our integrated, multi-omics analysis of the evolution of enzalutamide resistance in prostate cancer revealed consistent activation of the p38/Snail/PD-L1 gene regulatory network in the context of persistent AR expression and activity. Activation of this gene expression pathway was observed in the face of heterogeneous and unique acquired genetic landscapes across the diverse model systems tested. Likewise, our current and

321	similarity is reminiscent of convergent evolution in natural systems in which strong
322	selective pressures lead to optimal adaptive phenotypes, such as the independent
323	evolution of flight and the loss of sight in low-light environments across multiple,
324	genetically-distinct taxonomic lineages (Gatenby et al., 2011). These results suggest that,
325	in addition to known genetic drivers of resistance (Azad et al., 2015; Ku et al., 2017;
326	Mazrooei et al., 2019; Mu et al., 2017; Romanel et al., 2015), the evolution of resistance
327	can also be mediated by gene regulatory phenotypes rather than any common genetic
328	driver. This convergent evolution into critical molecular driver pathways may be
329	overlooked through the analysis of DNA or RNA-based sequencing approaches in
330	isolation.
331	
332	The p38/Snail signaling axis promotes cell-intrinsic enzalutamide resistance and
333	metastasis
333 334	
	metastasis
334	metastasis Eukaryotic cells have evolved to respond to environmental stressors through a robust
334 335 336	metastasis Eukaryotic cells have evolved to respond to environmental stressors through a robust and highly-coordinated stress response system (Sun and Zhou, 2018). This system is
334 335 336	metastasis Eukaryotic cells have evolved to respond to environmental stressors through a robust and highly-coordinated stress response system (Sun and Zhou, 2018). This system is dynamically regulated through multi-level regulation of gene expression networks, which
334 335 336 337	metastasis Eukaryotic cells have evolved to respond to environmental stressors through a robust and highly-coordinated stress response system (Sun and Zhou, 2018). This system is dynamically regulated through multi-level regulation of gene expression networks, which induce reversible phenotypic changes to enable cellular responses.
334 335 336 337 338	metastasis Eukaryotic cells have evolved to respond to environmental stressors through a robust and highly-coordinated stress response system (Sun and Zhou, 2018). This system is dynamically regulated through multi-level regulation of gene expression networks, which induce reversible phenotypic changes to enable cellular responses. In the context of cancer, cells encounter a range of environmental stressors, such as
334 335 336 337 338 339	metastasis Eukaryotic cells have evolved to respond to environmental stressors through a robust and highly-coordinated stress response system (Sun and Zhou, 2018). This system is dynamically regulated through multi-level regulation of gene expression networks, which induce reversible phenotypic changes to enable cellular responses. In the context of cancer, cells encounter a range of environmental stressors, such as hypoxia, reactive oxygen species, glucose and nutrient deprivation, and mechanical stress
 334 335 336 337 338 339 340 	metastasis Eukaryotic cells have evolved to respond to environmental stressors through a robust and highly-coordinated stress response system (Sun and Zhou, 2018). This system is dynamically regulated through multi-level regulation of gene expression networks, which induce reversible phenotypic changes to enable cellular responses. In the context of cancer, cells encounter a range of environmental stressors, such as hypoxia, reactive oxygen species, glucose and nutrient deprivation, and mechanical stress (reviewed in (Chen and Xie, 2018). In addition to these microenvironmental factors,
 334 335 336 337 338 339 340 341 	metastasis Eukaryotic cells have evolved to respond to environmental stressors through a robust and highly-coordinated stress response system (Sun and Zhou, 2018). This system is dynamically regulated through multi-level regulation of gene expression networks, which induce reversible phenotypic changes to enable cellular responses. In the context of cancer, cells encounter a range of environmental stressors, such as hypoxia, reactive oxygen species, glucose and nutrient deprivation, and mechanical stress (reviewed in (Chen and Xie, 2018). In addition to these microenvironmental factors, cancer therapy dramatically alters the environment and induces a range of cellular

344	evolutionarily-conserved stress response system (Li et al., 2011a), which is responsible
345	for transducing stress signals, such as DNA damage, reactive oxygen species, cytokines,
346	and changes in osmotic pressure, from the extracellular environment to activate
347	transcriptional response programs (Coulthard et al., 2009). Activation of the p38/MAPK
348	pathway has been implicated in numerous cancers, including metastatic prostate cancer
349	(Drake et al., 2016; Khandrika et al., 2009; Koul et al., 2013). Consistent with its role in
350	mediating cellular stress responses, we found that p38 promotes cell-intrinsic resistance
351	to enzalutamide by promoting reactivation of AR activity. Mechanistically, we observed
352	increased phosphorylation of GSK3 β at serine 9 (Supplemental Fig. 8), which leads to
353	inactivation of GSK3 β activity and induces upregulation of Snail. This model is
354	supported by previous reports, which have demonstrated that p38 inhibits $GSK3\beta$
355	through phosphorylation (Thornton et al., 2008), which can lead to Snail stabilization
356	(Zhou et al., 2004). Importantly, we have demonstrated that Snail contributes to
357	enzalutamide resistance via upregulation of AR activity (Ware et al., 2016).
358	In addition to its functions in enzalutamide resistance, p38 and Snail also drive a pro-
359	metastatic and death-resistant phenotype in prostate cancer. Consistent with this,
360	inhibition of p38 leads to reduced survival, clonogenicity, and invasion in prostate cancer
361	cells (Khandrika et al., 2009). Others have also shown that activation of p38 induces
362	TGF- β -mediated Snail upregulation and invasion (Medici et al., 2011). Similarly, we
363	previously demonstrated that Snail is strongly elevated in metastatic, castration-resistant
364	prostate cancer compared to primary prostate cancer (Ware et al., 2016). We also found
365	that Snail activation leads to enhanced migration and invasion of prostate cancer cells

366 (Ware et al., 2016). In the current study, we define a mechanistic connection between the

- 367 p38 pathway and Snail that drives enzalutamide resistance and metastasis.
- 368

369 The p38/Snail axis promotes cell-extrinsic immune evasion

370 Coupled with their roles in enzalutamide resistance, our data suggest the 371 p38/Snail pathway may also contribute to immune evasion by upregulating the immune 372 checkpoint molecule, PD-L1. In addition, enzalutamide exposure alone leads to 373 upregulation of Snail and PD-L1 (Bishop et al., 2015), and our data demonstrates Snail 374 activation can upregulate PD-L1 expression. Consistent with this, PD-L1 is upregulated 375 on melanoma cells through activation of p38 (Noh et al., 2015), providing further strong 376 support for our hypothesis that the p38/Snail axis drives PD-L1 expression. Similarly, in 377 both chronic viral infections and cancer, p38 activation has been linked to inhibition of 378 Stimulator of IFN genes (STING) expression, enhanced CXCR2-mediated myeloid 379 derived suppressor cell activity, and immune evasion (Chen et al., 2017; Wang et al., 380 2006; Zhang et al., 2017). Together, these findings suggest that p38 and/or immune 381 checkpoint blockade may be therapeutically efficacious in the post-enzalutamide setting. 382 In support of this notion, Graff et al. observed rapid reductions in prostate specific 383 antigen and radiographic responses in approximately $\sim 20\%$ of men with enzalutamide 384 resistant metastatic castration-resistant prostate treated with a combination of the anti-385 PD-1 therapy pembrolizumab and enzalutamide (Graff et al., 2016; Graff et al., 2018). 386 Furthermore, PD-L1 can indirectly activate p38 through DNA-PKcs, which promotes 387 chemoresistance (Wu et al., 2018), and therefore suggests a common feed forward loop 388 that may connect PD-L1 expression, DNA repair and pro-metastatic pathways (Goodwin

et al., 2015), and convergent p38 activity. Interestingly, PD-L1 expression in the tumor
and tumor microenvironment is also associated with poor outcomes and an aggressive
and metastatic phenotype in many cancer subtypes (Kim et al., 2016; Wang et al., 2018).

- 392
- 393 Beyond enzalutamide resistance

394 The current work highlights the role of the p38 pathway in promoting 395 enzalutamide resistance in prostate cancer. However, the importance of the p38 pathway 396 as a general stress response to any unfavorable environment may suggest the potential of 397 targeting the p38 pathway in other resource-limiting settings in cancer. Indeed, our 398 clinical data suggest that the p38/Snail pathway is induced during metastasis even prior to 399 androgen deprivation or enzalutamide treatment. Therefore, tumor cells undergoing a 400 stress response independent of enzalutamide or prostate cancer may also rely on p38 401 activation to persist and survive in ecologically-unfavorable environments, such as the 402 hostile environment of the bloodstream during dissemination, or during treatments that 403 target other oncogenic drivers across different cancer types. For example, p38 activity has 404 been shown in both breast and lung cancer to promote chemotherapy resistance (Flem-405 Karlsen et al., 2019; Liu et al., 2016; Lu et al., 2018). Activation of p38 has also been 406 linked to DNA repair (Canovas et al., 2018), which is also enriched in our models of 407 enzalutamide resistance (Fig. 3B). Therefore, p38 inhibition in combination with 408 chemotherapeutic drugs that induce chromosome instability may have therapeutic 409 potential. These data suggest there may be clinical utility in re-purposing p38 inhibitors 410 for the investigation of reversing treatment resistance in metastatic castration-resistant 411 prostate and other cancers (Fig. 7F).

412 Acknowledgements

- 413 Funding: This work was supported by grants NIH F32 CA192630 (K.W. Ware), NIH
- 414 1R01CA233585-01 (A.J. Armstrong), NIH P30 CA014236 (M. Kastan), Department of
- 415 Defense W81XWH-18-1-0189 (J.A. Somarelli), Triangle Center for Evolutionary
- 416 Medicine (J.A. Somarelli), Astellas Scientific and Medical Affairs (A.J. Armstrong), and
- 417 the Prostate Cancer Foundation (A.J. Armstrong; J.A. Somarelli). Prostate Cancer
- 418 Foundation Young Investigator Award (J.M. Drake)
- 419 The authors thank Drs. William Eward and Everardo Macias for sharing their IncuCyte
- 420 systems to monitor cell growth and apoptosis over time as well as the core research
- 421 facilities involved in this work (Duke Functional Genomics, Duke Biorepository &
- 422 Precision Pathology, Duke Genomic Analysis and Bioinformatics). We would also like to
- 423 thank Medivation/Astellas for providing the AR inhibitor, enzalutamide.
- 424

425 Author Contributions

- 426 Conceptualization, KEW, JAS, AJA; Methodology, KEW, JAS, AJA, DLC, MP, EFP,
- 427 ZS, JMD, LAC, WCF; Investigation, KEW, JAS, SG, JE, GK, BJP, RGA, DR, BCT,
- 428 AA, MP; Writing-Original Draft, KEW, JAS, AJA; Visualization, MUS, JAS, KEW;
- 429 Resources, JAS, AJA, KEW, JF, SRP, TZ, SG, JMD
- 430

431 **Declaration of Interests**

- 432 AJA receives consulting income and research support to Duke from Pfizer/Astellas,
- 433 Bayer, Dendreon, Merck, AstraZeneca, and Janssen. He receives research support to
- 434 Duke from BMS, Constellation, Gilead, Genentech/Roche. MP and EP are inventors on

435	US Government and University assigned patents and patent applications that cover
436	aspects of the technologies discussed such as Reverse Phase Protein Microarrays. As
437	inventors, they are entitled to receive royalties as provided by US Law and George
438	Mason University policy. MP and EP receive royalties from Avant Diagnostics. EP is
439	consultant to and shareholder of Avant Diagnostics, Inc and Perthera, Inc. All other
440	authors declare no competing interests.
441	
442	Figure Titles and Legends
443	Figure 1
444	Model of ecological responses to loss of AR signaling. Adaptation to enzalutamide
445	centers around three phenotypes: 1) Pro-survival stress response; 2) Immune evasion; and
446	3) Metastasis.
447	
448	Figure 2
449	Enzalutamide resistant cell lines retain AR expression and do not undergo a
450	NEPC/EMT/Stem transition. A. Development of enzalutamide resistant cell lines. B.
451	Control (ctrl) and enzaR cell lines were treated for 10 days with vehicle (DMSO) or two
452	doses of enzalutamide ($25\mu M$ or $50\mu M$), and cell growth and apoptosis were measured.
453	*= p<0.05; student's t-test. Error bars represent the standard error of the mean. C-D. AR-
454	FL and AR-V7 mRNA (C) and protein expression (D) measured by qRT-PCR and
455	western blot, respectively, *p<0.05; student's t-test. Mean cell values are plotted along

456 with standard error of the mean. E. Summary table characterizing the diversity of known

457 resistance mechanisms in enzalutamide resistant cell lines. ADT, androgen deprivation

458 therapy; Enza, enzalutamide; EnzaR, enzalutamide resistant.

459

460 **Figure 3**

461 Diverse gene expression during enzalutamide resistance converges on activation of

462 stress response MAPK p38. A. Venn diagrams representing common gene expression

463 alterations by RNA-Seq or protein activation by proteomics analysis (top). Enriched

464 pathways in each matched enzaR cell line using gene set enrichment analysis (bottom)

465 from RNA-Seq data. **B.** Combined RNA-Seq analysis from all enzalutamide-resistant

466 lines identified p38/MAPK signaling and stress-related pathways. C. Volcano plot

467 representing changes in phosphorylation from reverse phase protein array analysis. **D.**

468 RNA-Seq analysis for pathway enrichment scores in MDA-PCa-2b cells. E. Western blot

analysis of phosph-p38 in MDA-PCa-2b cells. **F.** Immunohistochemical staining of

470 phospho-p38 is strongly enriched in metastatic tissues compared to localized samples.

471 Representative images show phospho-p38 staining in localized and metastatic prostate

472 cancer tissues. G. Kinase substrate enrichment analysis (KSEA) of p-p38 revealed an

473 enrichment of p38 substrates in metastatic CRPC patients using published

- 474 phosphoproteomic datasets.
- 475

476 **Figure 4**

477 **p38 inhibition is important for cell growth in EnzaR cell lines. A-C.** Control or enzaR

478 cells were cultured in media containing DMSO or 25µM SB203580, and cell confluence

479 was quantified using the IncuCyte basic analyzer. **D-F.** Control or enzaR cells, treated

480	with androgen	(R1881),	p38 inhibitor	(SB203580), (or the	combination	of R1881	and

- 481 SB203580 were analyzed for PSA mRNA expression. Amounts were determined by
- 482 qRT-PCR and normalized to GAPDH, * = p < 0.05; student's t-test.
- 483
- 484 **Figure 5**

485 **Molecular alteration of p38 expression regulates enzalutamide sensitivity. A.** EnzaR

486 cells with p38 knockout were cultured and cell confluence was quantified using the

487 IncuCyte basic analyzer. Knockout of p38 in enzaR cell line populations decreases cell

- 488 proliferation of LNCaP (A) and LN95 cells (B). C.D. Enzalutamide sensitive cells
- 489 engineered to overexpress p38 were cultured and cell confluence was quantified as
- 490 above. Overexpression of p38α in enzalutamide sensitive control cell lines increases cell
- 491 growth in response to enzalutamide treatment. **E.** Mice were injected subcutaneously
- 492 with 8 x 10^6 CS2-enzaR cells and treated with diluent or 15 mg/kg of p38 inhibitor
- 493 (SB203580). Tumor growth was measured weakly over 13 weeks. * = p < 0.05; student's
- 494 t-test. **F.** Representative 10X images of H&E staining from xenograft tumors collected
- 495 after treatment with diluent or p38 inhibitor (15 mg/kg SB203580) demonstrating viable
- 496 (top) and necrotic (bottom) tumor.
- 497
- 498 **Figure 6**

499 PD-L1 expression correlates with Snail expression and activity during enzalutamide

500 **resistance. A.** Western blot analysis of phospho-p38 and Snail expression in control and

501 enzaR cell lines. GAPDH is used as a loading control. **B.** Analysis of RNA-Seq data from

502 The Cancer Genome Atlas reveals a significant positive correlation between Snail and

503 PD-L1 expression in prostate cancer tissues. C. PD-L1 mRNA expression in LN95 cells

- 504 with and without Snail activation. **D.** Snail and PD-L1 protein expression in LN95 cells
- 505 with and without Snail activation. Blue: Hoechst stained nuclei; Red stained Snail; Green
- stained PD-L1.
- 507
- 508 **Figure 7**
- 509 **p38 is a druggable target upstream of Snail and PD-L1. A.** PD-L1 protein expression
- 510 is significantly increased in enzaR cells by reverse phase protein array analysis. B-C. PD-
- 511 L1 mRNA (**B**) and protein (**C**) expression measured by qPCR and western blot,
- respectively, in enzaR cells. **D.** Western blot analysis of p38, Snail, and PD-L1 in LN95
- 513 enzaR cells with p38α knockout. NaKATPase is used as a loading control. E. Western
- blot analysis of p38, Snail, and PD-L1 in LN95 control cells with p38α activation.
- 515 NaKATPase is used as a loading control. **F.** Model of p38 as a druggable target upstream
- 516 of Snail and PD-L1 induced during resistance to enzalutamide.
- 517

518 Materials and Methods

519 **Patient samples**

520 For metastatic prostate cancer samples (n=20) and a second cohort of localized 521 prostate cancer samples (n=30), formalin fixed metastatic tissue was collected from the 522 Duke University pathology department and Duke Cancer Institute Biorepository Core 523 under a separate Duke IRB approved protocol. Clinical data on prior therapy and 524 metastatic site were collected.

526 Cell lines

527	MDA-PCa-2b and LNCaP cells were obtained from A	ATCC using the Duke University	V

528 Cell Culture Facility. MDA-PCa-2b cells were cultured in F12-K media supplemented

- 529 with 20% fetal bovine serum (Sigma), 1% penicillin/streptomycin streptomycin (Life
- 530 Technologies), cholera toxin, epidermal growth factor, phosphoethanolamine,
- 531 hydrocortisone, sodium selenite, and insulin as recommended by ATCC. LNCaP cells
- were cultured in RPMI containing 10% fetal bovine serum and 1%
- 533 penicillin/streptomycin. LNCaP95 cells were kindly provided by Dr. Scott Dehm
- 534 (University of Minnesota) and are reported in previous studies (Liu et al., 2013; Ware et

al., 2016). LNCaP95 and CS2 cells are androgen-independent cell lines derived from the

- parental LNCaP cells. LNCaP95 and CS2 were cultured in RPMI containing 10%
- 537 charcoal stripped fetal bovine serum and 1% penicillin/streptomycin. Resistant cell
- 538 populations were cultured with the addition of 50 μ M enzalutamide (provided by
- 539 Medivation/Astellas). Enzalutamide resistant cells (EnzaR cells) were generated by
- 540 chronic culture with increasing doses of enzalutamide to a concentration of 50 μM. Cells
- 541 were authenticated and re-authenticated following enzalutamide resistant through
- sequencing including the presence of known LNCaP AR ligand binding domain mutation
- 543 T877A. Cells stably expressing inducible Snail (Addgene plasmid #18798), constitutively
- active p38 or MAPK14 gRNA targets were generated by transduction of cells as
- 545 described previously (Mani et al., 2008).
- 546
- 547
- 548

Cell growth and viability assays

550	Control and Enza-R cells were cultured in media containing DMSO (Sigma) or 50 μM				
551	enzalutamide for at least one week. Cells were counted using the Countess II (Life				
552	Technologies), 2500 cells were seeded in a 96-well plate. Cell confluence was monitored				
553	using the IncuCyte live cell analysis system (Essen Biosciences) and standard error of the				
554	mean (SEM) was calculated from triplicate wells. For cells stably expressing p38 or				
555	MAPK14 gRNA, cells were treated with DMSO or 25 μ M of SB203580 (selleckchem)				
556	and monitored as above. For cell viability, apoptosis was measured after 10 days of drug				
557	treatment using the IncuCyte Caspase-3/7 green apoptosis assay reagent and quantified				
558	using the IncuCyte basic analyzer.				
559					
560	RNA-seq				
561	Total RNA was isolated using the Quick-RNA Miniprep kit (Zymo Research). RNA-seq,				
562	total RNA was submitted to the Duke Center for Genomic and Computational Biology				
563	core for sample preparation, sequencing, and analysis. RNA-seq data was processed				
564	using the TrimGalore toolkit				
565	(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore) which employs				
566	Cutadapt ¹ to trim low quality bases and Illumina sequencing adapters from the 3' end of				
567	the reads. Only pairs where both reads were 20nt or longer were kept for further analysis.				
568	Reads were mapped to the GRCh37v73 version of the human genome and transcriptome ^{2}				
569	using the STAR RNA-seq alignment tool ³ . Reads were kept for subsequent analysis if				
570	they mapped to a single genomic location. Gene counts were compiled using the HTSeq				
571	tool (http://www-huber.embl.de/users/anders/HTSeq/). Only genes that had at least 40				

572	reads in	any given	library	were used	in su	bsequent	analysis.	Normalization and
							, , , , , , , , , , , , , , , , , , ,	

- 573 differential expression was carried out using the EdgeR⁴ Bioconductor⁵ package with the
- 574 R statistical programming environment (www.r-project.org). A negative binomial
- 575 generalized log-linear model⁶ was used to identify differentially expressed genes between
- the different genotypes when comparing against specific control samples. Enriched
- 577 pathways were determined by GSEA⁷ for each comparison.
- 578

579 Real-Time quantitative RT-PCR

580 For qPCR, total RNA was reverse transcribed using the High-Capacity cDNA Reverse

- 581 Transcription Kit (Life Technologies). Aliquots of 5-fold diluted reverse transcription
- 582 reactions were subjected to quantitative (q)PCR with KAPA SYBR FAST master mix
- 583 using the Vii7 real time-PCR detection system (Applied Biosystems). GAPDH mRNA
- levels were measured for normalization, and the data are presented as "Relative
- 585 Expression". A complete list of primer sequences is provided in the supplementary text.
- 586

587 TCGA Analysis

- 588 The results published here are in part based upon data generated by The Cancer Genome
- 589 Atlas (TCGA) Research Network: http://cancergenome.nih.gov. Data available from
- 590 TCGA was analyzed using the Kruskal Wallis test to evaluate the correlation between
- 591 Snail expression and PD-L1 expression from prostate cancer patients.
- 592
- 593
- 594

595 **Reverse phase protein array**

- 596 Cells were seeded (300,000/well) in 6-well plates and allowed to incubate for 5 days.
- 597 Cells were then rinsed with PBS, flash frozen, and analyzed as previously described
- 598 (Baldelli et al., 2017; Pierobon et al., 2017).

599

600 Immunoblot analyses

601 For immunoblot analysis cells extracts were mixed with SDS sample buffer and

submitted to SDS-PAGE. Following electrophoretic transfer onto nitrocellulose, the

603 filters were blocked in Starting Block (Thermo), incubated with antibodies and developed

604 using the Odyssey-FC imager (LI-COR).

605 A complete list of primary antibodies and their dilutions is provided in the 606 supplementary text.

607

608 Immunofluorescence staining

For cells expressing inducible Snail, cells were pretreated with ethanol (EtOH) or 4OHT.

610 For immunofluorescence (IF) staining, cells were fixed in 4% PFA, permeabilized with

611 0.2% Triton X-100, and stained with Hoechst. Cells were blocked with 5% bovine serum

albumin (BSA, Sigma) prior to incubation with primary antibodies. Cells were incubated

- 613 in Alexa Fluor secondary antibodies (Life Technologies) and then imaged on an inverted
- 614 Olympus IX 73 epifluorescence microscope.

615

616

618 Immunohistochemistry

619 We performed antibody optimization and analytic validation for all antibodies	619	We performed antibod	y optimization ar	nd analytic validation	for all antibodies as
---	-----	----------------------	-------------------	------------------------	-----------------------

- 620 previously described (Armstrong et al., 2016). An expert prostate cancer pathologist
- blinded to outcomes evaluated antibody staining in parallel with hematoxylin and eosin.
- 622 Scoring of each biomarker used a 0 to 3 scale for both intensity and a <25%, <50%,
- 623 <75%, <100% scale for frequency of expression in each tumor sample.

624

625 Animal Experiments

- 626 Six to eight week male mice were injected subcutaneously with 8×10^6 CS2-enzaR cells.
- 627 Prior to injection cells were resuspended in 50% matrigel supplemented with
- 628 10% FBS/RPMI. Mice were treated with diluent or 15 mg/kg of p38 inhibitor
- 629 (SB203580). Tumor growth was measured using calipers weakly over 13 weeks.

630

631 Statistical Analysis

- bata are shown as means \pm SEM. Student's t-test or multiple group comparison was
- 633 performed by one-way ANOVA followed by the Sidak method for comparison of means.
- $P \le 0.05$ is considered significant. Differences in phospho-p38 expression between
- 635 localized and metastatic samples were analyzed using a Chi-square test. Data available
- through the TCGA was analyzed using the Kruskal Wallis test using JMP (version pro
- 637 12). All other analyses were performed using Prism (version 8.0d).

- 639
- 640

641	Supplemental	Information	Titles and	Legends
	Suppremental	monution	i mob unu	Legenar

- 642 **Figure 1**
- 643 Treatment with enzalutamide enriches for the F876L agonist mutation in LNCaP
- 644 enzaR cells. Alignment of RNA-seq tracks using the integrative genomic viewer.
- 645
- 646 **Figure 2**
- 647 Copy number alterations in control versus enzaR cell lines. Array comparative
- 648 genomic hybridization from genomic DNA isolated from paired enzaR cell line models.
- 649 Alteration losses and gains greater than one log are highlighted in blue or red,
- 650 respectively.
- 651
- 652 **Figure 3**
- 653 EnzaR cell lines do not undergo NEPC/Stemness transitions. A. Representative
- 654 images of enzalutamide sensitive and resistant cell lines. **B.** qPCR expression analysis of
- driver genes involved in neuroendocrine and stem cell pathways.
- 656
- 657 **Figure 4**
- 658 **Copy number alterations do not converge between enzaR cell lines.** Venn diagrams
- 659 comparing copy number gains and losses between control and enzaR cell lines.

660

661 **Figure 5**

- 662 EnzaR cell lines acquire very few nucleotide variants during adaptation to
- 663 enzalutamide. A. Venn diagrams comparing nucleotide variants between paired control

664	and enzaR cell lines. B	. Venn diagram	comparing commo	on nucleotide v	ariants observed
-----	-------------------------	----------------	-----------------	-----------------	------------------

- 665 in enzaR compared to control cell lines.
- 666

667	Figure 6
-----	----------

- 668 **AR activity is inhibited by p38 inhibition. A.** Control or enzaR cells, treated with
- androgen (R1881), p38 inhibitor (SB203580), or the combination of R1881 and
- 670 SB203580 were analyzed for NKX3.1 mRNA expression. Amounts were determined by
- 671 qRT-PCR and normalized to GAPDH. B. Western blot analysis of phospho-p38
- 672 expression in control and enzaR cell lines with acute enzalutamide (10 μM) treatment.
- 673
- 674 **Figure 7**
- 675 EnzaR cells display markers of a dormant phenotype. A. Ratios of phospho-ERK to
- 676 phospho-p38 protein levels. B. Western blot analysis of p21 expression in control and
- 677 enzaR cell line models. C. Beta-galactosidase activity in response to enzalutamide
- 678 treatment in LNCaP cells.

679

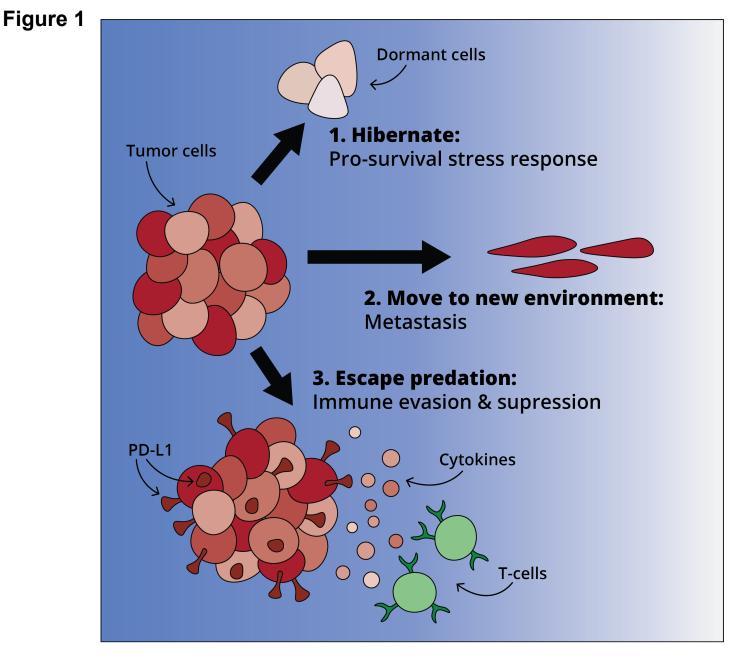
680 **Figure 8**

Molecular alteration of p38 expression regulates enzalutamide sensitivity. A. GSK3β
serine 9 phosphorylation is significantly increased in enzaR cells by reverse phase protein
array analysis.

685 **References**

- 687 Akbani, R., Becker, K. F., Carragher, N., Goldstein, T., de Koning, L., Korf, U., Liotta, L.,
- 688 Mills, G. B., Nishizuka, S. S., Pawlak, M., et al. (2014). Realizing the promise of reverse
- 689 phase protein arrays for clinical, translational, and basic research: a workshop
- 690 report: the RPPA (Reverse Phase Protein Array) society. Molecular & cellular
- 691 proteomics : MCP *13*, 1625-1643.
- 692 Antonarakis, E. S., Lu, C., Wang, H., Luber, B., Nakazawa, M., Roeser, J. C., Chen, Y.,
- Mohammad, T. A., Chen, Y., Fedor, H. L., *et al.* (2014). AR-V7 and resistance to
- 694 enzalutamide and abiraterone in prostate cancer. The New England journal of 695 medicine *371*, 1028-1038.
- 696 Antonarakis, E. S., Piulats, J. M., Gross-Goupil, M., Goh, J., Ojamaa, K., Hoimes, C. J.,
- 697 Vaishampayan, U., Berger, R., Sezer, A., Alanko, T., *et al.* (2020). Pembrolizumab for
- 698 Treatment-Refractory Metastatic Castration-Resistant Prostate Cancer: Multicohort,
- 699 Open-Label Phase II KEYNOTE-199 Study. Journal of clinical oncology : official
- journal of the American Society of Clinical Oncology *38*, 395-405.
- 701 Aparicio, A., Tzelepi, V., Araujo, J. C., Guo, C. C., Liang, S., Troncoso, P., Logothetis, C. J.,
- Navone, N. M., and Maity, S. N. (2011). Neuroendocrine prostate cancer xenografts
- with large-cell and small-cell features derived from a single patient's tumor:
- morphological, immunohistochemical, and gene expression profiles. The Prostate*71*, 846-856.
- Armstrong, A. J., Healy, P., Halabi, S., Vollmer, R., Lark, A., Kemeny, G., Ware, K., and
- Freedland, S. J. (2016). Evaluation of an epithelial plasticity biomarker panel in men
- with localized prostate cancer. Prostate cancer and prostatic diseases *19*, 40-45.
- Arora, V. K., Schenkein, E., Murali, R., Subudhi, S. K., Wongvipat, J., Balbas, M. D., Shah,
- N., Cai, L., Efstathiou, E., Logothetis, C., *et al.* (2013). Glucocorticoid receptor confers
- resistance to antiandrogens by bypassing androgen receptor blockade. Cell *155*,1309-1322.
- Azad, A. A., Volik, S. V., Wyatt, A. W., Haegert, A., Le Bihan, S., Bell, R. H., Anderson, S.
- A., McConeghy, B., Shukin, R., Bazov, J., et al. (2015). Androgen Receptor Gene
- 715 Aberrations in Circulating Cell-Free DNA: Biomarkers of Therapeutic Resistance in
- 716 Castration-Resistant Prostate Cancer. Clinical cancer research : an official journal of
- 717 the American Association for Cancer Research *21*, 2315-2324.
- 718 Balbas, M. D., Evans, M. J., Hosfield, D. J., Wongvipat, J., Arora, V. K., Watson, P. A.,
- 719 Chen, Y., Greene, G. L., Shen, Y., and Sawyers, C. L. (2013). Overcoming mutation-
- based resistance to antiandrogens with rational drug design. eLife 2, e00499.
- 721 Baldelli, E., Calvert, V., Hodge, A., VanMeter, A., Petricoin, E. F., 3rd, and Pierobon, M.
- 722 (2017). Reverse Phase Protein Microarrays. Methods in molecular biology *1606*,723 149-169.
- 724 Beer, T. M., Armstrong, A. J., Rathkopf, D. E., Loriot, Y., Sternberg, C. N., Higano, C. S.,
- 725 Iversen, P., Bhattacharya, S., Carles, J., Chowdhury, S., *et al.* (2014). Enzalutamide in
- 726 metastatic prostate cancer before chemotherapy. The New England journal of
- 727 medicine *371*, 424-433.
- 728 Bikkavilli, R. K., Feigin, M. E., and Malbon, C. C. (2008). p38 mitogen-activated
- 729 protein kinase regulates canonical Wnt-beta-catenin signaling by inactivation of
- GSK3beta. Journal of cell science *121*, 3598-3607.

- Bishop, J. L., Sio, A., Angeles, A., Roberts, M. E., Azad, A. A., Chi, K. N., and Zoubeidi, A.
- 732 (2015). PD-L1 is highly expressed in Enzalutamide resistant prostate cancer.
 733 Oncotarget 6, 234-242.
- 734 Bluemn, E. G., Coleman, I. M., Lucas, J. M., Coleman, R. T., Hernandez-Lopez, S.,
- Tharakan, R., Bianchi-Frias, D., Dumpit, R. F., Kaipainen, A., Corella, A. N., *et al.*
- 736 (2017). Androgen Receptor Pathway-Independent Prostate Cancer Is Sustained
- through FGF Signaling. Cancer cell *32*, 474-489 e476.
- Bryce, A. H., Alumkal, J. J., Armstrong, A., Higano, C. S., Iversen, P., Sternberg, C. N.,
- Rathkopf, D., Loriot, Y., de Bono, J., Tombal, B., *et al.* (2017). Radiographic
- 740 progression with nonrising PSA in metastatic castration-resistant prostate cancer:
- post hoc analysis of PREVAIL. Prostate cancer and prostatic diseases *20*, 221-227.
- 742 Canovas, B., Igea, A., Sartori, A. A., Gomis, R. R., Paull, T. T., Isoda, M., Perez-Montoyo,
- H., Serra, V., Gonzalez-Suarez, E., Stracker, T. H., and Nebreda, A. R. (2018). Targeting
- p38alpha Increases DNA Damage, Chromosome Instability, and the Anti-tumoral
- Response to Taxanes in Breast Cancer Cells. Cancer cell *33*, 1094-1110 e1098.
- 746 Chakraborty, G., Armenia, J., Mazzu, Y. Z., Nandakumar, S., Stopsack, K. H., Atiq, M. O.,
- Komura, K., Jehane, L., Hirani, R., Chadalavada, K., *et al.* (2019). Significance of
- 748 BRCA2 and RB1 Co-loss in Aggressive Prostate Cancer Progression. Clinical cancer
- research : an official journal of the American Association for Cancer Research.
- 750 Chen, C. D., Welsbie, D. S., Tran, C., Baek, S. H., Chen, R., Vessella, R., Rosenfeld, M. G.,
- and Sawyers, C. L. (2004). Molecular determinants of resistance to antiandrogen
 therapy. Nature medicine *10*, 33-39.
- 753 Chen, M., and Xie, S. (2018). Therapeutic targeting of cellular stress responses in 754 cancer. Thoracic cancer 9, 1575-1582.
- 755 Chen, X. H., Liu, Z. C., Zhang, G., Wei, W., Wang, X. X., Wang, H., Ke, H. P., Zhang, F.,
- 756 Wang, H. S., Cai, S. H., and Du, J. (2015). TGF-beta and EGF induced HLA-I
- 757 downregulation is associated with epithelial-mesenchymal transition (EMT)
- through upregulation of snail in prostate cancer cells. Molecular immunology 65, 34-42.
- Chen, Y., Wang, L., Jin, J., Luan, Y., Chen, C., Li, Y., Chu, H., Wang, X., Liao, G., Yu, Y., *et*
- *al.* (2017). p38 inhibition provides anti-DNA virus immunity by regulation of USP21
- 762 phosphorylation and STING activation. The Journal of experimental medicine *214*,763 991-1010.
- Chery, L., Lam, H. M., Coleman, I., Lakely, B., Coleman, R., Larson, S., Aguirre-Ghiso, J. A., Xia, J., Gulati, R., Nelson, P. S., *et al.* (2014). Characterization of single
- 766 disseminated prostate cancer cells reveals tumor cell heterogeneity and identifies
- 767 dormancy associated pathways. Oncotarget 5, 9939-9951.
- 768 Coulthard, L. R., White, D. E., Jones, D. L., McDermott, M. F., and Burchill, S. A. (2009).
- p38(MAPK): stress responses from molecular mechanisms to therapeutics. Trends
 in molecular medicine *15*, 369-379.
- 771 Dardenne, E., Beltran, H., Benelli, M., Gayvert, K., Berger, A., Puca, L., Cyrta, J., Sboner,
- A., Noorzad, Z., MacDonald, T., *et al.* (2016). N-Myc Induces an EZH2-Mediated
- 773 Transcriptional Program Driving Neuroendocrine Prostate Cancer. Cancer cell 30,
- 774 563-577.


- de Bono, J. S., Logothetis, C. J., Molina, A., Fizazi, K., North, S., Chu, L., Chi, K. N., Jones,
- R. J., Goodman, O. B., Jr., Saad, F., *et al.* (2011). Abiraterone and increased survival in
- 777 metastatic prostate cancer. The New England journal of medicine *364*, 1995-2005.
- 778 Decker, A. M., Jung, Y., Cackowski, F. C., Yumoto, K., Wang, J., and Taichman, R. S.
- 779 (2017). Sympathetic Signaling Reactivates Quiescent Disseminated Prostate Cancer
- 780 Cells in the Bone Marrow. Molecular cancer research : MCR *15*, 1644-1655.
- 781 Drake, J. M., Paull, E. O., Graham, N. A., Lee, J. K., Smith, B. A., Titz, B., Stoyanova, T.,
- Faltermeier, C. M., Uzunangelov, V., Carlin, D. E., *et al.* (2016). Phosphoproteome
- Integration Reveals Patient-Specific Networks in Prostate Cancer. Cell *166*, 1041-1054.
- Flem-Karlsen, K., Tekle, C., Oyjord, T., Florenes, V. A., Maelandsmo, G. M., Fodstad, O.,
- 786and Nunes-Xavier, C. E. (2019). p38 MAPK activation through B7-H3-mediated787788
- 787 DUSP10 repression promotes chemoresistance. Scientific reports 9, 5839.
- Gao, J., Ward, J. F., Pettaway, C. A., Shi, L. Z., Subudhi, S. K., Vence, L. M., Zhao, H., Chen,
- J., Chen, H., Efstathiou, E., *et al.* (2017). VISTA is an inhibitory immune checkpoint
- that is increased after ipilimumab therapy in patients with prostate cancer. Naturemedicine *23*, 551-555.
- Gatenby, R. A., Gillies, R. J., and Brown, J. S. (2011). Of cancer and cave fish. Nature
 reviews Cancer *11*, 237-238.
- Goodwin, J. F., Kothari, V., Drake, J. M., Zhao, S., Dylgjeri, E., Dean, J. L., Schiewer, M. J.,
- 795 McNair, C., Jones, J. K., Aytes, A., *et al.* (2015). DNA-PKcs-Mediated Transcriptional
- Regulation Drives Prostate Cancer Progression and Metastasis. Cancer cell 28, 97-113.
- Graff, J. N., Alumkal, J. J., Drake, C. G., Thomas, G. V., Redmond, W. L., Farhad, M.,
- Cetnar, J. P., Ey, F. S., Bergan, R. C., Slottke, R., and Beer, T. M. (2016). Early evidence of anti-PD-1 activity in enzalutamide-resistant prostate cancer. Oncotarget *7*,
- 801 52810-52817.
- 802 Graff, J. N., Alumkal, J. J., Thompson, R. F., Moran, A., Thomas, G. V., Wood, M. A.,
- B03 Drake, C. G., Slottke, R., and Beer, T. M. (2018). Pembrolizumab (Pembro) plus
- 804 enzalutamide (Enz) in metastatic castration resistant prostate cancer (mCRPC):
- 805 Extended follow up. Journal of Clinical Oncology *36*, 5047-5047.
- Harrison, J. C., Zyla, T. R., Bardes, E. S., and Lew, D. J. (2004). Stress-specific
- activation mechanisms for the "cell integrity" MAPK pathway. The Journal ofbiological chemistry *279*, 2616-2622.
- Hu, R., Lu, C., Mostaghel, E. A., Yegnasubramanian, S., Gurel, M., Tannahill, C.,
- 810 Edwards, J., Isaacs, W. B., Nelson, P. S., Bluemn, E., *et al.* (2012). Distinct
- 811 transcriptional programs mediated by the ligand-dependent full-length androgen
- 812 receptor and its splice variants in castration-resistant prostate cancer. Cancer
- 813 research *72*, 3457-3462.
- 814 Igea, A., and Nebreda, A. R. (2015). The Stress Kinase p38alpha as a Target for
- 815 Cancer Therapy. Cancer research *75*, 3997-4002.
- 816 Khandrika, L., Lieberman, R., Koul, S., Kumar, B., Maroni, P., Chandhoke, R.,
- 817 Meacham, R. B., and Koul, H. K. (2009). Hypoxia-associated p38 mitogen-activated
- 818 protein kinase-mediated androgen receptor activation and increased HIF-1alpha
- 819 levels contribute to emergence of an aggressive phenotype in prostate cancer.
- 820 Oncogene *28*, 1248-1260.

- KIlduff, T. S. (2004). Hibernation. Encyclopedia of Neuroscience, 1113-1117.
- Kim, S., Koh, J., Kim, M. Y., Kwon, D., Go, H., Kim, Y. A., Jeon, Y. K., and Chung, D. H.
- 823 (2016). PD-L1 expression is associated with epithelial-to-mesenchymal transition in 824 adenocarcinoma of the lung. Human pathology *58*, 7-14.
- 024 autocarcinolia of the fully. Rullian pathology 30, 7-14.
- 825 Korpal, M., Korn, J. M., Gao, X., Rakiec, D. P., Ruddy, D. A., Doshi, S., Yuan, J., Kovats, S.
- 826 G., Kim, S., Cooke, V. G., *et al.* (2013). An F876L mutation in androgen receptor
- 827 confers genetic and phenotypic resistance to MDV3100 (enzalutamide). Cancer828 Discov *3*, 1030-1043.
- Koul, H. K., Pal, M., and Koul, S. (2013). Role of p38 MAP Kinase Signal Transduction
 in Solid Tumors. Genes & cancer 4, 342-359.
- 831 Ku, S. Y., Rosario, S., Wang, Y., Mu, P., Seshadri, M., Goodrich, Z. W., Goodrich, M. M.,
- 832 Labbe, D. P., Gomez, E. C., Wang, J., et al. (2017). Rb1 and Trp53 cooperate to
- 833 suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance.
 834 Science 355, 78-83.
- Lehuede, C., Dupuy, F., Rabinovitch, R., Jones, R. G., and Siegel, P. M. (2016).
- Metabolic Plasticity as a Determinant of Tumor Growth and Metastasis. Cancer
 research 76, 5201-5208.
- Li, M., Liu, J., and Zhang, C. (2011a). Evolutionary history of the vertebrate mitogen activated protein kinases family. PloS one *6*, e26999.
- Li, Y., Alsagabi, M., Fan, D., Bova, G. S., Tewfik, A. H., and Dehm, S. M. (2011b).
- 841 Intragenic rearrangement and altered RNA splicing of the androgen receptor in a
- cell-based model of prostate cancer progression. Cancer research *71*, 2108-2117.
- Li, Y., Hwang, T. H., Oseth, L. A., Hauge, A., Vessella, R. L., Schmechel, S. C., Hirsch, B.,
- Beckman, K. B., Silverstein, K. A., and Dehm, S. M. (2012). AR intragenic deletions
 linked to androgen receptor splice variant expression and activity in models of
- prostate cancer progression. Oncogene *31*, 4759-4767.
- 847 Liu, C. L., Chen, S. F., Wu, M. Z., Jao, S. W., Lin, Y. S., Yang, C. Y., Lee, T. Y., Wen, L. W.,
- Lan, G. L., and Nieh, S. (2016). The molecular and clinical verification of therapeutic
- resistance via the p38 MAPK-Hsp27 axis in lung cancer. Oncotarget 7, 14279-14290.
- Liu, G., Sprenger, C., Sun, S., Epilepsia, K. S., Haugk, K., Zhang, X., Coleman, I., Nelson,
- P. S., and Plymate, S. (2013). AR variant ARv567es induces carcinogenesis in a novel
 transgenic mouse model of prostate cancer. Neoplasia *15*, 1009-1017.
- 853 Liu, L. L., Xie, N., Sun, S., Plymate, S., Mostaghel, E., and Dong, X. (2014). Mechanisms
- of the androgen receptor splicing in prostate cancer cells. Oncogene *33*, 3140-3150.
- Lu, H., Tran, L., Park, Y., Chen, I., Lan, J., Xie, Y., and Semenza, G. L. (2018). Reciprocal
- 856 Regulation of DUSP9 and DUSP16 Expression by HIF1 Controls ERK and p38 MAP
- 857 Kinase Activity and Mediates Chemotherapy-Induced Breast Cancer Stem Cell
- 858 Enrichment. Cancer research 78, 4191-4202.
- 859 Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., Brooks, M.,
- 860 Reinhard, F., Zhang, C. C., Shipitsin, M., et al. (2008). The epithelial-mesenchymal
- transition generates cells with properties of stem cells. Cell *133*, 704-715.
- 862 Mazrooei, P., Kron, K. J., Zhu, Y., Zhou, S., Grillo, G., Mehdi, T., Ahmed, M., Severson, T.
- 863 M., Guilhamon, P., Armstrong, N. S., *et al.* (2019). Cistrome Partitioning Reveals
- 864 Convergence of Somatic Mutations and Risk Variants on Master Transcription
- Regulators in Primary Prostate Tumors. Cancer cell *36*, 674-689 e676.

- Medici, D., Potenta, S., and Kalluri, R. (2011). Transforming growth factor-beta2
- 867 promotes Snail-mediated endothelial-mesenchymal transition through convergence
- of Smad-dependent and Smad-independent signalling. The Biochemical journal 437,
 515-520.
- Miao, L., Yang, L., Li, R., Rodrigues, D. N., Crespo, M., Hsieh, J. T., Tilley, W. D., de Bono,
- 871 J., Selth, L. A., and Rai, G. V. (2017). Disrupting Androgen Receptor Signaling Induces
- 872 Snail-Mediated Epithelial-Mesenchymal Plasticity in Prostate Cancer. Cancer
- 873 research 77, 3101-3112.
- 874 Mills, I. G. (2014). Maintaining and reprogramming genomic androgen receptor
- activity in prostate cancer. Nature reviews Cancer 14, 187-198.
- 876 Mu, P., Zhang, Z., Benelli, M., Karthaus, W. R., Hoover, E., Chen, C. C., Wongvipat, J., Ku,
- 877 S. Y., Gao, D., Cao, Z., et al. (2017). SOX2 promotes lineage plasticity and
- antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science 355,84-88.
- Noh, H., Hu, J., Wang, X., Xia, X., Satelli, A., and Li, S. (2015). Immune checkpoint
- regulator PD-L1 expression on tumor cells by contacting CD11b positive bone
- 882 marrow derived stromal cells. Cell communication and signaling : CCS *13*, 14.
- 883 Paranjape, A. N., Soundararajan, R., Werden, S. J., Joseph, R., Taube, J. H., Liu, H.,
- 884 Rodriguez-Canales, J., Sphyris, N., Wistuba, I., Miura, N., et al. (2016). Inhibition of
- FOXC2 restores epithelial phenotype and drug sensitivity in prostate cancer cells
- with stem-cell properties. Oncogene *35*, 5963-5976.
- 887 Penson, D. F., Armstrong, A. J., Concepcion, R., Agarwal, N., Olsson, C., Karsh, L.,
- B88 Dunshee, C., Wang, F., Wu, K., Krivoshik, A., *et al.* (2016). Enzalutamide Versus
- 889 Bicalutamide in Castration-Resistant Prostate Cancer: The STRIVE Trial. Journal of 890 clinical oncology : official journal of the American Society of Clinical Oncology *34*,
- 891 2098-2106.
- Pierobon, M., Ramos, C., Wong, S., Hodge, K. A., Aldrich, J., Byron, S., Anthony, S. P.,
- 893 Robert, N. J., Northfelt, D. W., Jahanzeb, M., et al. (2017). Enrichment of PI3K-AKT-
- mTOR Pathway Activation in Hepatic Metastases from Breast Cancer. Clinical cancer
- research : an official journal of the American Association for Cancer Research 23,
 4919-4928.
- 897 Robinson, D., Van Allen, E. M., Wu, Y. M., Schultz, N., Lonigro, R. J., Mosquera, J. M.,
- Montgomery, B., Taplin, M. E., Pritchard, C. C., Attard, G., *et al.* (2015). Integrative Clinical Genomics of Advanced Prostate Cancer. Cell *162*, 454.
- 900 Romanel, A., Tandefelt, D. G., Conteduca, V., Jayaram, A., Casiraghi, N., Wetterskog, D.,
- 901 Salvi, S., Amadori, D., Zafeiriou, Z., Rescigno, P., et al. (2015). Plasma AR and
- 902 abiraterone-resistant prostate cancer. Sci Transl Med 7, 312re310.
- 903 Ruppender, N. S., Morrissey, C., Lange, P. H., and Vessella, R. L. (2013). Dormancy in
- solid tumors: implications for prostate cancer. Cancer metastasis reviews 32, 501-509.
- 906 Ryan, C. J., Smith, M. R., de Bono, J. S., Molina, A., Logothetis, C. J., de Souza, P., Fizazi,
- K., Mainwaring, P., Piulats, J. M., Ng, S., *et al.* (2013). Abiraterone in metastatic
- 908 prostate cancer without previous chemotherapy. The New England journal of909 medicine *368*, 138-148.
- 910 Ryu, K. J., Park, S. M., Park, S. H., Kim, I. K., Han, H. T., Kim, H. J., Kim, S. H., Hong, K. S.,
- 511 Kim, H., Kim, M., *et al.* (2019). p38 Stabilizes Snail by Suppressing DYRK2-Mediated

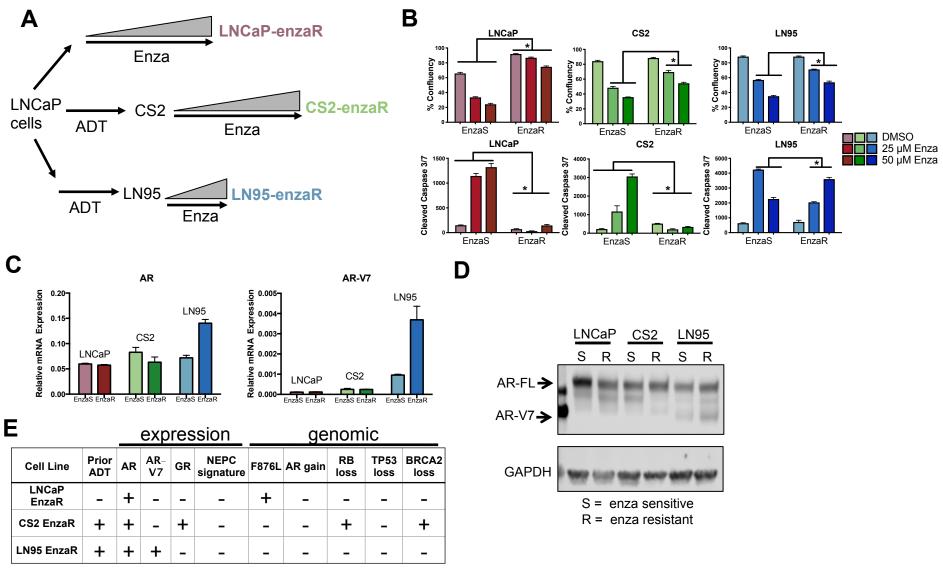
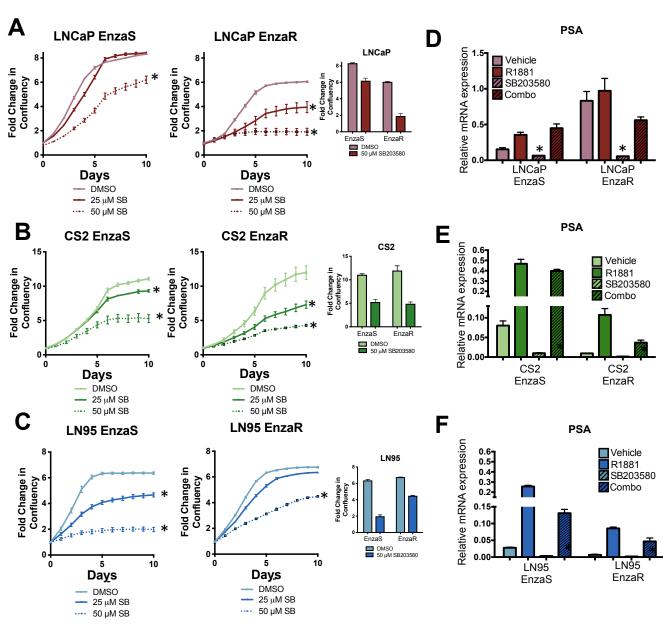
- 912 Phosphorylation that is Required for GSK3beta-betaTrCP-Induced Snail
- 913 Degradation. Cancer research.
- 914 Scher, H. I., Beer, T. M., Higano, C. S., Anand, A., Taplin, M. E., Efstathiou, E., Rathkopf,
- 915 D., Shelkey, J., Yu, E. Y., Alumkal, J., *et al.* (2010). Antitumour activity of MDV3100 in
- 916 castration-resistant prostate cancer: a phase 1-2 study. Lancet 375, 1437-1446.
- 917 Scher, H. I., Fizazi, K., Saad, F., Taplin, M. E., Sternberg, C. N., Miller, K., de Wit, R.,
- 918 Mulders, P., Chi, K. N., Shore, N. D., et al. (2012). Increased survival with
- 919 enzalutamide in prostate cancer after chemotherapy. The New England journal of 920 medicine 367, 1187-1197.
- 921 Skov, C., Aarestrup, K., Baktoft, H., Brodersen, J., Brönmark, C., Hansson, L.-A.,
- 922 Nielsen, E. E., Nielsen, T., and Nilsson, P. A. (2010). Influences of environmental cues,
- 923 migration history, and habitat familiarity on partial migration. Behavioral Ecology 924 21, 1140-1146.
- 925 Sosa, M. S., Avivar-Valderas, A., Bragado, P., Wen, H. C., and Aguirre-Ghiso, J. A.
- 926 (2011). ERK1/2 and p38alpha/beta signaling in tumor cell guiescence:
- 927 opportunities to control dormant residual disease. Clinical cancer research : an
- 928 official journal of the American Association for Cancer Research 17, 5850-5857.
- 929 Sun, S., and Zhou, J. (2018). Molecular mechanisms underlying stress response and 930 adaptation. Thoracic cancer 9, 218-227.
- 931 Thornton, T. M., Pedraza-Alva, G., Deng, B., Wood, C. D., Aronshtam, A., Clements, J. L.,
- 932 Sabio, G., Davis, R. J., Matthews, D. E., Doble, B., and Rincon, M. (2008).
- 933 Phosphorylation by p38 MAPK as an alternative pathway for GSK3beta inactivation. 934 Science *320*, 667-670.
- 935 Tran, C., Ouk, S., Clegg, N. J., Chen, Y., Watson, P. A., Arora, V., Wongvipat, J., Smith-
- 936 Jones, P. M., Yoo, D., Kwon, A., et al. (2009). Development of a second-generation
- 937 antiandrogen for treatment of advanced prostate cancer. Science 324, 787-790.
- 938 van der Toom, E. E., Verdone, J. E., and Pienta, K. J. (2016). Disseminated tumor cells
- 939 and dormancy in prostate cancer metastasis. Current opinion in biotechnology 40, 9-15.
- 940
- 941 Varpe, O. (2017). Life History Adaptations to Seasonality. Integrative and
- 942 comparative biology 57, 943-960.
- 943 Viswanathan, S. R., Ha, G., Hoff, A. M., Wala, J. A., Carrot-Zhang, J., Whelan, C. W.,
- 944 Haradhvala, N. J., Freeman, S. S., Reed, S. C., Rhoades, J., et al. (2018). Structural
- 945 Alterations Driving Castration-Resistant Prostate Cancer Revealed by Linked-Read 946 Genome Sequencing. Cell 174, 433-447 e419.
- 947 Wang, S., Yang, J., Qian, J., Wezeman, M., Kwak, L. W., and Yi, Q. (2006). Tumor
- evasion of the immune system: inhibiting p38 MAPK signaling restores the function 948
- 949 of dendritic cells in multiple myeloma. Blood 107, 2432-2439.
- 950 Wang, Y., Hu, J., Wang, Y., Ye, W., Zhang, X., Ju, H., Xu, D., Liu, L., Ye, D., Zhang, L., *et al.*
- 951 (2018). EGFR activation induced Snail-dependent EMT and myc-dependent PD-L1 in
- 952 human salivary adenoid cystic carcinoma cells. Cell cycle 17, 1457-1470.
- 953 Ware, K. E., Garcia-Blanco, M. A., Armstrong, A. J., and Dehm, S. M. (2014). Biologic
- 954 and clinical significance of androgen receptor variants in castration resistant
- 955 prostate cancer. Endocr Relat Cancer 21, T87-t103.
- 956 Ware, K. E., Somarelli, J. A., Schaeffer, D., Li, J., Zhang, T., Park, S., Patierno, S. R.,
- 957 Freedman, J., Foo, W. C., Garcia-Blanco, M. A., and Armstrong, A. J. (2016). Snail

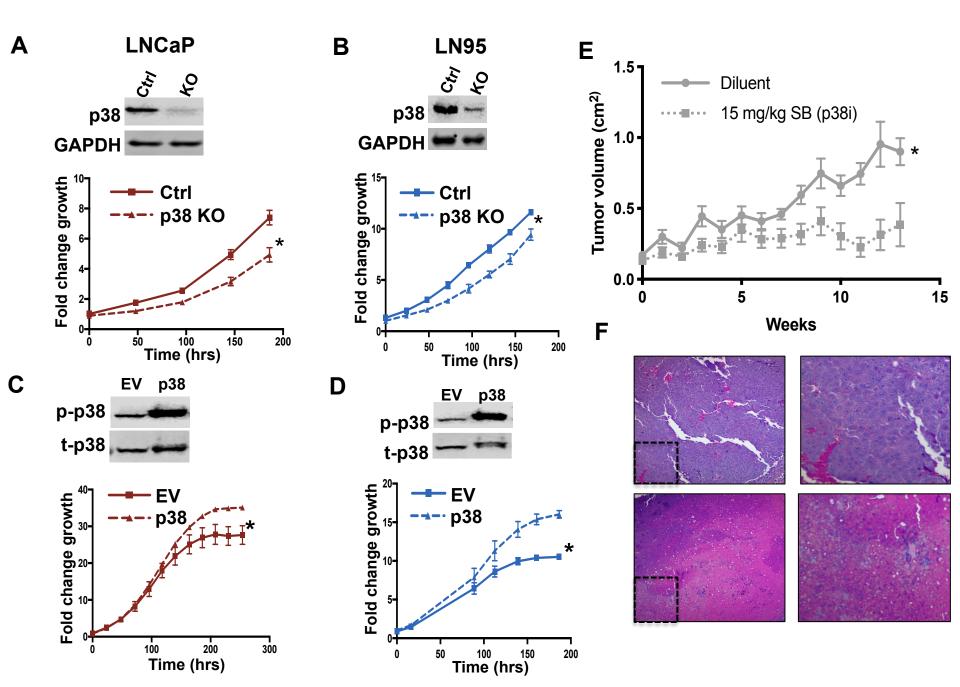
- 958 promotes resistance to enzalutamide through regulation of androgen receptor
- 959 activity in prostate cancer. Oncotarget *7*, 50507-50521.
- 960 Werden, S. J., Sphyris, N., Sarkar, T. R., Paranjape, A. N., LaBaff, A. M., Taube, J. H.,
- Hollier, B. G., Ramirez-Pena, E. Q., Soundararajan, R., den Hollander, P., et al. (2016).
- 962 Phosphorylation of serine 367 of FOXC2 by p38 regulates ZEB1 and breast cancer
- 963 metastasis, without impacting primary tumor growth. Oncogene *35*, 5977-5988.
- 964 Wu, X., Li, Y., Liu, X., Cao, S., Harrington, S. M., Chen, C., Mansfiled, A. S., Dronca, R. S.,
- Park, S. S., Yan, Y., *et al.* (2018). B7-H1(PD-L1) confers chemoresistance through ERK
- and p38 MAPK pathway in tumor cells. bioRxiv, 308601.
- 967 Yang, L., Pang, Y., and Moses, H. L. (2010). TGF-beta and immune cells: an important
- regulatory axis in the tumor microenvironment and progression. Trends inimmunology *31*, 220-227.
- 970 Yoshimura, A., and Muto, G. (2011). TGF-beta function in immune suppression.
- 971 Current topics in microbiology and immunology *350*, 127-147.
- 972 Yu-Lee, L. Y., Yu, G., Lee, Y. C., Lin, S. C., Pan, J., Pan, T., Yu, K. J., Liu, B., Creighton, C. J.,
- 973 Rodriguez-Canales, J., et al. (2018). Osteoblast-Secreted Factors Mediate Dormancy
- 974 of Metastatic Prostate Cancer in the Bone via Activation of the TGFbetaRIII-
- 975 p38MAPK-pS249/T252RB Pathway. Cancer research *78*, 2911-2924.
- 976 Zhang, H., Ye, Y. L., Li, M. X., Ye, S. B., Huang, W. R., Cai, T. T., He, J., Peng, J. Y., Duan, T.
- H., Cui, J., *et al.* (2017). CXCL2/MIF-CXCR2 signaling promotes the recruitment of
- 978 myeloid-derived suppressor cells and is correlated with prognosis in bladder979 cancer. Oncogene *36*, 2095-2104.
- 980 Zhang, T. (2018). Expression of immune checkpoints (ICs) on circulating tumor cells
- 981 (CTCs) in men with metastatic prostate cancer (mPC). Journal of clinical oncology :
- 982 official journal of the American Society of Clinical Oncology.
- 983 Zhang, T., Austin, R. G., Park, S. E., Runyambo, D., Boominathan, R., Rao, C., Bronson,
- E., Anand, M., Healy, P., George, D. J., et al. (2018). Expression of immune checkpoints
- 985 (ICs) on circulating tumor cells (CTCs) in men with metastatic prostate cancer
- 986 (mPC). Journal of Clinical Oncology *36*, 5059-5059.
- 987 Zhou, B. P., Deng, J., Xia, W., Xu, J., Li, Y. M., Gunduz, M., and Hung, M. C. (2004). Dual
- 988 regulation of Snail by GSK-3 beta-mediated phosphorylation in control of epithelial-
- 989 mesenchymal transition. Nature cell biology 6, 931-940.
- 990
- 991

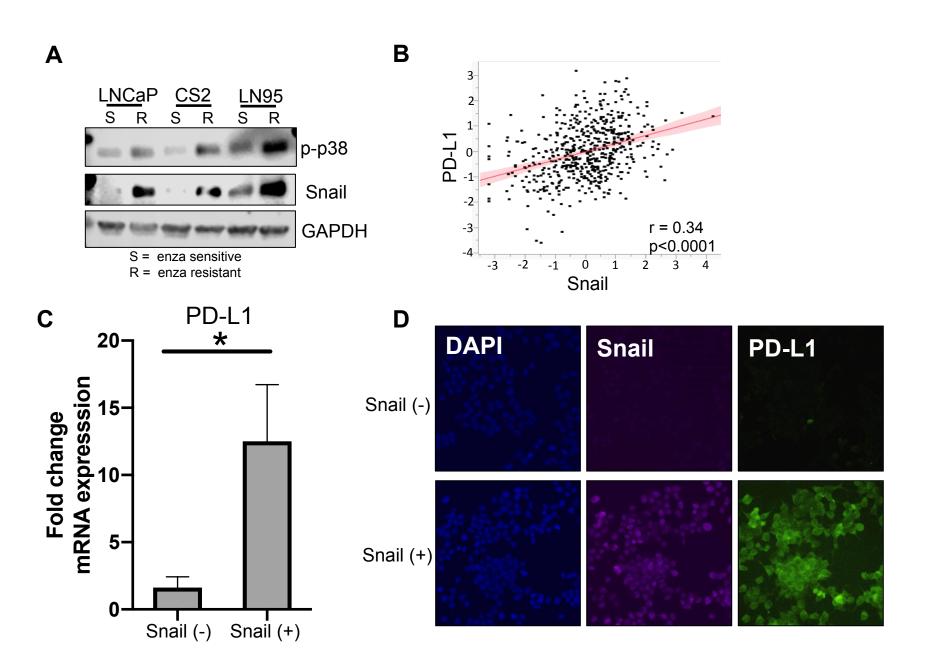
Unfavorable environment

Favorable environment

Figure 2


Figure 3


Figure 4

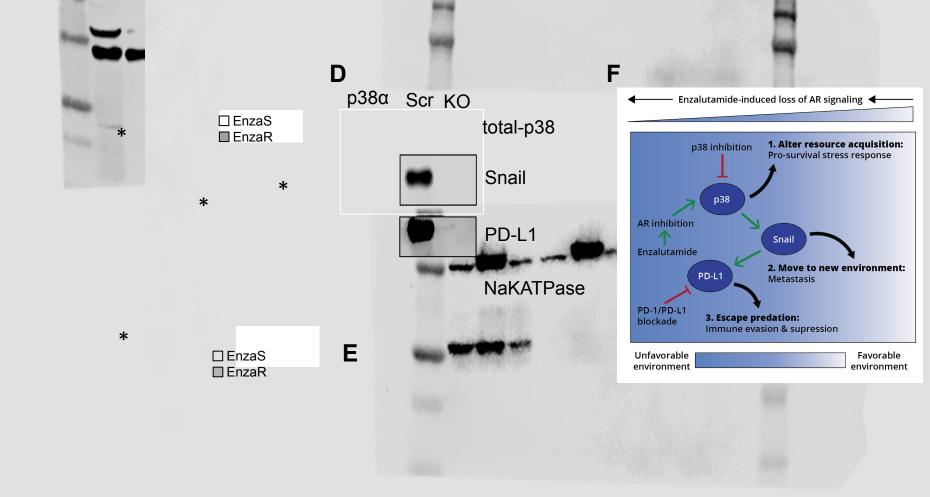


Figure 5

Figure 6

