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Abstract9

Genome-wide association studies (GWAS) have been highly successful in identifying genomic10

loci associated with complex traits. However, identification of the causal genes that mediate11

these associations remains challenging, and many approaches integrating transcriptomic data12

with GWAS have been proposed. However, there currently exist no computationally scalable13

methods that integrate total and allele-specific gene expression to maximize power to detect14

genetic effects on gene expression. Here, we describe a unified framework that is scalable to15

studies with thousands of samples. Using simulations and data from GTEx, we demonstrate16

an average power gain equivalent to a 29% increase in sample size for genes with sufficient17

allele-specific read coverage. We provide a suite of freely available tools, mixQTL, mixFine, and18

mixPred, that apply this framework for mapping of quantitative trait loci, fine-mapping, and19

prediction.20

1 Introduction21

Genome-wide association studies (GWAS) have identified tens of thousands of genomic loci asso-22

ciated with complex traits. A large majority of these loci lie in non-coding regions of the genome,23
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which hinders identification of the underlying molecular mechanisms and causal genes. Multi-24

ple methods have been developed to integrate GWAS results with expression quantitatite trait25

loci (eQTLs), to test whether complex trait associations are mediated through regulation of gene26

expression. Two strategies are commonly employed: 1) association-based approaches including27

PrediXcan [Gamazon et al., 2015], fusion [Gusev et al., 2016], and smr [Zhu et al., 2016]; and28

2) colocalization-based approaches including coloc [Giambartolomei et al., 2014], eCAVIAR [Hor-29

mozdiari et al., 2016], and enloc [Wen et al., 2017]. These approaches rely on high-quality eQTL30

mapping, fine-mapping, and gene expression predictions.31

In cis-eQTL analysis, allele-specific expression (ASE), i.e., the relative expression difference32

between the two haplotypes, captures the genetic effect of nearby variants. ASE provides additional33

signal to total read count, and several methods have been proposed to combine total and allele-34

specific read count for QTL mapping, such as TReCASE [Sun, 2012], WASP [Van De Geijn et al.,35

2015], and RASQUAL [Kumasaka et al., 2016]). However, these methods are computationally too36

costly to be applied to sample sizes beyond a few hundred and as a result have not been applied to37

large-scale studies like GTEx, which includes over 17,000 samples across 49 tissues. Recently, two38

fine-mapping approaches have been proposed utilizing effect size estimates obtained from both ASE39

and eQTL mapping via meta-analysis [Zou et al., 2019; Wang et al., 2020]. However, no existing40

methods, to our knowledge, provides a unified framework of total and allele-specific counts with41

explicit multi-SNP modeling for QTL mapping, fine-mapping, and prediction.42

By assuming a log-linear model for transcript expression levels with independent reads from43

each haplotype and weak genetic effects, as proposed by [Mohammadi et al., 2017], we derive two44

approximately independent equations for allelic imbalance (read count difference between the two45

haplotypes) and total read count. This enables us to develop computationally efficient algorithms46

for cis-QTL mapping, fine-mapping, and prediction. We demonstrate the resulting gain in per-47

formance through simulations under a range of different settings, applications to GTEx v8 data48

[Aguet et al., 2019], and comparisons to a large-scale eQTL meta-analysis from eQTLGen [Võsa49

et al., 2018].50

The software, simulation, data preprocessing, and analysis pipeline can be found at https://51

github.com/hakyimlab/mixqtl and https://github.com/liangyy/mixqtl-pipeline. A com-52

putationally efficient GPU-based implementation of mixQTL has been embedded in tensorQTL53
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https://github.com/broadinstitute/tensorqtl.54

2 Results55

Overview of the statistical model56

To develop a computationally efficient approach that integrates total and allele-specific count data,57

we assumed multiplicative cis-regulatory effects and noise, similarly to the model proposed in58

[Mohammadi et al., 2017]. For a given gene, we modeled the haplotypic read count Y h
i , which is59

the number of reads from haplotype h of individual i as60

Y h
i = Li · θ0,i · exp(β ·Xh

i ) · exp(εhi ), (1)

where Li is the library size for individual i, θ0,i is the baseline abundance (for a haplotype with61

the reference allele), exp(β) is the cis-regulatory effect (allelic fold change due to the presence of62

the alternative allele), Xh
i indicates the dosage of the affecting variant (0 if the individual has the63

reference allele, and 1 if they have the alternative one), and exp(εhi ) is the multiplicative noise.64

Calculating the total read count as the sum of the two haplotypic counts and assuming weak

cis-regulatory effects, we derived an approximately linear model for the logorithm of the haplotypic

and total read counts (see details in Methods and Supplementary Note 7). In practice, we only

observe the allele-specific reads that include a heterozygous site, which is a fraction of the total

haplotypic count denoted as Y (h)obs
i = αi ·Y h

i . To take this partial readout into account, we modeled

the observed total and allele-specific counts as

log Y (1)obs
i = logLi + logαi + log θ0,i +X1

i β + ε
(1)
i

log Y (2)obs
i = logLi + logαi + log θ0,i +X2

i β + ε
(2)
i (2)

log Y total
i

2 ≈ logLi + log θ0,i + X1
i +X2

i

2 β + εtrci

where the error terms are εtrci ∼ N(0, σ2

Y total
i

), ε(h)
i ∼ N(0, σ2

Y
(h)obs

i

) and the errors of the two haplo-65

types are independent: ε(1) ⊥⊥ ε(2).66

We further simplified the models by combining the two allele-specific counts, defining the base-

line abundance variation as a random effect zi (log θ0,i = population mean + zi), and dropping εtrci
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from the total count since this “techinical” noise which scales as the inverse of the read count is

small compared to the “biological” variability, zi, (See Methods section and Supplementary Note

10.1) to obtain our final model

log Y
(1)obs
i

Y
(2)obs
i

= (X1
i −X2

i )β + εasc
i (allelic imbalance eq.) (3)

log Y
total
i

2Li
≈ µ0+X1

i +X2
i

2 β + zi (total read count eq.) (4)

where zi ∼ N(0,σ2
0) and εasc

i ∼ N(0,σ2 · ( 1
Y

(1)obs
i

+ 1
Y

(2)obs
i

)) and zi ⊥⊥ εasc (baseline abundance is67

independent of the multiplicative error).68

This single SNP model extends to multiple SNPs in a straightforward manner by using a vector69

of allelic dosages (X1, · · · ,Xp) and genetic effects (β1, · · · ,βp) instead of the scalar values above.70

Here, p represents the number of genetic variants in the cis-window of the gene under consideration71

(Supplementary Notes 9 and 11).72

For cis-QTL mapping, we took advantage of the approximate independence of the allelic-73

imbalance and the total read counts in equations (3) and (4), solving them as separate linear74

regressions (for computational efficiency) and combining the results via inverse-variance weighted75

meta-analysis. We call this method mixQTL.76

For the fine-mapping and prediction problems, we also leveraged the approximate independence77

of the allelic-imbalance and total read count equations. We used a two-step approach in which we78

first scale the two equations so that they become independent data points with equal variances. In79

a second step, we combined these data points into an augmented dataset and applied the existing80

algorithms SuSiE [Wang et al., 2019] and elastic net [Friedman et al., 2010]. We term these methods81

mixFine and mixPred, for fine-mapping and prediction, respectively.82

Simulation of total and allele-specific reads83

To assess the benefits of this unified framework relative to using total read count or allele-specific84

expression only, we simulated haplotypic reads according to the framework illustrated in Figure 1,85

with additional details in Methods (6.7) and Supplementary Notes 12.86

For all simulation settings, we set an average library size of 94 million reads (to match closely87

to GTEx v8 library size) and used two expression levels (expected value of θ0,i in Eq 1): 10 and88
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1 read per million, corresponding to θ = 10−5 and 10−6. The fraction of allele-specific reads was89

kept at the similar levels across simulations by using the same distribution of polymorphic sites per90

individual.91

Figure 1: Simulation scheme for total and allele-specific read counts. Step 1 simulates a gene
body configuration by first simulating the number of polymorphic sites of the gene followed by positioning
these polymorphic sites uniformly across the gene body. For each individual, the actual heterozygosity of
these polymorphic sites are drawn from Bernoulli distribution. Step 2 simulates the haplotypic reads by first
simulating Negative Binomial library size Li, Beta baseline abundance θ0,i, and the genetic effect β. These
parameters determine the expected count for each transcript. Then, the actual haplotypic read count Y hi is
generated using a Negative Binomial distribution given the expected count where the reads are distributed
uniformly across the gene body. In Step 3, the gene-level allele-specific counts Y (h)obs

i are determined by
counting the reads that overlap heterozygous sites, in which aFC is the allelic fold change which equals to
eβ in our parameterization. For convenience, we used natural log rather than base 2 log. Y total

i is calculated
as the sum of the two haplotypic counts Y 1

i and Y 2
i .

To compare the computational cost of mixQTL to RASQUAL and WASP, we tested their92

performance on simulated data with 100 samples. As shown in Supplementary Figure S4, type I93

error and power were similar for all three methods and mixQTL was 10 to 43 times as fast as the94

others.95
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Combining total and allele-specific read counts improves cis-eQTL mapping96

To assess the gain in power of combining total and allele-specific read counts, we simulated 20097

replicates with allelic fold change varying among 1, 1.01, 1.05, 1.1, 1.25, 1.5, 2, 3. We compared98

mixQTL with two methods: using either only allele-specific counts (ascQTL) or total counts (trc-99

QTL). See details in Supplementary Note 10.1.100

All three methods had calibrated type I errors (Figures 2A and S1). And mixQTL outperformed101

both trcQTL and ascQTL in all simulation settings, demonstrating the benefits of combining total102

and allele-specific counts in cis-eQTL mapping (Figures 2B and S2).103

The degree of improvement varied with the number of reads and sample size. The power of104

ascQTL was sensitive to the number of allele-specific reads, as expected. As shown in Figure 2B,105

ascQTL yielded much higher power in the case of relatively large θ (on the left) compared with106

small θ (on the right). In contrast, trcQTL was less sensitive to the number of reads observed under107

the range of read counts in our simulation settings. Such sensitivity differences between ascQTL108

and trcQTL are consistent with the nature of count data, where the magnitude of the noise is109

inversely related to the count.110
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(A) (B)

Figure 2: QTL mapping performance for mixQTL and approaches based on either total reads
(trcQTL) or allele-specific reads (ascQTL) on simulated data. Each panel presents the results for
two relative abundances of the gene, θ, and three sample sizes. (A) Type I error (y-axis) at a 5% significance
level across methods (x-axis). The dashed line represents the desired error rate under the null hypothesis.
The error bar indicates the 95% confidence interval (CI) in observed error rate estimated from 200 replicates.
(B) Power (y-axis) at a 5% significance level across methods under a range of true aFC values (x-axis). Power
is defined as the fraction of eQTLs passing the significance threshold.

Combining total and allele-specific read count improves fine-mapping111

To mimic LD structure realistically in our simulations, we used the genotypes of European indi-112

viduals from the 1000 Genomes projects phase 3 [1000 Genomes Project Consortium, 2015] within113

1MB cis-windows of 100 randomly selected genes. We applied mixFine and trcFine (which uses114

total read count only; Supplementary Notes 11.3) to the simulated data and characterized the fine-115

mapping results with two metrics: 1) power curve, defined as the proportion of detected variants116

among causal ones versus the number of detected variants, where detection means the variant has117

posterior inclusion probability (PIP) > some threshold (which is varied to get the desired number118

of detected SNPs); 2) the size of 95% credible set (CS) which contains the causal variant.119

The PIP of both trcFine and mixFine were consistent with the proportion of true causal variants120
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within each bin of 0.1 length (Figure 3A). By combining total and allele-specific reads, mixFine121

achieved higher power than trcFine (Figures 3B and S5) across all simulation settings. mixFine122

achieved the highest improvement relative to trcFine at high expression level, θ, corresponding to123

high-quality allele-specific signals. The gain in power decreased with larger sample sizes.124

The increased power was also reflected in the number and size of 95% CSs containing the true125

signals. As shown in Figures 3C and S6, mixFine identified more true positive 95% CSs and these126

95% CSs were generally smaller than the ones of trcFine demonstrating that mixFine can pinpoint127

causal SNPs more accurately.128

Overall, the combined method was more powerful for identifying causal variants, which is con-129

sistent with recent reports [Zou et al., 2019; Wang et al., 2020].130
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(A)

(B) (C)

Figure 3: Fine-mapping performance of the combined (mixFine) and total read-based (trcFine)
approaches on simulated data. (A) The observed true positive rate within SNPs binned by PIP are
shown (aggregated across all simulation settings) for both mixFine (orange) and trcFine (blue). (B) The
power at a PIP cutoff (on y-axis) is plotted against the number of variants passing the PIP cutoff (on x-
axis) for mixFine and trcFine. The solid curves indicate the mean power (recall rate) among 100 simulation
replicates and the error bars indicate the 95% CI. (C) The distribution of the size of 95% CS that contain
the causal variant for mixFine and trcFine across all 100 simulation replicates. The counts in each bin are
stacked.
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Combining total and allele-specific read count improves prediction131

Using the data from the fine-mapping simulation, we tested the performance of mixPred and132

trcPred (Supplementary Notes 11.3) on held-out test data. Specifically, we split each simulation133

replicate into training (4/5) and test (1/5) sets. We trained prediction models using training data134

and evaluated the prediction performance on test data using Pearson correlation between predicted135

and true response. For each data set, we repeated the splitting-training-evaluation procedure twice136

to reduce the stochasticity introduced by splitting.137

Overall, mixPred achieved higher prediction accuracy than trcPred (Figure 4 and Supplemen-138

tary Figure S7 and S8). The gain in performance was more apparent when the expression level θ139

was higher and as a consequence the allele-specific count was larger.140

(A) (B)

Figure 4: Prediction performance of the combined (mixPred) and total read-based (trcPred)
methods on simulated data. (A) The overall distribution of Pearson correlations between predicted and
observed total count abundance in log-scale, i.e., log(Y total

i /Li), for mixPred (orange) and trcPred (blue)
across all data splits are shown. (B) For each split, the prediction performance of mixPred (y-axis) is plotted
against the prediction performance of trcPred (x-axis).
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mixQTL outperforms standard eQTL mapping in GTEx data141

Next, we compared mixQTL to the standard eQTL mapping approach (denoted here simply as142

eQTL) used by the GTEx consortium [Aguet et al., 2019], using 670 whole blood RNA-seq samples143

from the v8 release. We included variants within a ±1 Mb cis-window around the transcription144

start site of each gene, and limited our analysis to genes passing the following two criteria: 1) at145

least 15 samples having at least 50 allele-specific counts for each haplotype; and 2) at least 500146

samples having a total read count of at least 100. 28% of genes passed these filters, corresponding147

to 5,734 genes in total. For genes with below-threshold allele-specific counts, the calculation is148

performed using total read counts only, such that all genes considered using the standard approach149

are also tested in mixQTL. Performance for these genes was similar to the standard eQTL approach150

(Supplementary Figure S9). We then stratified genes that passed the filtering criteria by their151

median expression level (read counts) into low, medium, and high expression tertiles.152

All three approaches mixQTL, aseQTL, and trcQTL were relatively well-calibrated when per-153

muting data in four randomly selected genes (Supplementary Figure S10). The estimated effect sizes154

were consistent with allelic fold change estimates from the main GTEx v8 analysis (Supplementary155

Figure S11).156

To further compare the performance of the methods, we used eQTLGen [Võsa et al., 2018],157

a large-scale meta-analysis of over 30,000 blood samples, as our “ground truth” eQTL discovery158

reference (Supplementary Notes 14). We selected a random subset of 100,000 variant/gene pairs159

tested by eQTLGen with FDR < 0.05 as the set of “ground truth” eQTLs. We also selected160

a random set 100,000 variant/gene pairs with p > 0.50 as a background set of “non-significant”161

eQTLs. Only 96,660 and 78,691 of the “ground truth” and “non-significant” pairs were found in162

the GTEx data.163

For the “ground truth” eQTLs, mixQTL yielded more significant p-values compared to the164

standard eQTL, ascQTL, and trcQTL approaches (Fig. 5). The “non-significant” variant/gene165

pairs showed moderate enrichment for small p-values for all methods (Figure 5B), likely reflecting166

a combination of false negatives in eQTLGen and potential false positives in our analysis. Overall,167

we found that mixQTL achieves increased power compared to standard eQTL mapping on real168

data for the set of genes with sufficient total and allele-specific read counts.169

As an intuitive measure of improved performance, we estimated the effective sample size gain170
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of mixQTL compared to standard eQTL mapping as the median of the ratio between mixQTL χ2171

statistics and eQTL χ2 statistics. mixQTL showed a 29% increase in effective sample size compared172

to the standard eQTL mapping approach (Figure 5C).173

To account for the trade-off between true and false positive rates, as well as between precision174

and power, we used receiver operating characteristic (ROC) and precision-recall (PR) curves to175

compare the performance of mixQTL and standard eQTL approaches using the eQTLGen “ground176

truth” and “non-significant” eQTLs. We found that mixQTL achieves higher performance in both177

ROC (Figure 5D) and PR curves (Figure 5E). Consistent with simulation results, this gain is more178

significant for genes with higher expression levels.179
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(A) (B) (C)

(D)

(E)

Figure 5: Performance of mixQTL on GTEx v8 whole blood RNA-seq. (A) QQ-plot of nominal
p-values for a random subset of cis-eQTLs (FDR < 0.05) reported in eQTLGen. (B) QQ-plot of nominal
p-values for a random subset of variant/gene pairs with p-value > 0.5 in eQTLGen. (C) χ2 statistics
from eQTL analysis (x-axis) and mixQTL analysis (y-axis) among a random subset of cis-eQTLs (FDR <
0.05) reported in eQTLGen. The slope indicates the relative effective sample size increase. Two randomly
selected genes are highlighted in red and green, respectively. (D, E) ROC and PR curves for mixQTL and
the standard eQTL method measured in eQTLGen. Each panel shows the results of genes stratified by
expression level tertiles.

13

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 24, 2020. ; https://doi.org/10.1101/2020.04.22.050666doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.22.050666
http://creativecommons.org/licenses/by/4.0/


Fine-mapping and prediction model building in GTEx data180

We applied mixFine to the GTEx v8 whole blood RNA-seq data, using the same subset of genes181

with high expression and allelic counts that were used for QTL mapping above. We compared182

mixFine to the SuSiE fine-mapping approach [Wang et al., 2019] applied to the inverse normal183

transformed expression values used for standard eQTL mapping [Aguet et al., 2019]. We corrected184

for sex, 5 genetic principal components, WGS platform, WGS library prep protocol (PCR), and 60185

PEER factors. We refer to the latter as the “standard approach” below for simplicity.186

To compare the power of causal variant detection, we performed a subsampling analysis on a187

random subset of 1,000 genes. First, we defined “consensus SNPs” as the variants with PIP > 0.5188

in both mixFine and the “standard approach” using all samples. Similarly, a variant was defined189

as “top SNP” if it was the most significant variant within the 95% CS for both mixFine and the190

“standard approach”. Then, we compared how well the “consensus SNPs” and “top SNPs” were191

detected by mixFine and the standard fine-mapping approach using only a subset of samples. We192

subsampled to 90%, 80%, · · · , 30% of samples, and repeated each random subsampling step 10193

times.194

At each subsampling level, mixFine, on average, detected more “consensus SNPs” than the195

standard approach (Figure 6A) and performance improved most on the more highly expressed196

genes (top tertile) (Figure S12). Moreover, mixFine detected “top SNPs” in 95% CSs with average197

size = 9.6 variants whereas the corresponding 95% CS of standard approach had average size = 13.6198

variants (Figure S13). These results indicate that, when sufficient counts are available, mixFine, the199

multi-SNP model combining total and allele-specific counts, can better pinpoint causal cis-eQTLs200

than the standard approach on real data.201

To compare the performance of mixPred and the standard method on real data, we imple-202

mented a cross-validated evaluation pipeline where we split the full data into k folds. At each fold,203

we trained the prediction model using the remaining (k − 1) folds and evaluated the performance204

(by Pearson correlation between predicted and observed log(Y total
i /Li)) on the held out fold. We205

applied this evaluation pipeline to mixPred and the standard approach (based on inverse normal-206

ized expression) on the same 1000 genes as the subsampling analysis with k equals to 2 and 10207

(corresponds to sample size = 335 and 603). Both mixPred and the standard approach achieved208

higher prediction performance as sample size increased, suggesting that sample size was not sat-209
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urated and was a limiting factor of the prediction performance (Supplementary Figure S14). At210

the same sample size, we observed, on average, higher performance in mixPred as compared to the211

standard approach, and the performance gain was more obvious for smaller sample sizes (Figure212

6B). These results indicate that mixPred can improve over the standard approach for building213

prediction models by leveraging allele-specific counts as extra observations.214

(A)

(B)

Figure 6: Performance of mixFine and mixPred on GTEx v8 whole blood RNA-seq. (A)
Fraction of detected “consensus SNPs” as a function of subsampling level, for mixFine and the standard
approach. (B) Median Pearson correlation across k held-out folds for mixPred vs. the standard method, for
k = 2, corresponds to training sample size = 335 (left panel) and k = 10, corresponding to training sample
size = 603. Each point corresponds to a gene.
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3 Discussion215

We proposed a unified framework that integrates both allele-specific and total read counts to216

estimate genetic cis-regulatory effects, resulting in improved eQTL mapping, fine-mapping, and217

prediction of gene expression traits. Our suite of tools (mixQTL, mixFine, and mixPred) can be218

scaled to much larger sample sizes (thousands) due to the underlying log-linear approximation. By219

assuming multiplicative genetic effects, we transform the observed read counts into two approxi-220

mately independent quantities: allelic imbalance and total read count. We take advantage of this221

independence to develop computationally efficient approaches that integrate both allele-specific and222

total reads.223

Specifically, mixQTL estimates the genetic effect separately for the allelic imbalance and the224

total read counts, and combines the resulting statistics via meta-analysis. These calculations have225

computationally efficient closed-form solutions, enabling their use in the permutation schemes ap-226

plied to compute FDR in eQTL mapping [Shabalin, 2012; Ongen et al., 2015; Taylor-Weiner et al.,227

2019].228

Furthermore, the simple multi-SNP extension and the independence of the terms enable use of a229

two-step inference procedure. In the first step, the allelic imbalance and total read count are scaled230

so that the error terms have the same variance. And in the second step, given their approximate231

independence, the pair of equations (from allelic imbalance and total counts) can simply be input232

into existing fine-mapping and prediction algorithms. We showed through extensive simulations233

and applications to GTEx v8 data that our suite of methods outperforms current methods that use234

only total read count. Given the straightforward extension of current approaches with the models235

proposed here, as well as their computational efficiency, we anticipate that combining total and236

allele-specific read counts will find widespread use for eQTL mapping, fine-mapping, and prediction237

of gene expression.238
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6 Material and Methods325

6.1 Notation and terminology326

Notation Description Synonym in text Observable

i Individual index. - -
h Haplotype index, with h = 1, 2 for diploid. - -
Xh

i Alternative allele count (0 or 1) of the variant linking to the
gene haplotype h.

allelic dosage Yes

Li The total number of reads in the RNA-seq library. library size Yes
Y h

i Count of reads originated from gene haplotype h. haplotypic (read) count No
Y

(h)obs
i Allele-specific read count that gets aligned to the gene hap-

lotype h.
allele-specific (read) count Yes

Y total
i Total count of reads originated from any of the two gene

haplotypes (sum).
total (read) count Yes

θ0,i The abundance of the gene haplotype relative to the total
transcriptome when the linked causal variants are all in ref-
erence alleles

baseline (relative) abundance No

θh
i The abundance of the gene haplotype h relative to the total

transcriptome in individual i
(relative) abundance;
expression level†

No

β The log fold change of gene haplotype abundance when link-
ing to alternative allele relative the reference allele

allelic fold change (aFC) in
natural log scale

No

Y
(1)obs

i

Y
(2)obs

i

The ratio of the allele-specific counts between two haplo-
types

allelic imbalance Yes

Y trc
i Shorthand of the term log Y total

i
2Li

. - -

Y asc
i Shorthand of the term log Y

(1)obs
i

Y
(2)obs

i

- -

θ Only used in simulation where θ = E(θ0,i) expression level? -

Table 1: Summary of notation and terminology used in the paper. The Description column
contains a brief definition of each Notation, and the Synonym in text column contains the corresponding
terminology used in the text. The Observable column indicates whether the entity is an observable variable
or not. (†, ?: expression level does not strictly refer to θhi or E(θ0,i), but more generally to the abundance
of the gene transcripts relative to the transcriptome.)
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6.2 Statistical model of cis-regulation327

For individual i, let X1
i and X2

i be the number of alternative alleles in each of the two haplotypes at the
variant of interest. Let Y 1

i and Y 2
i be the number of reads mapped to each of the two haplotypes (i.e.,

haplotypic counts; in practice, these quantities are unobserved) and Li the library size for individual i. As
proposed in [Mohammadi et al., 2017], we use the concept of allelic fold change (aFC) to represent the genetic
effect on cis-expression. We denote θ0,i as the baseline abundance of the transcripts originating from each
of the gene haplotype without considering genetic effect. Let β be the genetic effect of a variant of interest,
which is defined as the log fold change relative to the reference allele. Then, the transcript abundance of
each haplotype h after accounting for the genetic effect is θhi = θ0,i × g(β,Xh

i ) where g(β,Xh
i ) is eβ if Xh

i is
the alternative allele; otherwise g(β,Xh

i ) = 1. We model read count Y hi as

log Y hi |Li, θhi ∼ N(log(Liθhi ), τhi ). (5)

In an RNA-seq experiment, a fraction of reads contribute to allele-specific read counts. Let αi denote328

the fraction of allele-specific reads in individual i, which depends on the number of heterozygous sites within329

the transcript. Instead of observing haplotypic counts Y 1
i and Y 2

i , we observe total read count Y total
i and330

gene-level allele-specific read counts Y (1)obs
i and Y

(2)obs
i . Similarly, we further assume that the baseline331

abundance of allele-specific reads per haplotype is θ0,i × αi, so we have332

log Y (1)obs
i |Li, θ1

i ,αi ∼ N(log(αiLiθ1
i ), τ

(1)
i ) (6)

log Y (2)obs
i |Li, θ2

i ,αi ∼ N(log(αiLiθ2
i ), τ

(2)
i )

log Y total
i |Li, θ1

i , θ2
i = log(Y 1

i + Y 2
i )|Li, θ1

i , θ2
i (7)

∼ N(log[Li(θ1
i + θ2

i )], τi) (8)

6.3 Linearizing the model by approximation333

Based on the model described in Section 6.2 along with approximations under weak effect assumptions, we
propose the following linear mixed effects model (see Supplementary Notes 8 for derivation):

log Y
total
i

2Li︸ ︷︷ ︸
Y trc

i

= µ0+zi+
X1
i +X2

i

2︸ ︷︷ ︸
Xtrc

i

β + εtrc
i (9)

log Y
(1)obs
i

Y
(2)obs
i︸ ︷︷ ︸

Y asc
i

= (X1
i −X2

i )︸ ︷︷ ︸
Xasc

i

β + εasc
i (10)

zi ∼ N(0,σ2
0), εtrc

i ∼ N(0, σ
2

Yi
), εasc

i ∼ N(0, σ
2Y

(1)
i Y

(2)
i

Y
(1)
i + Y

(2)
i︸ ︷︷ ︸

σ2/wi

), (11)

where zi is the individual-level random effect capturing the between-individual variation of θi,0. Notice that334

the individual-level random effect cancels out when we take the difference between the two log-scale allele-335

specific read counts (i.e., allelic imbalance in log-scale). The scaling of εtrc and εasc in Eq 11 is to ensure336

that variance of read count scales linearly with the magnitude of read count (see Supplementary Notes 7.2).337

In other words, this model ensures Var(Y ) ≈ constant× E(Y ), such that over-dispersion is implicitly taken338

into account.339
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Since σ2/Yi is typically much smaller than σ2
0 (see Supplementary Notes 10), we can further simplify Eq

9, 10 as

Y trc
i = µ0+Xtrc

i βtrc + zi , zi ∼ N(0,σ2
0) (12)

Y asc
i = Xasc

i βasc + εasc
i , εasc ∼ N(0,σ2/wi) (13)

Eqs 12, 13 are applicable to both single-SNP and multi-SNP scenarios. In the single-SNP case, Xi and β340

are scalars, and in the multi-SNP case, Xi and β are vectors including all SNPs within the cis-window (see341

Supplementary Notes 9).342

6.4 Numerically efficient QTL mapping leveraging approximate independence343

of allelic imbalance and total read count344

The likelihood function corresponding to the proposed model in Eqs 12, 13 takes the form

∏
i

Pr(Y total
i |µ0,σ2

0 ,σ2,β) · Pr(Y
(1)obs
i

Y
(2)obs
i

|σ2,β),

factoring into total read count and allelic imbalance components. (see Supplementary Notes 8.2). This means345

that the likelihood for total read count and the ratio of allele-specific read counts provide approximately346

independent information on β, and enables us to solve each component separately and combine the results via347

meta-analysis (standard approach with independent studies [Evangelou and Ioannidis, 2013]). Specifically,348

we fit βtrc and βasc using total and allele-specific observations as two separate linear regression problems,349

and meta-analyze the results using inverse-variance weighting (see details in Supplementary Notes 10.2).350

6.5 Two-step inference procedure for multi-SNP model351

The prediction and fine-mapping problems both rely on the linearized model Eq 12, 13, but with different352

objectives. For prediction, the objective is to find the best predictor, whereas for fine-mapping, the ob-353

jectiveis to infer whether βk is non-zero. Existing solvers for both prediction and fine-mapping use total354

read information only and assume that data (X, y) follow the model y = Xβ + ε, where the noise term355

ε is independent across the rows of the data matrix. We will refer to this model as the ‘canonical’ linear356

model. We propose a two-step inference procedure that first processes the data such that it approximates357

y = Xβ + ε, and then uses existing solvers for prediction and fine-mapping problems, respectively.358

For the first step, we process total and allele-specific reads separately to fit the ‘canonical’ linear model.359

Specifically, we estimate σ2 from (Y asc,Xasc) based on Eq 13 using elastic net with cross-validation. And360

similarly, based on Eq 12, we estimate σ2
0 from (Y trc,Xtrc) and obtain the intercept µ0 by running fine-361

mapping with (Y trc,Xtrc). Then, we shift Y trc by µ̂0 and scale (Y trc,Xtrc) by 1/σ̂0. And similarly, we scale362

(Y asc,Xasc) by w/σ̂. These linear transformations ensure that the transformed (Ỹ trc, X̃trc) and (Ỹ asc, X̃asc)363

both approximately follow Y = Xβ + ε. The implementation details are described in Supplementary Notes364

11. At the second step, we concatenate the transformed data from both total and allele-specific read counts365

as (Ỹ , X̃), which is compatible with existing solvers for prediction and fine-mapping problems.366

6.6 Adjusting for covariates367

When analyzing real data, we need to take covariates such as sex, batch effect, population stratification into368

account. Here, we adapt the procedure which has been proposed previously [Mohammadi et al., 2017]. We369

regress out the effect of covariates beforehand and use the residual as the response in both QTL mapping370

and fitting multi-SNP model. Specifically, let c1, · · · , cK denote the K covariates to be considered. We first371

regress Y trc against c1, · · · , cK jointly and select the covariates with nominally significant coefficients (p <372

0.05). Then we regress Y trc against the selected covariates jointly and set the residuals as the adjusted Y trc373

for QTL mapping and multi-SNP inference downstream.374
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6.7 Simulation scheme375

We simulate RNA-seq reads with total and allele-specific readouts as sketched in three steps in Figure 1.376

In step 1, we specify, for each individual i, the position of heterozygous sites within the gene body. The377

expected read count from each haplotype transcripts, E(Y hi ), is determined by the RNA-seq library size378

Li, the baseline abundance of the transcript θ0,i, and the genetic effect β. In step 2, given the expected379

haplotypic count, we draw Y hi from Negative Binomial to model the variation among count data. In step380

3, we position the reads randomly along the gene body and readout observed allele-specific count Y (h)obs
i381

by counting the number of reads overlapping heterozygous sites simulated in step 1. The total read count382

readout is Yi = Y 1
i + Y 2

i , which is independent of the number of heterozygous sites.383

To survey a wide range of parameters, we simulate data with a grid of parameters. We vary sample size384

among 100, 200, ..., 500. At library size around 90 million, we vary the level of θ0,i to cover the gene with385

different expression levels, among 5×10−5, 2.5×10−5, 1×10−5, 2.5×10−6, 1×10−6. The genetic effect, aFC,386

is set to 1 (null), 1.01, 1.05, 1.1, 1.25, 1.5, 2, 3 in the single SNP model. For the multi-SNP scenario, we set387

the number of causal SNPs between 1 and 3 with heritability from 0.2 to 0.55. The number of polymorphic388

sites within the gene body is centered around 10 with minor allele frequency from 0.05 to 0.3. A detailed389

description and parameter settings are provided in the Supplementary Notes 12.390

6.8 Analysis of GTEx v8 data391

We downloaded the phased genotypes, total read count matrix, and variant-level allele-specific read counts392

in whole blood from GTEx release 8 [Aguet et al., 2019] via dbGaP (accession number phs000424.v8.p1).393

To obtain gene-level read counts, we summed over allele-specific counts at all the heterozygous sites for each394

gene haplotype. We also obtained library size, sex, and genotype PCs from GTEx v8. For comparisons with395

the inverse normalization-based approach, we also downloaded normalized expression matrices.396

Similarly to the GTEx v8 report [Aguet et al., 2019], we restricted the analysis to the cis-regulatory397

window defined as 1Mbp up/downstream of the transcription start site of each gene.398

To obtain the PEER factors for mixQTL analysis, we ran peertool [Stegle et al., 2010] on matrix with399

entry log(Yi,g
2Li

) for individual i and gene g (impute value by k-nearest neighbor if Yi,g is zero which is done400

by impute::impute.knn in R).401

We considered very large allele-specific counts to be outliers likely due to alignment artifacts and removed402

individuals with allele-specific read counts greater than 1000. To further limit the undue influence of large403

count outliers on the estimated log fold-change, β̂asc, we set the largest weight
(

1
Y (1)obs + 1

Y (2)obs

)−1
to be404

at most K fold to the smallest one, where K = min(10, sample size/10).405

Specific analysis focused on high or low expression were performed with different gene filtering criteria406

as stated in the Results section.407
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Supplementary Figures

Supplementary Fig. S1. Type I error of mixQTL, ascQTL, and trcQTL on the full grid of simulations.
Each panel shows results on data simulated under a pair of θ (by column) and sample size (by row).
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Supplementary Fig. S2. Power of mixQTL, ascQTL, and trcQTL on the full grid of simulations. Each
panel shows results on data simulated under a pair of θ (by column) and sample size (by row).
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Supplementary Fig. S3. Difference between β̂ and true β of mixQTL, ascQTL, and trcQTL on the full
grid of simulations. Each panel shows results on data simulated under a pair of θ (by column) and sample
size (by row).
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(A) (B)

(C) (D)

Supplementary Fig. S4. Performance of WASP, RASQUAL, and mixQTL on simulated data. Here, we
show results (by panel) for a range of read depths: θ = 1 × 10−5, 5 × 10−6, 2.5 × 10−6, 1 × 10−6 (defined
as the average baseline abundance in the simulation that controls the number of reads) with sample size
equal to 100. (A) Type I errors computed from 200 replicates. (B) Power (y-axis) calculated at α = 0.05 for
a range of true aFC values (x-axis). (C) Difference between estimated aFC and true aFC for a range of true
effect sizes (x-axis). (D) Per-test computation times. The computation of overdispersion parameters was
included.
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Supplementary Fig. S5. Power curves of mixFine and trcFine on the full grid of simulations. Each
panel shows results on data simulated under a pair of θ (by column) and sample size (by row).
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Supplementary Fig. S6. Distribution of the positive 95% CS’s which contain causal variants in
mixFine and trcFine on the full grid of simulations. Each panel shows results on data simulated under
a pair of θ (by column) and sample size (by row).
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Supplementary Fig. S7. Distribution of Pearson correlations between predicted and observed ex-
pression level (in the scale log(Y total

i /Li )) for mixPred and trcPred on the full grid of simulations.
Correlation is calculated on held-out test data. Each panel shows results on data simulated under a pair of
θ (by column) and sample size (by row).
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Supplementary Fig. S8. Pairwise comparison of prediction performance of mixPred and trcPred
on the full grid of simulations. Correlation of predicted versus observed expression level (in the scale
log(Y total

i /Li )) is calculated on held-out test data. The prediction performance of mixPred (y-axis) is plotted
against the prediction performance of trcPred (x-axis) for each split. Each panel shows results on data
simulated under a pair of θ (by column) and sample size (by row).
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(A) (B)

(C)

Supplementary Fig. S9. Performance of trcQTL and the standard eQTL approach on genes with low
total read counts. Genes with low total counts are defined as having no more than 50 total read counts
in any one sample. In GTEx v8 whole blood samples, we extracted 912 genes with low total counts and
calculated trcQTL estimates for variants in the corresponding cis-windows. To compare the power of trcQTL
and eQTL, we used the 85,129 variant/gene pairs with FDR < 0.05 in eQTLGen as a “ground truth” set.
We also randomly selected 88,242 variant/gene pairs from the pairs with p-value > 0.5 in eQTLGen as a
negative set. (A,B) ROC and PR curves for trcQTL and the standard eQTL method. (C) Test statistics for
the standard eQTL method (x-axis) and trcQTL (y-axis). The variant/gene pairs in the eQTLGen negative
set are shown in the left panel, and pairs in the “ground truth” set in the right panel.
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(A) (B)

(C)

Supplementary Fig. S10. QQ-plot of nominal p-values from ascQTL and trcQTL on four randomly
selected genes in GTEx v8 whole blood RNA-seq. The nominal p-values of trcQTL and ascQTL
are compared against the standard eQTL method for four randomly selected genes ENSG00000000457,
ENSG00000001461, ENSG00000002834, and ENSG00000277734. The results of ascQTL and trcQTL on
permuted genotypes are shown in black. (A) Results from mixQTL. (B) Results from ascQTL. (C) Results
from trcQTL.
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Supplementary Fig. S11. Comparison of aFC estimates from GTEx v8 and the estimated allelic fold
change of ascQTL, trcQTL, and mixQTL. The estimates of the top variants in the eGenes of GTEx v8
whole blood are shown (based on eQTL results). On the x-axis, the aFC estimate reported by GTEx v8 is
shown (the reported value is in log2 and, for visualization, we rescale it to natural log scale by multiplying
the value with log(2)). On the y-axis, the estimated allelic fold changes (in natural log scale) of ascQTL,
trcQTL, and mixQTL are shown. The variant/gene pairs are stratified on the basis of the quality of aFC
estimate, which is defined as ‘high quality’ if the 95% CI of log2 aFC is smaller than 1 and the low and high
boundaries of the 95% CI are not more extreme than − log2(50) and log2(50), and as ‘low quality’ otherwise.
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Supplementary Fig. S12. Performance of mixFine on GTEx v8 whole blood RNA-seq stratified by
expression level. At each subsampling level (x-axis), the fraction of “consensus SNPs” being detected is
shown on the y-axis. Each panel shows the results of genes stratified by expression level tertiles.
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Supplementary Fig. S13. Performance of mixFine on GTEx v8 whole blood RNA-seq on pinpointing
the “top” SNPs. At each subsampling level (shown in each panel), we compare mixFine (y-axis) and the
standard method (x-axis) on the size of 95% CS’s which are paired by sharing the same “top SNP”.
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Supplementary Fig. S14. Performance of mixPred and the standard method on GTEx v8 whole blood
RNA-seq with different sample sizes. For each gene, the median prediction performance across the k
held out folds is shown. Here the results with sample size = 335 (k = 2) are shown on x-axis and the results
with sample size = 603 (k = 10) are shown on y-axis. The left panel shows the results of mixPred and the
right panel shows the results of the standard method.

Supplementary Notes

7 Statistical model for read count

Here we introduce the statistical model of read count in this paper. For completeness, we opt for keeping
some text that overlaps with main text. Recall that i indexes individual and h indexes haplotypes. X h

i is
the phased genotype of the corresponding individual i haplotype h. Y total

i is the total read count within the
gene body and Li is the library size. Y

(h)obs
i is the allele-specific read count of the corresponding haplotype

transcript h and Y h
i is the actual (though unobserved) read count of the haplotype transcript h. αi is the

expected fraction of allele-specific reads in individual i . Additionally, the cis-genetic effect a single SNP on
haplotype h is represented as g(β,X h

i ) where

g(β,X h
i ) =

{
1 , if X h

i = 0

eβ , if X h
i = 1

(14)

= eX h
i β (15)

We assume multiplicative effect when there are multiple causal SNPs. And the effect of multiple SNPs
j = 1, · · · , p is

p∏
j=1

g(βj ,X h
ij ) = e

∑
j X

h
ijβj (16)

= eXh
i β (17)

:= g(β,Xh
i ) (18)
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7.1 Overview

We model haplotypic count Y h
i as lognormal distribution as follow.

logY h
i ∼ N(log(Liθ

h
i ), τ

h
i ) (19)

θhi = θ0,i × g(β,Xh
i ), (20)

θ0,i is the baseline abundance of haplotype transcript without considering genetic effect (i.e. it represents
the abundance when the affecting SNP is reference allele).

In practice, we do not observe Y h
i but allele-specific read count Y

(h)obs
i . So, we further assume that the

baseline abundance of corresponding allele-specific reads are θ(1)0,i = θ
(2)
0,i = αiθ0,i . And by definition, total

read count Y total
i = Y 1

i + Y 2
i . So, similar to Eq 19, 20, Y

(h)obs
i and Y total

i follow

logY
(h)obs
i ∼ N(log(Liθ

(h)
i ), τ

(h)
i ) (21)

logY total
i ∼ N(log(Liθi ), τi ) (22)

θ
(h)
i = αiθ0,i × g(β,Xh

i ) (23)

θi = θ0,i × [g(β,X1
i ) + g(β,X2

i )] (24)

7.2 Parameterizing τ to weight total and AS count properly

Note that lognormal distribution has the following property.

logX ∼ N(µ, τ) (25)
X ∼ lognormal(µ, τ) , by definition of lognormal (26)

E(X ) = eµ+ τ
2 (27)

Var(X ) = (eτ − 1)(e2µ+τ ) (28)

When modeling read count, given the mean, we would like the variance to scale linearly with the mean
(as assumed in RASQUAL [Kumasaka et al., 2016]). In other word, we want to ensure that Var(X )/E(X ),
also known as over-dispersion parameter, is roughly a constant. From Eq 27, 28 we have Var(X ) = (eτ −
1)E(X )2. For count data, since τ is capturing the variation of count in log-scale, τ is typically close to 0. So
eτ − 1 ≈ τ and Var(X ) ≈ τE(X )2. This result suggests that to ensure Var(X )/E(X ) = constant, τ should
be approximately proportional to 1/E(X ). So, for the distribution of Y ∼ lognormal(log(Lθ), τ), we impose
the constraint on τ such that τ ≈ σ2/E(Y ). In practice, E(Y ) is unknown so that we plug-in Y in replace of
E(Y ).

8 Single-SNP model

On the basis of the model described in Supplementary Notes 7.1, we propose the single-SNP model where
we focus on one ”test SNP” X h

i instead of the whole phased haplotype Xh
i . Hence, the cis-genetic effect of

interest is g(β,X h
i ).

8.1 From likelihood to linear mixed model

Here, we model cis-genetic effect of test SNP as allelic fold change (aFC) [Mohammadi et al., 2017]. So β
is log-scale aFC in g(β,X

(h)
i ) = eX

(h)
i β . From Eq 21, 23, we have (for h = 1, 2)
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logY
(h)obs
i = log Li + log θ

(h)
i + ε

(h)
i (29)

= log Li + logαi + log θhi + ε
(h)
i (30)

= log Li + logαi + log θ0,i + log(eX h
i β) + ε

(h)
i (31)

= log Li + logαi + log θ0,i + X h
i β + ε

(h)
i (32)

ε
(h)
i ∼ N(0,

σ2

Y
(h)
i

), (33)

where the error term scaling in Eq 33 follows from the discussion in Supplementary Notes 7.2. To further
simplify the term log θ0,i , as the variation of baseline abundance among individuals, we assume log θ0,i ∼
N(µ0,σ

2
0). So that Eq 32, 33 can be further written as

logY
(h)obs
i = µ0 + log Li + logαi + zi + X h

i β + ε
(h)
i (34)

ε
(h)
i ∼ N(0,

σ2

Y
(h)obs
i

), zi ∼ N(0,σ2
0), (35)

which is the approximated likelihood function for allele-specific counts Y
(1)obs
i and Y

(2)obs
i . Such likelihood

function is equivalent to linear mixed effects model.
Furthermore, we can linearize the likelihood of total read count Y total

i in similar fashion. From Eq 22, 24
, we have

logY total
i = µ0 + log Li + zi + log(θ1i + θ2i ) + εi (36)

= µ0 + log Li + zi + log(eX 1
i β + eX 2

i β) + εi (37)

εi ∼ N(0,
σ2

Y total
i

), zi ∼ N(0,σ2
0) (38)

Here we linearize log(eX 1
i β + eX 2

i β) under the weak-effect assumption as follow

log(eX 1
i β + eX 2

i β) = log[(X 1
i eβ + 1− X 1

i ) + (X 2
i eβ + 1− X 2

i )] (39)

= log(2 + Xie
β − Xi ) , let Xi = X 1

i + X 2
i (40)

= log[2 + Xi (e
β − 1)] (41)

= log 2 +
1

2
(eβ − 1)Xi + o(Xi (e

β − 1)) (42)

≈ log 2 +
1

2
Xiβ , when β is close to 0 (43)

So that Eq 37 can be approximated as

log
Y total
i

2
≈ µ0 + log Li + zi +

X 1
i + X 2

i

2
β + εi (44)

In summary, combining Eq 34 ,38, 35, 44, we have a linear mixed effects model unifying total and allele-
specific read counts after linearization along with other approximations. And it also serves as an approx-
imated likelihood for total and allele-specific reads, in which we can see that these read counts are not
independent since they share the same random effect zi .
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8.2 Simplifying the model

Note that αi is not observed so that we are unable to solve the model proposed in Supplementary Notes
8.1 in a computationally efficient manner. Here we address this problem by re-parameterizing the model.
In principle, conditioning on genetic effect β, the ratio of allele-specific reads should be independent to the
observations on the total read counts. This intuition motivates us to model the ratio of Y

(1)obs
i and Y

(2)obs
i

rather than each of them separately. Mathematically, we subtract logY
(2)obs
i from logY

(1)obs
i , which gives

log
Y

(1)obs
i

Y
(2)obs
i

= (X 1
i − X 2

i )β + εasc
i (45)

εasc
i ∼ N(0,σ2(

1

Y
(1)obs
i

+
1

Y
(2)obs
i

)), (46)

where both zi and αi cancel out. This result naturally shows that the likelihood function of Y total
i and Y

(1)obs
i

Y
(2)obs
i

takes the form:

L(Ytotal,
Y (1)obs

Y (2)obs ;µ0,σ
2
0 ,σ

2,β) =
∏
i

Pr(Y total
i |µ0,σ

2
0 ,σ

2,β) Pr(
Y

(1)obs
i

Y
(2)obs
i

|σ2,β) (47)

=
∏
i

Pr(Y total
i |µ0,σ

2
0 ,σ

2,β)︸ ︷︷ ︸
total read count likelihood

∏
i

Pr(
Y

(1)obs
i

Y
(2)obs
i

|σ2,β)︸ ︷︷ ︸
allele-specific read count likelihood

(48)

:= Ltrc(Ytotal)× Lasc(
Y (1)obs

Y (2)obs ) (49)

With the simplification shown in Eq 45, the model used for inference can be summarized as follow

log
Y total
i

2Li
= µ0+zi+

X 1
i + X 2

i

2
β + εtrci (50)

log
Y

(1)obs
i

Y
(2)obs
i

= (X 1
i − X 2

i )β + εasc
i (51)

zi ∼ N(0,σ2
0), ε

trc
i ∼ N(0,

σ2

Y total
i

), εasc
i ∼ N(0,

σ2Y
(1)obs
i + Y

(2)obs
i

Y
(1)obs
i Y

(2)obs
i

) (52)

9 Generalizing to multi-SNP model

The linearized model described in Eq 50, 51, 52 is easily extensible to multi-SNP scenario since we assume
multiplicative genetic effect, as described in Supplementary Notes 18. To see the extension, all we need to
examine is how log θhi and log(θ1i + θ2i ) as compared to the single SNP case since the rest of the terms stay
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the same.

log θhi = log θ0,i + log g(β,Xh
i ) (53)

= log θ0,i + log eXh
i β (54)

= log θ0,i + Xh
i β (55)

log(θ1i + θ2i ) = log θ0,i + log{
∏
j

[1 + (eβj − 1)X 1
i j ] +

∏
j

[1 + (eβj − 1)X 2
i j ]}, (56)

similar to Eq 39 (57)

≈ log θ0,i + log[1 +
∑
j

(eβj − 1)X 1
i j + 1 +

∑
j

(eβj − 1)X 2
i j ], (58)

high orders term like (eβj − 1)X 1
i j(e

βj′ − 1)X 1
i j′ are ignored (59)

= log θ0,i + log(2 +
∑
j

(eβj − 1)Xi j) ,Xi j := X 1
i j + X 2

i j (60)

≈ log θ0,i + log 2 +
1

2
Xiβ , follows similarly as Eq 42, 43 (61)

So, we can simply plug-in the multi-SNP version of log θhi and log(θ1i + θ2i ) to Eq 30 and 36 respectively
and the similar conclusion follows with X and β in replace of X and β.

10 QTL mapping procedure

In the following, we describe the mixQTL procedure to map cis-eQTLs under the model proposed in Eq
50, 51, 52.

10.1 Converting the problems into two linear regressions

Instead of solving the proposed mixed effects model using numerical solver, we propose a meta-analysis
procedure. In this procedure, we solve Eq 50 and 51 separately and meta-analyze the estimates afterwards.

Specifically, to solve Eq 50, we first recognize that σ2
0 is much larger than σ2/Y total

i . This is due to the
following three facts: 1) σ2 has the scale of 1 (σ2 = 1 corresponds to Poisson); 2) Y total

i is total count which
is typically hundreds to thousands; and 3) eσ0 − 1 is roughly the scale of the ratio between θ0,i and the
population mean abundance (E(θ0,i )), which makes σ0 ∼ 0.5 (corresponds to θ0,i to E(θ0,i ) ratio being from
0.6 to 1.6) a reasonable estimate. So, we further simplify Eq 50 by ignoring the noise term from εtrci . Such
simplification results in the following linear model

Y trc
i = µ0 + X trc

i βtrc + zi , zi ∼ N(0,σ2
0) , (62)

where X trc := X 1+X 2

2 , Y trc = log
Y total
i

2Li
. Eq 62 itself can be used for QTL mapping and we call this approach

trcQTL in the paper.
For solving Eq 51, notice that it is weighted simple linear regression with the form

Y asc
i = X asc

i βasc + εasc
i , εasc

i ∼ N(0,σ2/wi ) , (63)

where Y asc
i = log

Y
(1)obs
i

Y
(2)obs
i

, X asc
i = X 1

i − X 2
i , wi =

Y
(1)obs
i Y

(2)obs
i

Y
(1)obs
i +Y

(2)obs
i

. We call QTL mapped by Eq 63 ascQTL.

Note that we can combine Eq 62 and 63 and solve them jointly in close form. But here we still prefer
meta-analysis for two reasons: 1) it allows combining summary statistics across studies; and 2) it allows
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the over-dispersion in total and allele-specific read counts to be different which is more realistic in practice
since total and allele-specific read counts may go through different pre-processing steps.

Since the inference of linear regression has analytical solution which only involves XTX and XTY , we
can solve it quickly and in a parallel way as proposed by Matrix eQTL [Shabalin, 2012]. We sketch the
pseudocode on calculating trcQTL and ascQTL estimates in matrix form in Supplementary Notes 13.

10.2 Meta-analysis for QTL mapping

Once we obtain estimated β̂trc and β̂asc, we can use these estimates to approximate Ltrc and Lasc in Eq 49.
Specifically, when sample size is large,

Ltrc(Y total
i |β) ≈ N(β; β̂trc, se(β̂trc)) (64)

Lasc(
Y

(1)obs
i

Y
(2)obs
i

|β) ≈ N(β; β̂asc, se(β̂asc)) (65)

So that the joint likelihood, as factorized in Eq 48, is simply N(β; β̂trc, se(β̂trc)) × N(β; β̂asc, se(β̂asc)). As
shown previously [Lee et al., 2016], maximizing the approximate joint likelihood is equivalent to inverse-
variance meta-analysis, which takes the form

β̂mix =
w trcβ̂trc + wascβ̂asc

w trc + wasc (66)

se(β̂mix) =

√
1

w trc + wasc , (67)

where w trc = 1/se(β̂trc)2 and wasc = 1/se(β̂asc)2.

11 Inference procedure for multi-SNP model

With the simplification made in Supplementary Notes 10.1, the multi-SNP model can be written as

Y trc
i = µ0+X trc

i β + zi , zi ∼ N(0,σ2
0) (68)

Y asc
i = Xasc

i β + εasc
i , εasc ∼ N(0,σ2/wi ) . (69)

11.1 Motivating two-step inference procedure

Here we focus on two inference problems under the multi-SNP model: 1) construct genetic predictor of
expression; and 2) infer whether βk is non-zero, i.e. causal SNP. Problem 1) is prediction problem in
machine learning context and in terms of building genetic predictor, elastic net has been used for this
task [Gamazon et al., 2015]. For problem 2), the inference problem is formulated into a Bayesian variable
selection problem and efficient solvers such as susieR [Wang et al., 2019] and DAP-G [Lee et al., 2018]
have been developed in the context of eQTL analysis.

However, the existing methods only use total read information (typically inverse normalized expression)
and they assume the inversely normalized expression Y and genotype vector X follow Y ∼ N(Xβ, ν). The
modeling assumption is very close to Eq 68, 69 but it requires equal variance in error term and shared
intercept across all observations. To apply the existing tools, we need to bypass the gap between our
model and their modeling assumption. For this reason, we propose a two-step inference procedure to
perform inference for multi-SNP model. In step 1, we infer µ0, σ2

0 , and σ2 and transform the data such that
they approximately follow Y ∼ N(Xβ, ν). And in step 2, we apply the transformed data to existing solvers
for both prediction and fine-mapping problems.
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11.2 Inferring µ0, σ2
0, and σ2

To estimate σ2 from Eq 69 is equivalent to estimate the mean squared error (MSE) of the model. To avoid
overfitting β and underestimating MSE, we apply 4-fold cross-validation using LASSO to get effect size
estimate β̂asc,lasso. And σ̂2 = 1

Nasc−1‖Y
asc − Xascβ̂asc,lasso‖22 where Nasc is the number of allelic imbalance

observations. Any alternative approach would be to treat βasc
j as random effect and estimate σ2 as one of

the variance components. But here we implement the former.
We apply similar approach to estimate σ2

0 using LASSO. To obtain µ0, we fit Bayesian variable selection
model using susieR with the total read count observations Y trc

i ,X trc
i , i = 1, · · · ,N trc. The output intercept µ̂0

is the estimate.

11.3 Data transformation and inference

Once we obtain µ̂0, σ̂2
0 , and σ̂2, we shift and re-scale the total and allelic imbalance observations by

Ỹ trc
i =

Y trc
i − µ̂0

σ̂0
, X̃ trc

i =
X trc

i

σ̂0
(70)

Ỹ asc
i =

Y asc
i

σ̂
, X̃asc

i =
Xasc

i

σ̂
, (71)

where the transformed data (on the left-hand side) is used for downstream analysis on performing prediction
and fine-mapping.

Specifically, we concatenate Ỹ trc and Ỹ asc into one vector Y ∈ R(N trc+Nasc)×1 and similarly we con-
catenate X̃ trc and X̃asc into one matrix X ∈ R(N trc+Nasc)×p where p is the number of SNPs. To perform
fine-mapping, we run susieR::susie(X = X, Y = Y, intercept = FALSE, standardize = FALSE) with
X equal to X and Y equal to Y . To build prediction model, we run glmnet::glmnet(x = X, y = Y, lambda
= lambda, alpha = 0.5) with x equal to X and y equal to Y . The hyperparamter lambda is selected by
5-fold nested cross-validation where at each lambda the 5-fold cross-validation are repeated three times
and lambda that has lowest cross-validated mean squared error (averaged across three runs) is used. For
comparison, we feed the part of total read count data (X trc,Y trc) directly into: 1) susieR for fine-mapping;
and 2) elastic net for prediction. The procedure is the same but X ,Y are replaced by X trc,Y trc. And we call
this total read count-only approach for fine-mapping and prediction as trcFine and trcPred.

12 Simulating RNA-seq reads

To examine the performance of the methods, we propose and implement a simulation scheme which gen-
erates total and allele-specific read counts. The simulation procedure includes three parts: 1) simulate
gene body which will be aligned by reads; 2) randomly draw the causal variants; 3) simulate the number of
reads for each haplotype transcript and place these reads to the gene body obtained in step 1). The total
and allele-specific read counts can be directly read out from step 3) where the total read count is the sum
of two haplotypic read counts and the allele-specific read count is the number of reads overlapping with
heterozygous sites within gene body.

In step 1), we fix the length of gene body to be 10kbp. To simulate the heterozygous sites within gene
body for each individual, we start with determining the position of polymorphic sites along gene body. We
first sample the number of polymorphic sites from Binomial distribution, and then draw their positions and
minor allele frequencies (MAFs). And finally, whether a polymorphic site is heterozygous in an individual is
determined by Bernoulli distribution with MAF. The procedure is sketched as follow.

1. Number of polymorphic site within gene body Nh ∼ Binomial(Lgene, f h), where Lgene = 104, f h = 0.001.

2. Position Pm (m = 1, · · · ,Nh) of these polymorphic sites are sampled by Pm ∼ Sample({1, · · · , Lgene})And
the corresponding MAF fm are drawn from fm ∼ Uniform(mafl ,mafh), where mafl = 0.05,mafh = 0.3.
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3. For each individual i , whether the mth polymorphic site is heterozygous (denote as Zim) is determined
by Zim ∼ Bernoulli(2fm(1− fm)).

In step 2), the genetic effect equals to eX h
i β (in single-SNP model) and eXh

i β (in multi-SNP model). To do
so, we need to obtain haplotype and effect size. For single-SNP model, we first sample MAF of the causal
variants and obtain the two haplotypes of each individual by drawing from Bernoulli. For multi-SNP model,
we use the 1000G phase3 genotypes of European individuals. In brief, we randomly select 200 genes on
chromosome 22 and extract phased genotypes of 1Mbp cis-window surrounding the transcription start site
of them (excluding variants with allele frequency < 0.01 or > 0.99). The genetic effect size, eβ , ranges
among 1, 1.01, 1.05, 1.1, 1.25, 1.5, 2, 3 for single-SNP case. In multi-SNP case, the number of causal
SNPs is sampled from 1, 2, 3 and the genetic effect ranges from 0.015 to 0.075 such that the heritability
ranges approximately from 19.4% to 54.5%. The detailed procedure for sampling eX hβ and eXh

i β is as follow.

• Single-SNP scenario:

1. Sampling X h
i : MAF of causal SNP f c ∼ Uniform(mafl ,mafh) and X h

i ∼ Bernoulli(f c) where
mafl = 0.05,mafh = 0.3.

2. Setting up β: fixed to 1, 1.01, ..., 2, 3.

• Multi-SNP scenario:

1. Sampling Xh
i : obtained from 1000G phased genotypes.

2. Setting up β: number of causal SNPs ∼ Sample({1, 2, 3}) and the genetic variation vg ∼
Uniform(0.015, 0.075). The genetic effect of causal variants are determined by randomly par-
tition the genetic variation and convert per-SNP genetic variation into effect size by βk =√

vg ,k/(2fk(1− fk)) where fk is MAF of kth causal SNP.

In the step 3), the last step, we sample the reads coming from each of the haplotype transcripts. The
procedure is as follow.

1. For individual i , sample library size Li ∼ NegativeBinomial(size,prob) where size = 15, prob = 1.6×
10−7 (Negative Binomial follows parameterization in rnbinom in R).

2. And then, sample individual-specific baseline abundance θ0,i ∼ Beta where E(θ0,i ) ranges among
5 × 10−5, 2.5 × 10−5, 1 × 10−5, 5 × 10−6, 2.5 × 10−6, 1 × 10−6 and sd(θ0,i ) = E(θ0,i )/4 (so that the
non-genetic variation is roughly 1/42 = 1/16).

3. The actual relative abundance of haplotype h in individual i is θhi = θ0,ie
X h
i β or θhi = θ0,ie

Xh
i β

4. Sample actual read count for each haplotype: Y h
i ∼ NegativeBinomial(size,prob) where size =

2Liθ
h
i ,prob = 2

3 . This corresponds to E(Y h
i ) = Liθ

h
i and Var(Y h

i ) =
3
2E(Y h

i ).

5. Randomly place reads, Y h
i in total, onto the corresponding gene body simulated in step 1) where the

read is aligned to each position of gene body with equal probability.

6. Total count is Y total
i = Y 1

i +Y 2
i and allele-specific count Y

(h)obs
i is the number of reads (as part of Y h

i )
that overlaps with the heterozygous sites of the individual (indicated by Zi·).

13 Pseudocode on solving trcQTL and ascQTL in matrix form

We sketch the matrix operations for solving a grid of least squares problems yk ∼ xj for each pair of j , k
where we let Y = [y1, · · · , yK ] and X = [x1, · · · , xn]. To obtain nominal p-value, K = 1. For permutation
procedure proposed in fastQTL [Ongen et al., 2015], K equals to the number of permutation and yk is the
kth permuted y .
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To ensure trcQTL and ascQTL ran on the same permuted y , we perform permutation before removing
low count observations. So that in each permutation, different individuals are removed by low-count filter. To
account for this fact, we introduce mask M ∈ {0, 1}n×K where Mik indicating if the i th individual is included
in kth permutation.

For trcQTL, the corresponding least squares problem has intercept, as mentioned in Eq 62. The pseu-
docode to solve the grid of trcQTL problems for all cis-SNP of a gene is sketched in Algorithm 1 where
Y = Y trc for nominal pass and Y·k = PkY trc with permutation matrix Pk for permutation pass.

Note that the pseudocode only requires basic matrix operation. The matrix operation is element-
wise if not notice explicitly. The Einstein summation is represented by einsum with similar arguments as
numpy.einsum in Python. For instance, einsum(‘ij,jk→ik’, A, B) means that to take the inner product
of the i row in A and k column in B as the element at i th row and j th column in the output matrix.

Similar to trcQTL, the corresponding least squares problem of ascQTL is weighted without intercept, as
mentioned in Eq 63. The pseudocode to solve the grid of ascQTL problems for all cis-SNP of a gene is
sketched in Algorithm 2 where Y = Y asc for nominal pass and Y·k = PkY asc with permutation matrix Pk

for permutation pass. And W as the weight matrix should be permutate accordingly, i.e. W·k = Pkw . And
to obtain valid mixQTL estimates under permutation, Pk is required to be shared by trcQTL and ascQTL in
permutation pass.

Note that both Algorithm 1 and Algorithm 2 are iteration free. And throughout the computation, only
two-way tensors are involved explicitly so that the memory usage does not blow up.

Algorithm 2: Solve multiple least squares problems y = bx + e with weight w in matrix
form

Input : Y ∈ Rn×K , X ∈ Rn×p, M ∈ {0, 1}n×K , W ∈ Rn×K
+ .

Output: B̂ ∈ RK×p and se(B̂) ∈ RK×p where B̂kj , se(B̂kj) are estimates of Y·k = BkjX·j + ε where
data is weighted by W·k and masked by M·k .

1 Function SolveMatrixLSwithWeight(Y ,X ,M,W ):
2 n = einsum(‘ik→k’, M);
3 W = W M;
4 YsqW = Y

√
W ;

5 Y = Y W ;
6 T = einsum(‘ij,ik→jk’, X , Y );
7 S = X 2;
8 S = einsum(‘ij,ik→jk’, S , W );
9 B̂ = T/S ;

10 Ysq = einsum(‘ik,ik→k’, YsqW , YsqW );
11 Rsq = Ysq − 2B̂T + B̂2S11;
12 σ̂ =

√
Rsq/(n − 1);

13 se(B̂) = σ̂/
√

S ;
14 return B̂, se(B̂)

15 End

14 Evaluating QTL mapping performance using eQTLGen results

To evaluate the performance of QTL mapping method, we treat eQTLGen [Võsa et al., 2018] as a silver
standard, in the sense that eQTLs identified as positive in eQTLGen are treated as the true associations
and the non-significant variant/gene pairs in eQTLGen are treated as true non-associations. Although 336
GTEx samples are included in eQTLGen analysis, they make up of only around 1.5% of total samples. So,
eQTLGen results are unlikely driven by GTEx samples. And besides, GTEx v8 includes additional samples
that are not included in eQTLGen. Therefore, eQTLGen is an approximately independent eQTL study with
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Algorithm 1: Solve multiple least squares problems y = a + bx + e in matrix form
Input : Y ∈ Rn×K , X ∈ Rn×p, M ∈ {0, 1}n×K .
Output: Â, B̂, se(Â), se(B̂) ∈ RK×p where Âkj , B̂kj , se(Âkj), se(B̂kj) are estimates of

Y·k = Akj + BkjX·j + ε where data is masked by M·k .
1 Function SolveMatrixLSwithIntercept(Y ,X ,M):
2 U = matrix(1, dim = dim(X ));
3 n = einsum(‘ik→k’, M);
4 Y = Y M;
5 T1 = einsum(‘ij,ik→jk’, X , Y );
6 T2 = einsum(‘ij,ik→jk’, U, Y );
7 S11 = X 2;
8 S11 = einsum(‘ij,ik→jk’, S11, M);
9 S22 = U2;

10 S22 = einsum(‘ij,ik→jk’, S22, M);
11 S12 = X U;
12 S12 = einsum(‘ij,ik→jk’, S12, M);
13 ∆ = |S11S22 − S12S12|;
14 B̂ = (S22T1 − S12T2)/∆;
15 Â = (S11T2 − S12T1)/∆;
16 Ysq = einsum(‘ik,ik→k’, Y , Y );
17 Rsq = Ysq − 2B̂T1 − 2ÂT2 + 2B̂ÂS12 + B̂2S11 + Â2S22;
18 σ̂ =

√
Rsq/(n − 2);

19 se(B̂) = σ̂
√

S22/∆;
20 se(Â) = σ̂

√
S11/∆;

21 return Â, B̂, se(Â), se(B̂)

22 End

much larger sample size (50-fold relative to GTEx v8) and diverse populations (predominantly Europeans
along with other populations).

To simplify the analysis, we randomly select 100,000 eQTLGen cis-eQTLs (FDR ¡ 0.05) as the true
associations in the silver standard. And we randomly collect 100,000 variant/gene pairs in eQTLGen with
p-value ¿ 0.5 as the true non-associations. Among those variant/gene pairs in silver standard, 96,660 true
associations and 78,691 true non-associations are included in both our mixQTL mapping pipeline and GTEx
v8 analysis. So that we keep only these variant/gene pairs for downstream analysis.

14.1 Comparing the effective sample size

To compare the effective sample size between mixQTL and eQTL approaches, we performed analysis sim-
ilar to [Loh et al., 2018]. Here, we utilize the fact that χ2 statistic scales proportionally with the sample
size, among those true associations. So, we can calculate the ratio χ2

mixQTL over χ2
eQTL for each truly as-

sociated variant/gene pair as the measure of effective sample size of mixQTL relative to eQTL approach.
Specifically, we calculate the relative effective sample size using the true associations in the silver standard
constructed above (as the proxy of true associations based on independent evidence). Note that the gain
of power in mixQTL depends on the amount of allele-specific observations so we measured the average
relative effective sample size as the median of the χ2 ratio. Among the 96,660 variant/gene pairs collected
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as true associations in silver standard, we measured the median of χ2
eQTL as 2.59 and the median of χ2

mixQTL
as 3.56. And the median of the ratio χ2

mixQTL over χ2
eQTL is 1.29. In other word, it suggests that the mixQTL

approach (with 670 individuals) is equivalent to the eQTL approach with 863 individuals.

14.2 Drawing receiver operating characteristic and precision-recall curves

The ROC and PR curves are constructed using − log(p) as prediction score (higher means more likely to
be causal). To simplify the calculation, we evaluate the performance measures at a grid of score cutoffs:
0.1, 0.2, ..., 1.9, 2, 2.2, ..., 2.8, 3, 4, ..., 50. For ROC curve, we calculate true positive rate and false positive
rate at these cutoffs. And similarly, for PR curve, we calculate precision and power at these cutoffs.
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