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Abstract

Motivation: Infectious diseases from novel viruses are becoming a major public health concern. Fast
identification of virus–host interactions can reveal mechanistic insights of infectious diseases and shed
light on potential treatments and drug discoveries. Current computational prediction methods for novel
viruses are based only on protein sequences. Yet, it is not clear to what extent other important features,
such as the symptoms caused by the viruses, could contribute to a predictor. Disease phenotypes (i.e.,
symptoms) are readily accessible from clinical diagnosis and we hypothesize that they may act as a
potential proxy and an additional source of information for the underlying molecular interactions between
the pathogens and hosts.
Results: We developed DeepViral, a deep learning method that predicts potential protein–protein
interactions between human and viruses. First, human proteins and viruses were embedded in a
shared space using their associated phenotypes, functions, taxonomic classification, as well as
formalized background knowledge from biomedical ontologies. By extending a sequence learning model
with phenotype features, our model can not only significantly improve over previous sequence-based
approaches for inter-species interaction prediction, but also identify pathways of viral targets under a
realistic experimental setup for novel viruses.
Availability:https://github.com/bio-ontology-research-group/DeepViral
Contact: robert.hoehndorf@kaust.edu.sa

1 Introduction
Infectious diseases emerging unexpectedly from novel pathogens have
been a major public health concern around the globe (Jones et al.,
2008). Pathogens disrupt host cell functions (Finlay and Cossart, 1997)
and target immune pathways (Dyer et al., 2010) through complex inter-
species interactions of proteins (Dyer et al., 2008), RNA (Fajardo et al.,
2015) and DNA (Weitzman et al., 2004). The study of pathogen–host
interactions (PHI) can therefore provide insights into the molecular
mechanisms underlying infectious diseases and guide the discoveries of

novel therapeutics or provide a basis for repurposing of available drugs.
For example, a previous study of many PHIs showed that pathogens
typically interact with the protein hubs (those with many interaction
partners) and bottlenecks (those of central location to important pathways)
in human protein–protein interaction (PPI) networks (Dyer et al., 2008).
However, due to cost and time constraints, experimentally validated pairs
of interacting pathogen–host proteins are limited in number. Moreover,
there exists a time delay for a validated PHI to be included in a database of
PHIs, often requiring manual curation of the literature or text mining efforts
(Thieu et al., 2012). Therefore, the computational prediction of PHIs
is a useful complementary approach in suggesting candidate interaction
partners out of all the human proteins.
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2 Liu-Wei et al.

Existing PHI prediction methods typically utilize features of the
interacting proteins, such as PPI network topology, protein structures and
sequences, or functional profiling such as Gene Ontology similarity and
KEGG pathway analysis (Nourani et al., 2015). While protein functions
have been shown to predict intra-species (e.g., human) PPIs (Guzzi et al.,
2011; Jain and Bader, 2010; Pesquita et al., 2009) and such protein
specific features exist for some extensively studied pathogens, such as
Mycobacterium tuberculosis (Huo et al., 2015) and HIV (Mukhopadhyay
et al., 2014), for most of the novel pathogens, these features are rare and
expensive to obtain. As new virus species are being discovered each year,
with potentially many more to come (Woolhouse et al., 2012), a method
is needed to rapidly identify candidate interactions from information that
can be obtained quickly – such as the signs and symptoms of the host,
which may be utilized as a proxy for the underlying molecular interactions
between host and pathogen proteins.

The phenotypes elicited by pathogens, i.e., the signs and symptoms
observed in a patient, may provide information about molecular
mechanisms (Gkoutos et al., 2018). The information that phenotypes
provide about molecular mechanisms is commonly exploited in
computational studies of Mendelian disease mechanisms (Oellrich et al.,
2016; Schofield et al., 2012), for example to suggest candidate genes
(Hoehndorf et al., 2011; Meehan et al., 2017) or diagnose patients (Köhler
et al., 2009), but the information can also be used to identify drug targets
(Hoehndorf et al., 2013a) or gene functions (Hoehndorf et al., 2013b). To
the best of our knowledge, phenotypes and phenotype similarity have not
yet been utilized for the prediction of PHIs.

We hypothesize that the phenotypes elicited by an infection with a
pathogen are, among others, the result of molecular interactions, and that
knowledge of the phenotypes in the host can be used to suggest the protein
perturbations, from which these phenotypes arise. While a large number
of phenotypes resulting from infections are a consequence of immune
system processes that are shared across a wide range of different types
of pathogens, certain hallmark phenotypes, such as decreased CD4 cell-
count in infections with HIV (Ford et al., 2017) or microcephaly resulting
from Zika virus infections (Mlakar et al., 2016), can be used to suggest
interacting host proteins, through which these symptoms are elicited.

One common limitation of the PHI prediction problem is the lack of
ground truth negative data. A recent method DeNovo (Eid et al., 2015)
adopted a “dissimilarity-based negative sampling”: for each virus protein,
the negatives are sampled from human proteins that do not have known
interactions with other similar virus proteins (above a certain sequence
similarity threshold). Another method based on protein sequences (Zhou
et al., 2018) samples negatives from only the set of host proteins that
are less than 80% similar (in terms of sequence similarity) from the host
proteins in the positive training data. By construction, these sampling
schemes make the human proteins in the negative set different from the
positive set; when used not only for training a model but also for evaluating
the model’s performance, this sampling scheme has the potential to over-
estimate the actual performance for finding novel PHIs. In a more realistic
evaluation for a novel virus species, a model would be evaluated on all the
host proteins that it could potentially interact with, regardless of sequence
similarity.

We developed a machine learning method, DeepViral, to predict
potential interactions between viruses and all human proteins for which
we can generate the relevant features. Firstly, the features of phenotypes,
functions and taxonomic classifications are embedded in a shared space
for human proteins and viruses. We then extend a sequence model by
incorporating the phenotype features of viruses into the model. We show
that the joint model trained on both the sequences and phenotypes can
significantly improve over the state-of-the-art method and predict potential
PHIs in a realistic experimental setup for novel viruses and predict human
protein targets that are enriched for relevant pathways.

2 Materials and methods

2.1 Data sources of interactions, phenotypes, functions
and ontologies

Interactions between hosts and pathogens were downloaded from the
Host Pathogen Interaction Database (HPIDB) (Ammari et al., 2016)
The database contains 32,758 distinct pairs of protein-protein interaction
between human and viruses, equipped with a corresponding MIscore (see
Section 2.3) and the virus has a family taxon present in the NCBI taxonomy
(Sayers et al., 2009).

The phenotypes associated with pathogens were collected from the
PathoPhenoDB (Kafkas et al., 2018), a database of manually curated
and text-mined associations of pathogens, diseases and phenotypes.
We downloaded the PathoPhenoDB database version 1.2.1 (http://
patho.phenomebrowser.net/).

The phenotypes associated with human genes were collected from
the Human Phenotype Ontology (HPO) database (Köhler et al., 2018),
and the phenotypes associated with mouse genes and the orthologous
gene mappings from mouse genes to human genes, originated from the
Mouse Genome Informatics (MGI) database (Smith et al., 2018). The
Entrez gene IDs in HPO and MGI were mapped to reviewed Uniprot
protein IDs using the Uniprot Retrieve/ID mapping tool (https://www.
uniprot.org/uploadlists). The Gene Ontology annotations of
human proteins (release date 2020-02-22) were downloaded from the
Gene Ontology Consortium (Ashburner et al., 2000; The Gene Ontology
Consortium, 2017).

To add background knowledge from biomedical ontologies of
phenotypes and GO classes, we downloaded the cross-species
PhenomeNET Ontology (Hoehndorf et al., 2011; Rodríguez-García
et al., 2017), which is built upon and includes the Gene Ontology
(Ashburner et al., 2000; The Gene Ontology Consortium, 2017), from the
AberOWL ontology repository (Hoehndorf et al., 2015a) on September
13, 2018. We obtained the NCBI Taxonomy classification (Sayers
et al., 2009) as an ontology in OWL format (version 2018-07-27) from
EMBL-EBI ontology repository (https://www.ebi.ac.uk/ols/
ontologies/ncbitaxon).

2.2 Learning feature embeddings

To generate feature embeddings, we use DL2Vec (Chen et al., 2020), a
recent method for learning features for entities (in our case, the human
proteins and viruses) from their associations to ontology classes. DL2Vec
first converts the ontologies and entity associations into a graph, with the
classes and entities as the nodes and the associations and ontology axioms
as the edges. Then several random walks are performed, starting from
the entities over to the ontology graph and thereby generating a corpus
of walks in the form of sentences capturing the graph neighborhoods
and thereby the ontology axioms. Following the construction of such
sentences, a Word2vec skipgram model (Mikolov et al., 2013) is used
to learn an embedding for each entity by learning from the corpus. The
resulting embedding is a vector representation of an entity capturing its
co-occurrence relations with other entities within the graph generated by
DL2Vec. For an example, the embedding of a virus contains the feature
information from its neighborhood on the graph, i.e., its phenotypes and
its taxonomic relatives.

2.3 Positive and negative sampling

For training DeepViral, curated virus–host interactions were obtained
from HPIDB (Ammari et al., 2016), a database of host–pathogen protein
protein interactions. Next two positive sets were constructed by filtering
using different confidence levels. HPIDB (Ammari et al., 2016) provides
MIscores (Villaveces et al., 2015), a confidence score for molecular
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interactions, for the curated PHIs from two sources, IntAct (Kerrien et al.,
2011) and VirHostNet (Guirimand et al., 2015). We filter HPIDB with a
MIscore threshold at0.4 to construct a high confidence positive set of PHIs,
reducing the number of distinct interaction pairs to 3,600. Our threshold
of 0.4 is chosen to ensure high confidence as it filters out the peak of the
data between 0.3 and 0.4, as shown in Figure 1.

Fig. 1: The distribution of MIscores in HPIDB.

Since ground truth negatives are not available, we sample our negatives
from all the possible pairwise combinations of human and viral proteins,
as long as the pair does not occur in the positive set. Essentially, we treat
all “unknown” interactions as negatives.

2.4 Supervised prediction models and parameter tuning

The neural network model of DeepViral consists of two components: a
phenotype model based on the feature embeddings of viruses and human
proteins and a sequence model based on the amino acid sequences of the
human and viral proteins. The maximum length of protein sequences is
set to 1000 amino acids and all sequences shorter than 1000 are repeated
up to the maximum length.

To predict the likelihood of an interaction between a pair of proteins,
we train the network as a binary classifier, to minimize the binary cross-
entropy loss defined as below,

L = −
1

N

N∑
i=1

yt · log(yp) + (1− yt) · log(1− yp)

where N is the total number of predictions, yt and yp is the true label and
predicted likelihood of y.

We implemented our model using the Keras library (Chollet et al.,
2015) and performed training on Nvidia Tesla V100 GPUs. The phenotype
model consists of a fully connected layer with the feature embeddings as
input. The sequence model is a convolutional neural network (CNN) with
the sequences as input and consists of 1-dimensional convolution, max
pooling and fully connected layers. We tune the following hyperparameters
of the model: the sizes and numbers of the convolution filters, the size of
the max pool and the number of neurons in the fully connected layers. We
fix these hyperparameters throughout all the experiments: 16 convolutional
layers for each filter of 8, 16, ..., 64 in length, a pool size of 200 and 8
neurons for the dense layers. We also use dropouts (Srivastava et al., 2014)
for the convolutional and dense layers with a rate of 0.5 and LeakyReLU
as the activation function for the dense layer with an alpha set to 0.1.

2.5 Experimental setup and evaluation metrics

A method to predict PHIs for a novel virus should have the capacity to
predict for all human proteins that the novel virus could potentially interact
with, and realistically simulate a scenario where a novel virus emerges,
for which we have no known interactions and no knowledge about the
molecular functions of the viral proteins.

To evaluate the model realistically for a novel virus, the predictive
performance is evaluated in a leave-one-family-out (LOFO) cross
validation manner, in which we leave out one virus family in our positive
set for testing, 20% of the remaining families for validation, and the rest
80% for training. The objective of the LOFO cross-validation is to evaluate
the model under a scenario where the novel virus emerges from a novel
virus family in the situation where we have no knowledge about its protein
interactions.

For each viral protein in the test family, we rank all the human proteins
by the predicted likelihood of interaction and evaluate the model by
aggregating the normalized ranks of the true positive interacting human
proteins to compute the area under the receiver operating characteristic
(ROC) curve (Fawcett, 2006). Due to the large number of negatives in
relation to the positives, normalized ranks approximate the true negative
rate (TNR) of the ROC curve. A high ROCAUC indicates the ability of
the model to prioritize the true positive proteins among all the human
proteins. We also evaluate by the hit rates at rank 10 and rank 100, denoted
Hit@10/100, which are defined as the proportion of true positive human
proteins ranked within the top 10 or 100 across all the human proteins.

3 Results
DeepViral is a model that predicts potential protein interactions between
viruses and human from the protein sequences and feature embeddings
of phenotypes, functions and taxonomies. To enable predictions based on
such different types of features we embed them in a shared representation
space. Then we incorporate these feature embeddings with a protein
sequence model to predict for potential PHIs of novel viruses. The
workflow of DeepViral is illustrated in Figure 2.

3.1 Embedding features of viruses and human proteins
from phenotypes, functions and taxonomies

We start with the biological hypothesis that phenotypes (i.e., symptoms)
elicited by viruses in their hosts can act as a proxy for the underlying
molecular mechanisms of the infection, and therefore may provide
additional information to the prediction of potential PHIs for novel viruses.

To generate feature embeddings for human proteins and virus
taxa, we apply a recent representation learning method DL2Vec (Chen
et al., 2020), which learns feature embeddings for entities based on
their annotations to ontology classes (see Section 2.2). DL2Vec takes
two types of inputs: the associations of the entities with ontology
classes (e.g., human proteins and their functions), and the ontologies
themselves. DL2Vec exploits the underlying semantic information to
provide formalized background knowledge through connecting different
ontologies of phenotypes, functions and virus taxonomy.

For representing virus taxa through the phenotypes they elicit in their
hosts, we use the phenotype associations for viruses from PathoPhenoDB
(Kafkas et al., 2018), a database of pathogen to host phenotype (signs and
symptoms) associations. To increase the coverage of phenotypes beyond
PathoPhenoDB, the taxonomic relations of the viruses were added from
the NCBI Taxonomy (Sayers et al., 2009). By adding these taxonomic
relations (as annotations of viruses to DL2Vec), we propagate the known
phenotypes along the taxonomic hierarchies and learn a generalized
embedding for viruses that do not have any phenotype annotations in
PathoPhenoDB but have close relatives that do.
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Fig. 2: The workflow of DeepViral. (a) Generation of an embedding: the arrows of human proteins and virus taxa represent their annotations to the
ontology classes. The dashed lines between viruses represent their taxonomic relations. The annotations, taxonomy relations and ontologies are inputs to
DL2Vec to generate feature embeddings of dimension 100 for each human protein and virus taxa. (b) Joint prediction model: latent representation learned
from feature embeddings and protein sequences are concatenated into a joint representation, for human protein and virus protein respectively, on which
a dot product is performed to predict interactions.

Similarly, for representing human proteins, we use the annotations of
their associated phenotypes from the Human Phenotype Ontology (HPO)
database (Köhler et al., 2018), the phenotypes associated with their mouse
orthologs from the Mouse Genome Informatics (MGI) database (Smith
et al., 2018), and their protein functions from the Gene Ontology (GO)
database (Ashburner et al., 2000; The Gene Ontology Consortium, 2017).

To provide DL2Vec with structured background knowledge through
ontologies, we use the cross-species phenotype ontology PhenomeNET
(Hoehndorf et al., 2011; Rodríguez-García et al., 2017) to associate human
and mouse phenotypes, the Gene Ontology (Ashburner et al., 2000; The
Gene Ontology Consortium, 2017) to incorporate knowledge of protein
functions and the NCBI Taxonomy ontology (Sayers et al., 2009) for the
taxonomic relations between viruses. These ontologies contain formalized
biological background knowledge (Hoehndorf et al., 2015b), which has
the potential to significantly improve the performance of these features in
machine learning and predictive analyses (Smaili et al., 2019).

3.2 The joint prediction model from phenotypes and
sequences

DeepViral consists of a phenotype model trained on phenotypes caused
by a viral infection and a sequence model trained on protein sequences, as
shown in Figure 2 (b). The models takes a pair of virus and human proteins
as input and predicts the likelihood of their interaction. The inputs for a
human protein are its feature embedding and sequence, and the features
for a viral protein is its sequence and the feature embedding of the virus
species it belongs to. The sequence model projects the protein sequence
into a low dimension vector representation, which is concatenated with the
vector projected from the embedding by the phenotype model to form a
joint representation of the proteins. A dot product is performed over the two
vector representations of the pair of proteins to compute their similarity,
which then is used as input to a sigmoid activation function to compute
their predicted probability of interaction.

To compare with the state-of-the-art method for PHI prediction of
novel viruses, we train our model on the four datasets provided by a recent
machine learning method (Zhou et al., 2018) for predicting PHIs of Ebola
and H1N1. DeepViral is able to improve over the previous method in all

the evaluation metrics across these datasets, as summarized in Table 1.
Notably, integrating the embeddings of protein functions (based on GO)
with the sequences performs better in almost all the metrics as compared
to the sequence only model.

3.3 Joint prediction for novel viruses from novel families

We then apply DeepViral following the experimental setup described in
Section 2.5, to evaluate the prediction performance of the model under
the scenario where a novel virus (from a novel family) emerges and no
previous knowledge (except about its protein sequences and phenotypes)
is known. Under this setting, we evaluated the performances of DeepViral
with different combinations of features of virus and human proteins, as
summarized in Table 2. The evaluation was performed on the full and
the high confidence dataset respectively, and only on the viral families
that have more positives than a threshold (set to be 1% of the total
number of positives) in order to reduce the amount of runtime for model
evaluation. The models are run 5 times for each set of features to compute
the confidence interval of the ROCAUC. For the models using only the
phenotype embeddings of viruses as input (i.e. the first six models in
Table 2), a potential interaction is predicted between a human protein and
a virus species, instead of a protein–protein interaction. In an evaluation
where the inputs are not symmetric, e.g., only using the sequences of
human proteins but not viruses, an additional dense layer is added to
project the longer representation to the same dimension as the other so
that the dot product can be performed.

Overall, among the features of human proteins, the protein function
annotations based on GO perform better than phenotypes. Sequences
from human and viral proteins almost always improve the performances,
with the combination of GO, virus phenotypes and protein sequences
performing the best. The dataset without filtering the positives tend to
give higher ROCAUCs across most features, likely due to the larger set of
training data. However, the models trained on the high confidence dataset
perform consistently higher in the hit rates at rank 10 and 100, potentially
a result of smaller but more distinctive set of proteins.

Remarkably, the predicted human proteins for the viruses are enriched
in pathways of viral targets. We aggregate the top 100 predicted
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Datasets
Zhou et al. 2018

Seq Seq + Pheno Seq + Pheno + HP Seq + Pheno + MP Seq + Pheno + GO
ACC PPV SN AUC ACC PPV SN AUC ACC PPV SN AUC ACC PPV SN AUC ACC PPV SN AUC ACC PPV SN AUC

TR1–TS1 78.0 72.6 89.8 0.886 87.6 86.7 88.8 0.934 79.8 72.7 95.6 0.936 85.5 81.8 98.8 0.949 87.4 86.9 91.2 0.951 89.1 87.8 92.2 0.907
TR2–TS2 78.0 72.3 90.7 0.867 79.2 71.2 99.2 0.959 84.0 77.0 97.6 0.972 81.1 76.7 100 0.941 71.7 66.3 93.7 0.726 90.3 87.1 96.1 0.973
TR3–TS1 77.4 72.3 89.0 0.884 79.5 73.1 92.9 0.904 – – – – – – – – – – – – – – – –
TR4–TS2 81.7 75.1 94.7 0.890 82.4 75.2 97.6 0.966 – – – – – – – – – – – – – – – –

Table 1. Comparison with the state-of-the-art method on the datasets of Ebola and H1N1 (Zhou et al., 2018) (the performances of the previous method are from
Table 5 of the original paper). All evaluation metrics are computed following the original paper: ACC - accuracy, PPV - positive prediction value (precision), SN -
sensitivity, AUC - area under the ROC curve. Different combinations of the features are used for training DeepViral: Seq - the protein sequences, Pheno - the virus
phenotype embeddings, HP, MP and GO - the embeddings of human proteins from HPO, MGI and GO, respectively. The bold numbers represent the better metric
for a dataset. The dash lines (–) mean that the datasets are not applicable: the training sets TR3 and TR4 contain host and viral proteins of other species (for transfer
learning), but currently our set of feature embeddings only contain human proteins as host and human viruses as pathogens.

PHIs without filtering High confidence PHIs

Features
of viruses

Features of
human proteins

Positives Proteins
(H/V)

Families/
Species

ROCAUC Hit@10/100 Positives Proteins
(H/V)

Families/
Species

ROCAUC Hit@10/100

HP 6962 4262/- 14/278 0.524 [0.499-0.548] 0.006/0.032 1025 4262/- 12/198 0.603 [0.590-0.616] 0.028/0.087

MP 14487 10827/- 13/309 0.555 [0.524-0.586] 0.002/0.012 2250 10827/- 11/234 0.621 [0.610-0.633] 0.006/0.031

GO 21837 17992/- 13/320 0.675 [0.649-0.700] 0.002/0.025 2872 17992/- 11/244 0.742 [0.719-0.765] 0.005/0.051

HP + Sequences 5495 3401/- 14/244 0.701 [0.664-0.738] 0.010/0.104 804 3401/- 13/171 0.693 [0.684-0.701] 0.030/0.196

MP + Sequences 11908 9123/- 14/284 0.647 [0.601-0.694] 0.004/0.039 1841 9123/- 12/210 0.683 [0.670-0.695] 0.008/0.077

Phenotypes

GO + Sequences 18393 15758/- 13/294 0.751 [0.734-0.769] 0.003/0.028 2380 15758/- 11/217 0.733 [0.719-0.747] 0.004/0.058

Sequences 24042 17948/1025 10/271 0.788 [0.781-0.795] 0.004/0.032 2515 17948/610 12/218 0.724 [0.714-0.734] 0.007/0.059

HP + Sequences 7194 3401/753 11/218 0.751 [0.741-0.761] 0.012/0.098 846 3401/364 12/159 0.693 [0.683-0.703] 0.022/0.210

MP + Sequences 15052 9123/954 9/251 0.737 [0.728-0.746] 0.004/0.044 1904 9123/547 12/201 0.703 [0.686-0.719] 0.008/0.090
Sequences

GO + Sequences 23779 15758/1025 10/271 0.763 [0.755-0.771] 0.002/0.024 2501 15758/609 12/218 0.780 [0.776-0.784] 0.004/0.056

HP + Sequences 7183 3401/746 11/217 0.774 [0.770-0.778] 0.015/0.106 834 3401/358 12/157 0.720 [0.714-0.727] 0.040/0.255

MP + Sequences 15017 9123/942 9/249 0.773 [0.769-0.777] 0.005/0.047 1868 9123/535 12/199 0.702 [0.692-0.713] 0.009/0.080

Phenotypes
+

Sequences
GO + Sequences 23732 15758/1012 10/269 0.807 [0.802-0.812] 0.003/0.027 2431 15758/584 11/208 0.779 [0.763-0.796] 0.007/0.061

Table 2. Evaluation results of DeepViral for predicting PHIs under a realistic setting for novel viruses. HP, MP and GO denote the source of the human protein
embeddings, i.e. HPO, MGI and GO, respectively. For the models using only the phenotypes of the viruses, i.e., without sequences, the predicted interaction is
between a human protein and a virus species (the dash line indicates the absence of viral proteins). The mean and confidence interval of ROCAUCs are provided
as well as the mean of the hit rates at rank 10 and 100, i.e., Hit@10/100. The best performing combination of features across all datasets are bolded.

human proteins across the proteins of HIV 1 (NCBITaxon:11676)
and Hepatitis C (NCBITaxon:11103), respectively. We then used
the pathway enrichment analysis tool (https://biit.cs.ut.ee/
gprofiler/gost) provided by g:Profiler (Raudvere et al., 2019) to
find enriched pathways based on three databases, KEGG (Kanehisa and
Goto, 2000), Reactome (Jassal et al., 2020) and WikiPathways (Slenter
et al., 2018). As shown in Figure 3, the predicted proteins for HIV 1 and
Hepatitis C are enriched for not only pathways that are general to host
immuno-responses, but also specific pathways related to the pathogenesis
of these viruses, e.g., “Dual hijack model of Vif in HIV

infection” in WikiPathways and “Hepatitis C” in KEGG. This
suggests that despite not being trained on the interactions of these viruses,
the joint prediction model is able to capture the relevant features specific to
the interacting proteins involved in the pathways of pathogenesis of these
viruses.

4 Discussion
We developed DeepViral, a machine learning method for predicting PHIs
between viruses and human. DeepViral is, to the best of our knowledge,
the first predictor using clinical phenotypes as an additional feature in
PHI prediction and it turned out to provide a significant improvement over

purely sequence based methods. Phenotype-based approaches have been
successful in predicting disease-gene associations for Mendelian diseases
(Hoehndorf et al., 2011) and intra-species PPIs (Alshahrani et al., 2017),
but have not yet been used for the prediction of (inter-species) PHIs in
infectious diseases. Our model avoids the bottleneck of identifying the
molecular functions of pathogen proteins, by instead introducing a novel
and – in the context of infectious diseases – rarely explored type of feature,
the phenotypes elicited by pathogens in their hosts, as a “proxy” for the
molecular mechanisms, which in turn eventually produce the observed
clinical phenotypes.

By challenging DeepViral with novel viruses, we could extract specific
pathways being attacked by the viruses, as indicated by the predicted
interactions in the human proteome. The focus of our method on utilizing
features generated based on endo-phenotypes observed in humans and
mice (Schofield et al., 2016) has therefore the crucial advantage that we
can identify host-pathogen interactions that may contribute to particular
signs and symptoms. For example, our model consistently prioritizes the
interaction between the proteins of Zika virus (NCBITaxon:64320)
and DDX3X (UniProt:O00571) in humans. Infections with Zika virus
have the potential to result in abnormal embryogenesis and, specifically,
microcephaly (Wang et al., 2017). Phenotypes associated with DDX3X in
the mouse ortholog include abnormal embryogenesis, microcephaly, and
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Fig. 3: Pathway enrichment analysis for the predicted interacting proteins for HIV 1 and Hepatitis C, based on KEGG, Reactome and WikiPathways. The
top 5 enriched pathways from each database are used for the barplot, ranked by adjusted p-value.

abnormal neural tube closure (Chen et al., 2016). DDX3X mutations in
humans have been found to result in intellectual disability, specifically in
females and affecting individuals in dose-dependent manner (Blok et al.,
2015). While DDX3X has previously been linked to the infectivity of Zika
virus (Doñate-Macián et al., 2018), our model further suggests a role of
DDX3X in the development of the embryogenesis phenotypes resulting
from Zika virus infections.

While improving over a previous model on Ebola and H1N1 (Zhou
et al., 2018), we argue that the performance of DeepViral on these datasets
may have been over-estimated due to the negative sampling scheme based
on sequence similarity that is used not only for training but also for
evaluation of the model. Under a more realistic evaluation procedure
that considers all host proteins as potential interaction partners for novel
viruses, the achieved predictive performances are considerably lower. This
calls for future efforts in the direction of PHI prediction of novel viruses,
an issue today of increasing relevance to global public health. Accurate
predictions of potential PHIs for novel pathogens with rapidly obtainable
features would be an important aid for the understanding of infectious
disease mechanisms and the repurposing of existing drugs.

An example of such a novel virus is the novel coronavirus SARS-CoV-
2, which as of 21st April 2020 reached more than 2.5 million infected cases
and 170 thousand fatalities globally (Dong et al., 2020) in a timespan of
5 months. Based on a recently released dataset of 332 PHIs from 26 viral
proteins of SARS-CoV-2 (Gordon et al., 2020), we applied DeepViral
by treating it as a novel family (with no other Coronaviridae viruses in
the dataset) and achieved a ROCAUC of 0.738 (0.730–0.747), which is
within the observed variability in predicting for different virus families, as
shown in Figure 4. This family-wise variability suggests that the learned
features to predict for PHIs may have different generalization power across
families, possibly a result of varying degrees of (dis)similarity between the
virus families. Nevertheless, optimizing the predictive power for a single
virus, e.g., SARS-CoV-2, requires a case-by-case experimental setup.
Specifically in the case of SARS-CoV-2, one can potentially relax the
leave-one-family-out evaluation, as we have prior knowledge about other
species in its family, e.g., SARS and MERS, such as their interactions with

hosts and protein functions (Thiel et al., 2003). This is indeed a topic for
further investigation.

Fig. 4: Evaluation results for 10 virus families in the joint model with the
“GO + Sequence” features of human proteins.

There are several limitations that can be addressed by future efforts.
One is the scarcity of training data for inter-species PPIs and this may
be leveraged by transfer learning on the much larger intra-species PPI
data available for humans and other model organisms. We also ignored
other types of PHIs outside virus–human interactions in our current study,
such as those of other hosts, e.g., plants and fishes, and other pathogens,
e.g., bacteria and fungi, which have been shown to improve the prediction
performance for Ebola (but not H1N1) in a previous method (Zhou et al.,
2018) (see Table 1; the training sets TR3 and TR4 contain host proteins
from species other than human). Additionally, predicting tissue-specific
PHIs would also provide additional insights, as proteins of both human
(Fagerberg et al., 2014) and viruses (Jarosinski et al., 2012) often have
tissue-specific expressions and functions.
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