- 1 **Title:** Rapid, sensitive, full genome sequencing of Severe Acute Respiratory Syndrome Virus
- 2 Coronavirus 2 (SARS-CoV-2)
- 3 Authors: Clinton R Paden¹, Ying Tao¹, Krista Queen, Jing Zhang, Yan Li, Anna Uehara,
- 4 Suxiang Tong²
- ⁵ ¹These first authors contributed equally to this manuscript
- 6 ²Corresponding author: sot1@cdc.gov

7 Affiliations:

- 8 Centers for Disease Control and Prevention, Atlanta, GA (all authors)
- 9 Keywords: COVID-19, SARS-CoV-2, coronavirus, genomics, High-Throughput Nucleotide
- 10 Sequencing, Whole Genome Sequencing
- 11

12 Abstract

- 13 SARS-CoV-2 recently emerged, resulting a global pandemic. Rapid genomic information
- 14 is critical to understanding transmission and pathogenesis. Here, we describe validated protocols
- 15 for generating high-quality full-length genomes from primary samples. The first employs
- 16 multiplex RT-PCR followed by MinION or MiSeq sequencing. The second uses singleplex,
- 17 nested RT-PCR and Sanger sequencing.

In December 2019, SARS-CoV-2, the etiological agent of Coronavirus Disease 2019
(COVID-19), emerged in Wuhan, China. Since then it has rapidly spread to the rest of the world
(1-3). As of April 16, 2020, there have been 1,991,562 confirmed cases, including 130,885
deaths, in 185 countries or regions (4).

Initial sequencing of SARS-CoV-2 showed limited genetic variation between cases, but did document specific changes that may be useful for understanding the source and transmission chains (5-8). Because SARS-CoV-2 has shown the capacity to spread rapidly and lead to a range of presentations in infected persons, from asymptomatic infection to mild, severe, or fatal disease, it is important to identify genetic variants in order to understand any changes in transmissibility, tropism, and pathogenicity. Sequence data can be used to inform decisions to better manage the spread of disease.

29 In this report, we describe the design and use of two PCR-based methods for sequencing SARS-CoV-2 clinical specimens. The first is a multiplex PCR panel followed by sequencing on 30 31 either the Oxford Nanopore MinION or Illumina MiSeq. When coupled with MinION 32 sequencing, the protocol can be implemented outside a traditional laboratory and can be completed in a single workday, similar to previous mobile genomic surveillance of Ebola and 33 34 Zika virus outbreaks (9, 10). Additionally, we provide a complementary singleplex, nested PCR strategy, which improves sensitivity for samples with lower viral load and is compatible with 35 36 Sanger sequencing.

37 The Study

On January 10, 2020, the first SARS-CoV-2 genome sequence was released online (11).
That day, we designed two complementary panels of primers to amplify the virus genome for

sequencing. For one panel, we used the PRIMAL primer design tool (9) to design multiplex 40 PCRs to amplify the genome in using only a few PCR reactions (Appendix). The final design 41 42 consists of 6 pools of primers, targeting amplicon sizes of 550 base pairs (bp) with 100bp overlaps, to allow for sequencing on either the ONT MinION or Illumina MiSeq. For the second 43 panel, we designed sets of primers to generate nested, tiling amplicons across the SARS-CoV-2 44 45 genome (Appendix), for enhancing sensitivity in samples with lower viral loads. Each amplicon is 322-1030bp with an average overlap of 80bp. They are designed to be amplified and 46 47 sequenced individually on Sanger instruments but may also be pooled for sequencing on nextgeneration sequencing platforms. 48 49 To determine the sensitivity of each sequencing strategy, we generated a set of six tenfold serial dilutions of a SARS-CoV-2 isolate (12). Virus RNA was diluted into a constant 50 background of A549 human cell line total nucleic acid (RNaseP C_T 29). We quantitated each 51 52 dilution using the CDC SARS-CoV-2 rRT-PCR for the N2 gene (13) (data not shown). The six dilutions spanned C_T values from 22-37, corresponding to ca. 2 to 1.8 x 10⁵ copies. We amplified 53 54 triplicate samples at each dilution using the multiplex PCR pools. Next, we pooled, barcoded, 55 and made libraries from each sample's amplicons using the ligation-based kit and PCR barcode 56 expansion kit (methods in Appendix). MinION sequencing was performed on an R9.4.1 or R10.3 57 flow cell until we obtained >1-2M raw reads. From those, 50-60% of reads could be demultiplexed (data not shown). Additionally, we sequenced these amplicons using the Illumina 58 59 MiSeq for comparison (methods in Appendix). 60 For MinION sequencing, the reads were basecalled and analyzed using an in-house read

61 mapping pipeline (detailed in Appendix). For samples with $C_T \le 29$, we obtained >99% SARS-

62 CoV-2 reads and >99% genome coverage at 20X depth, decreasing to an average of 93%

63	genome coverage at C_T 33.2 and 48% at C_T 35 (Figure 1A and 1B). Further, we were able to
64	obtain full >20X genomes within the first 40-60 minutes of sequencing (Figure 1C).

Consensus accuracy, including SNPs and indels, is critical for determining coronavirus 65 66 lineage and transmission networks. For high consensus level accuracy, we filtered reads based on length, mapped them to the reference sequence (RefSeq NC_045512), trimmed primers based on 67 position, and called variants with Medaka (https://github.com/nanoporetech/medaka) (details in 68 69 Appendix). Each Medaka variant was filtered by coverage depth (>20X) and by the Medaka model-derived variant quality (>40). Here we used the variant quality score as a heuristic to filter 70 remaining noise from the Medaka variants, compared to Sanger-derived sequences. After these 71 72 steps, the data approaches 100% consensus accuracy (Table 1). Identical results were found using the R9.4.1 pore, through the C_T 33.2 samples (data not shown). We noted larger deletions 73 in some of the $C_T 33.2 +$ samples which likely reflect biases from limited copy numbers. 74

In the MiSeq data, we observed a similar trend in percent genome coverage at 100X
depth, and a slightly lower percent mapped reads, compared to Nanopore data (Figure 1A and
B). Increased read depth using the MiSeq potentially allows increased sample throughput,
however the number of available dual unique barcodes limits actual throughput.

For the nested, singleplex PCR panel, we amplified the same serial dilutions with each nested primer set (methods in Appendix). The endpoint dilution for full genome coverage is approximately C_T 35 (Figure 1B). At the C_T 37 dilution, we observed significant amplicon dropout—at this dilution, there are <10 copies of the genome on average per reaction.

83 These protocols enabled rapid sequencing of the initial clinical cases of SARS-CoV-2 in
84 the United States. For these cases, we amplified the virus genome using the singleplex PCR

85	amplicons, sequencing them with both MinION and Sanger instruments to validate MinION
86	consensus accuracy. The MinION produced full-length genomes in <20 minutes of sequencing,
87	while Sanger data was available the following day.
88	We used the multiplex PCR strategy in subsequent SARS-CoV-2 clinical cases (n=167),
89	ranging in C_T values from 15.7 to 40 (mean 28.8, median 29.1). In cases below C_T 33, we
90	observed an average of 99.02% specific reads and 99.2% genome coverage at >20X depth
91	(Figures 2A and 2B). Between C_T 30-33, genome coverage varied by sample, and declined
92	dramatically at higher C _T values, analogous to the isolate validation data. For these samples, we
93	multiplexed 20-40 barcoded samples per flowcell. Enough data is obtained with 60 minutes of
94	MinION sequencing for most samples, though for higher titer samples 10-20 minutes of
95	sequencing is sufficient (Figure 2C).
96	Up-to-date primer sequences, protocols, and analysis scripts are found at
97	https://github.com/CDCgov/SARS-CoV-2_Sequencing/tree/master/protocols/CDC-
98	Comprehensive. Data from this study is deposited in the NBCI SRA (BioProjects PRJNA622817
99	and PRJNA610248).
100	Conclusions
101	Full genome sequencing is an indispensable tool in understanding emerging viruses. Here
102	we present two validated PCR target-enrichment strategies that can be used with MinION,
103	MiSeq, and Sanger platforms for sequencing SARS-CoV-2 clinical specimens. This ensures that
104	most labs have access to one or more strategies.
105	The multiplex PCR strategy is effective at generating full genome sequences up to C_T 33.

106 The single plex, nested PCR is effective up to C_T 35, varying based on sample quality. The

107	turnaround time for the multiplex PCR MinION protocol is about 8 hours from nucleic acid to
108	consensus sequence, compared to Sanger sequencing at about 14-18 hours (Table 2).
109	Importantly, the multiplex PCR protocols offer an efficient, cost-effective, scalable system, and
110	add little time and complexity as sample numbers increase (Table 2). The results from this study
111	suggest multiplex PCR may be used effectively for routine sequencing, complemented by
112	singleplex, nested PCR for low virus-titer samples and confirmation sequencing.
113	
114	Acknowledgments
115	We would like to acknowledge the efforts of those in the Respiratory Viruses Branch at
116	CDC who helped in organizing samples for this study, including Azaibi Tamin, Jennifer
117	Harcourt, Natalie Thornburg, Shifaq Kamili, Xiaoyan Lu, and Stephen Lindstrom.
118	Disclaimers
119	The findings and conclusions in this report are those of the authors and do not necessarily
120	represent the official position of the Centers for Disease Control and Prevention.
121	Author Bio (first author only, unless there are only 2 authors)
122	Clinton Paden is a virologist and bioinformatician in the CDC Pathogen Discovery Team,
123	within the Division of Viral Diseases. His work is in identifying and characterizing novel and
124	emerging pathogens.

125 **References**

- 126 1. Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al. First Case of 2019
- 127 Novel Coronavirus in the United States. The New England Journal of Medicine.
- 128 2020;382(10):929-36.
- 129 2. Patel A, Jernigan DB, Abdirizak F, Abedi G, Aggarwal S, Albina D, et al. Initial Public
- 130 Health Response and Interim Clinical Guidance for the 2019 Novel Coronavirus Outbreak —
- 131 United States, December 31, 2019–February 4, 2020. Morbidity and Mortality Weekly
- 132 Report. 2020;69(5):140-6.
- 1333. Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health
- 134 concern. Lancet (London, England). 2020;395(10223):470-3.
- 4. World Health Organization. Coronavirus disease 2019 (COVID-19) Situation Report 87.
- 136 2020 16 April 2020 [cited; Available from: <u>https://www.who.int/emergencies/diseases/novel-</u>
- 137 <u>coronavirus-2019/situation-reports</u>
- 138 5. Andersen K. Clock and TMRCA based on 27 genomes. 2020 25 January 2020 [cited;
- 139 Available from: <u>http://virological.org/t/clock-and-tmrca-based-on-27-genomes/347</u>
- 140 6. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-
- 141 CoV-2. Nature Medicine. 2020 2020/03/17.
- 142 7. Bedford T, Greninger AL, Roychoudhury P, Starita LM, Famulare M, Huang M-L, et al.
- 143 Cryptic transmission of SARS-CoV-2 in Washington State. 2020:2020.04.02.20051417.
- 144 8. Deng X, Gu W, Federman S, Du Plessis L, Pybus O, Faria N, et al. A Genomic Survey of
- 145 SARS-CoV-2 Reveals Multiple Introductions into Northern California without a
- 146 Predominant Lineage. 2020:2020.03.27.20044925.

- 147 9. Quick J, Grubaugh ND, Pullan ST, Claro IM, Smith AD, Gangavarapu K, et al. Multiplex
- 148 PCR method for MinION and Illumina sequencing of Zika and other virus genomes directly
- from clinical samples. Nature Protocols. 2017;12(6):1261-76.
- 150 10. Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, et al. Real-time, portable
- 151 genome sequencing for Ebola surveillance. Nature. 2016;530(7589):228-32.
- 152 11. Holmes EC, Y Z. Novel 2019 coronavirus genome. 2020 [cited 2020 5 Apr]; Available
- 153 from: http://virological.org/t/novel-2019-coronavirus-genome/319
- 154 12. Harcourt J, Tamin A, Lu X, Kamili S, Kumar Sakthivel S, Wang L, et al. Isolation and
- characterization of SARS-CoV-2 from the first US COVID-19 patient.
- 156 2020:2020.03.02.972935.
- 157 13. Kujawski SA, Wong KK, Collins JP, Epstein L, Killerby ME, Midgley CM, et al. First 12
- patients with coronavirus disease 2019 (COVID-19) in the United States.
- 159 2020:2020.03.09.20032896.

160

- 161 Address for correspondence: Suxiang Tong, Division of Viral Diseases, Centers for Diseases
- 162 Control and Prevention, 1600 Clifton Rd NE, Mailstop H18-6, Atlanta, GA 30329; email:
- sot1@cdc.gov

Virus tier (C _T)	%Coverage (20X) ^a	Indels	Indel bases	SNPs	%Identity ^b
22.3	99.659	0	0	0	100
	99.722	0	0	0	100
	99.635	0	0	0	100
25.7	99.635	0	0	0	100
	99.615	0	0	0	100
	99.642	0	0	0	100
29.2	99.508	0	0	0	100
	99.635	0	0	0	100
	99.615	0	0	0	100
33.2	93.024	1	1	0	100
	93.603	2	35	0	100
	87.894	0	0	0	100
35.6	41.653	1	1	0	100
	51.266	0	0	1	99.993
	50.821	1	15	2	99.987
37.6	14.634	0	0	1	99.977
	9.317	0	0	0	100
	12.363	0	0	0	100

165 Table 1. Genome consensus accuracy

^a The 5' and 3' ends are primer sequence, so 100% coverage is not possible

^b Percent of covered bases identical to reference sequence, excludes indels and low-coverage bases

169 Table 2. Comparison of input, time, and cost requirements for sequencing one or 96 specimens

		Single sample		96 Samples	
Method	Input ^a	Turnaround	Approx. cost	Turnaround	Approx. cost
Witthou		time	per sample ^c	time	per sample ^c
Multiplex/MinION	10 uL	6-8 hours	\$528.70	8-10 hours	\$35.88
Multiplex/MiSeq	10 uL	30-68 hours ^b	\$1443.29	30-68 hours ^b	\$57.87
Singlonlov/Songor	100.1	16 18 hours	\$254 40	17 10 dave	\$354.40
singlepiex/sanger	190UL	10-16 nours	φ 334.4 0	17-19 days	<i>ф33</i> 4.40

^a Assumes a process of: 200uL resuspended respiratory specimen, extracted and eluted into 100uL

171 ^b Varies based on sequencing kit used

^c Includes specific enzyme and reagent costs, excludes common laboratory supplies and labor costs

(A) Percent mapped and (B) percent genome coverage for 167 clinical SARS-CoV-2 samples,
amplified with multiplex PCR strategy and sequenced on the MinION. (C) Time-lapse of 20X
genome coverage obtained by MinION for clinical specimens at the indicated C_T values. Data
points represent the average coverage for the indicated number of samples