








(a) CN vs AD

(b) CN vs MDD

Figure 5: The axial, sagittal and coronal views of top 10% salient ROI di�erentiating normal
and diseased patients for (a) Alzheimer's Disease, and (b) Major Depressive Disorder.

as parameter sharing, they only capture information within their local receptive
field (usually a small square-shaped subset, or a row or column along a matrix).
Such information is not sufficient to capture the functional connectivity present
in brains as these receptive fields do not consider global connectivity patterns.
On the other hand, the fact that CNNs have fewer parameters than feedforward
DNNs shows the possibility of redundancies in feedforward DNNs which makes
it important to eliminate accessory nodes from feedforward DNNs. With LEAN,
we are able to get a leaner model while methodically removing less salient fea-
tures and nodes (instead of being constricted by the spatial limitations of local
receptive fields).
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4.2. LEAN + CLIP: high accuracy with few parameters

From the results in table 2, we observe that LEAN has the largest accuracy
drop but the smallest number of remaining parameters; but, ‘CLIP + LEAN
(Inputs Only)’ results in the small drop in accuracy but retains the largest num-
ber of parameters. However, ‘CLIP + LEAN’ gives the best of both worlds - the
number of weights retained is close to levels from LEAN, but the accuracy drop
is similar to that of ‘CLIP + LEAN (Inputs Only)’. An implication of our re-
sults is the presence of correlated features in functional connectomes, which can
be exploited to reduce input feature set in functional/structural connectomes.
In our case, we observed that LEAN led to drastic reduction in the input fea-
ture set, thereby removing sets of correlated features entirely. Our results show
that adding a subset of the correlated features in ‘CLIP + LEAN’ (and also in
‘CLIP + LEAN (Inputs Only)’) led to an improvement in the performance of
the classifier.

Crucially, our results show that there is a large amount of redundancy in
neural network models. Our experiments with quantification of overfitting and
time taken per epoch for the proposed model show that the proposed model not
only leads to a reduction in overfitting but is also faster. The latter was ex-
pected since there is a significant reduction in the number of trainable network
parameters. Feedforward networks have been used by researchers in the past
[19, 25, 27] to perform classification on functional connectivity data. However,
these works often use the full set of features and overfitting is a key limitation
in such approaches. In our work, we have proposed a way to reduce the effects
of overfitting and showed how even as it leads to a drastic reduction of param-
eters, the drop in accuracy is minimal. Thus, just a simple feedforward DNN
is sufficient to capture crucial patterns in the data to classify healthy and dis-
eased brains. Adding more nodes in the hidden layers does not improve model
accuracy much (and in some cases such as CN-AD classification, doing so even
leads to poorer generalization).

Although we have only tested our approaches on neuroimaging datasets, they
are also widely applicable to other datasets. LEAN (Algorithm 1) is applicable
in settings where the number of features greatly outnumber the size of the
dataset, or in cases where the dataset is small and will benefit from using fewer
features so as to increase generalizability of the model. CLIP (Algorithm 2) is
applicable to any datasets where there are features that have strong correlations
with each other.

4.3. Identified salient features are clinically relevant

For our algorithm to perform well, it is important that the features classified
as salient by our decoder have clinical relevance to the respective condition. To
verify this, we compare the results of our decoder with results from previous
studies finding disease biomarkers.

For AD/MCI, previous studies have consistently pointed out to changes in
the hippocampal and medial temporal lobe [9, 11, 52]. Accordingly, we found al-
terations in the inferior temporal, parahippocampal [58], fusiform [9], and para-
central lobule [52]. We observed that the most salient connections were from
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the uncus for both AD and MCI, an anterior extremity of the parahippocam-
pal gyrus known for disruption during both AD [59] and MCI [65]. Multiple
functional networks such as the fronto-parietal task-control network, involved
in attention and emotion regulation; the default mode network, for internal
medication; the dorsal attention network, for directing external attention; and
the salience network, which helps in emotion processing or monitoring salient
events have been implicated in MDD [23, 46]. Deficits in cognitive control can
be traced to the anomalies in the fronto-parietal task-control network, whereas
too much internal rumination (and lesser engagement with the external world)
may be reflected in the aberrant connectivity of the default mode network with
other goal-directed networks. The amygdala [26, 36] (part of the subcallosal re-
gion), regions in the inferior temporal [56], the medial frontal lobe [56], posterior
cingulate cortex [63] and supplementary motor area [64] have been implicated
in MDD. In [61], disruption between the connections between regions in the
thalamus and the transverse temporal gyrus were reported, which is consistent
with our results.

Multiple studies have reported anomalies in the default-mode and dorsal at-
tention networks in children and adults suffering with ADHD suggesting altered
functional connectivity with attention and cognitive processing [45, 51, 53, 55].
The postcentral gyrus and paracentral lobule areas involved in motor function-
ing [45, 51], medial and inferior frontal gyrus [39, 45], superior occipital gyrus
[55], and the insula [53] have been found to be different for children/young
adoloscents having ADHD, which are consistent with our results.

Likewise, the frontal orbital regions and Heschl’s gyrus are involved in sen-
sory integration, speech processing and decision-making [24, 37], the putamen
responsible for focusing attention [41], the cerebellar (and vermis) involved in
motor regulation [3] have been previously identified as biomarkers for ASD.

5. Conclusion

In summary, we have proposed two algorithms - LEAN and CLIP - to reduce
overfitting in DNNs making them more generalizable than models that use the
entire feature set. Our approach leads us to an optimal neural network architec-
ture in a single shot that is more efficient than previous methods that relied on
recursive removal of features and nodes. Furthermore, via CLIP, the approach
is customised to reduce the effects of correlated features that are present in
neuroimaging datasets. Our experiments show that using both ’LEAN + CLIP’
took into account both redundancy and correlation in input features and gave
the best balance between drop in accuracy and reduction in trainable weights.
We successfully applied the proposed algorithms on 4 datasets (and 5 different
neurological disorders), showing its application in brain decoding and biomarker
identification. The proposed approach has applications to both structural and
functional neuroimaging datasets and to investigate brain disease.
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