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Abstract

Neuroscientific knowledge points to the presence of redundancy in the corre-
lations of brain’s functional activity. These redundancies can be removed to
mitigate the problem of overfitting when deep neural network (DNN) mod-
els are used to classify neuroimaging datasets. We propose an algorithm that
removes insignificant nodes of DNNs in a layerwise manner and then adds
a subset of correlated features in a single shot. When performing experi-
ments with functional MRI datasets for classifying patients from healthy con-
trols, we were able to obtain simpler and more generalizable DNNs. The
obtained DNNs maintained a similar performance as the full network with
only around 2% of the initial trainable parameters. Further, we used the
trained network to identify salient brain regions and connections from func-
tional connectome for multiple brain disorders. The identified biomarkers were
found to closely correspond to previously known disease biomarkers. The pro-
posed methods have cross-modal applications in obtaining leaner DNNs that
seem to fit the data better. The corresponding code is available at https:

//github.com/SCSE-Biomedical-Computing-Group/LEAN_CLIP.
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1. Introduction

Deep neural networks (DNN) have been successfully applied to a wide va-
riety of classification problems, ranging from image recognition to language
processing [21, 28]. In these applications, the choice of network architecture
and number of trainable parameters affects network performance significantly.
Larger networks learn more complex and accurate mappings, which comes with
increased computational complexity and possibilities of overfitting [48]. On the
other hand, having insufficient number of parameters limits the network’s abil-
ity to learn the correct mapping [60]. Therefore, finding the optimal neural
network architecture is an important problem. One possible solution involves
performing elimination on a large neural network by removing redundant nodes
and connections. This has been shown to produce comparable performance with
a smaller network but with better generalization capability [1, 4].

Neural networks and machine learning techniques have also been success-
fully applied to neuroimaging data. Non-invasive neuroimaging techniques are
used to characterize functional and structural anomalies in the brain and aid
in better diagnosis and treatment [13]. Functional and/or structural connectiv-
ity derived from these techniques are used as features for the neural network
models to classify diseased and normal subjects [7, 15]. However, such stud-
ies typically involve many more input features (∼ 10, 000) than subject scans
(∼ 1, 000), making the neural networks prone to overfitting. Also, experimental
noise introduces systematic connectivity [34], which should be ignored during
the classification task. Most crucially, overfitting is exacerbated by the pres-
ence of redundancies: not all functional connectivity features are important for
differentiating between scan samples from two subject groups.

In recent works [16], the authors used feature salience scores to remove
less salient features. In order to find salient features, DeepLIFT [44] was
used to compute salience scores of both input features and hidden layer nodes.
DeepLIFT is one of the recent attempts (besides Integrated Gradients [50],
Layerwise Relevance Propagation [5] and SHAP [30]) that circumvent the is-
sues with gradient-based approaches (such as zero gradients or discontinuities).
These approaches find the contribution of nodes at each layer by propagating the
contributions from the output layer. A major differentiating factor of DeepLIFT
is that it gives consideration to both negative and positive contributions and
computes the relevance scores efficiently in a single pass. By recursively re-
moving the least salient features, these recent works arrived at a much smaller
model with comparable accuracy to the original model, reducing the problem
of overfitting without compromising on classification accuracy.

However, one limitation of these previous approaches is efficiency: they in-
volve multiple elimination and fine-tuning steps to arrive at a smaller neural
network. In this paper, we propose an algorithm called Layerwise Elimination
of Accessory Nodes (LEAN) that performs the elimination of accessory nodes
in a single shot. Accessory nodes are defined as nodes which do not influence
the classification task significantly - such nodes will be assigned a low impor-
tance score by a valid decoder. LEAN uses node salience scores derived from
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a valid DNN decoder to eliminate accessory nodes in the network, producing
a leaner, more computationally efficient, and more generalizable deep neural
network that is derived in a single shot.

LEAN leads to a drastic reduction in parameters, including the removal of
a large number of input features. While powerful and efficient, this also leads
to the loss of whole groups of correlated features. In neuroimaging datasets,
such correlations exist due to the specialization property of the brain, whereby
distinct sub-systems in the brain perform specialized tasks [17]. To tackle this,
we introduce another algorithm called Correlation-based eLimination of InPuts
(CLIP) that identifies and retains a subset of correlated input features. When
these features are combined with the remaining input features from LEAN,
it leads to an improvement in the DNN performance as compared to LEAN.
Combining LEAN and CLIP leads to a model that provides the best of both
worlds: low number of parameters with minimal accuracy drop.

Besides the goal of getting an efficient classifier with the highest accuracy
and generalization ability, a relevant and important research direction in neu-
roscience is to find the biological markers that are associated with a brain state
(disease or cognitive task), which differentiate it from another brain state. We
denote identification of brain regions and connection that are associated with
a particular brain state as brain decoding. Traditional methods for brain de-
coding include multivariate pattern analysis [18], sparse networks based feature
selection [38], latent Dirichlet allocation [40], and the use of nodal features [43].
Such methods are however based on simple or linear models. On the other
hand, DNN-based approaches build deep and hierarchical models and represent
key patterns underlying brain activation in its nodes and connection weights
[38]. Deep learning techniques make no assumptions about application specific
a priori knowledge and therefore give consistent and unbiased decoding based
on neuroimaging data. Recent applications of neural networks on neuroimaging
data have derived the importance of input features in the classification task
to uncover biomarkers for neurological diseases [16, 19] or reveal task-related
brain functional modulations [27]. Identifying disease-specific biomarkers aids
in building models and classifying and predicting the progression or occurrence
of unknown diseases in individuals. To do so, we use the salience scores given by
DeepLIFT to determine salient brain connections and regions for Alzheimer’s
disease (AD), mild cognitive impairment (MCI), attention deficit hyperactiv-
ity disorder (ADHD), major depressive disorder (MDD), and Autism Spectrum
Disorder (ASD) patients using their functional MRI scans.

In sum, we have made the following novel contributions in this work:

• We proposed an efficient layerwise node elimination approach, LEAN, that
removes accessory input features and hidden layer nodes from a DNN in
a single iteration. We further adapted it for brain decoding by proposing
CLIP to add in a subset of correlated features, leading to a model with
minimal number of connection while maintaining the accuracy.

• The proposed approach finds salient functional connections and identifies
brain regions that are responsible of classification of brain disease.
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• The proposed methods were applied on multiple brain disorders for clas-
sification of patients from healthy controls and identification of disease
biomarkers.

2. Methods

2.1. Feedforward DNN

Given a pair (x, d) where x = (xi) denotes the input feature vector and
d ∈ D denotes the sample label, we used a feedforward neural network of L
layers with the first L − 1 layers having rectified linear unit activation and a
softmax layer at the end of the network. Let the weights and biases of the layer
l be given by Wl and bl, respectively. The output of layer l 6= {0, L} is given by:

hl = ReLU(WT
l hl−1 + bl) (1)

For the input layer, h0 = x. For the softmax layer, the output probabilities y
of the input x belonging to class k is given by:

P (y = k|x) = softmax(WT
L hL−1 + bL) (2)

where k ∈ {1, ...,K} represents the class label and the output layer weight
WL = [wk,L] and bias bL = (bk,L). To learn the parameters of the network, the
cross-entropy cost is defined as:

J(θ) = −Ex[log P (y = d|x, θ)] (3)

where Ex is the expectation taken over all scan samples x and θ = {(Wl, bl)}Ll=1

denotes all the parameters in the network.

2.2. Saliency of nodes in network layers

Let f be the neural network function mapping input x to output y. A
simpler explanation model g is found such that g is both interpretable and an
approximation of the model f . Let the number of nodes in layer l be nl. Using
an appropriate reference, let us assign to each neuron i in layer l a contribution
C∆hi,l∆hk,l+1

to the change in the output of neuron k in layer l + 1:∑
i≤nl

C∆hi,l∆hk,l+1
= ∆hk,l+1 (4)

when l ∈ {0, . . . , L− 2} and∑
i≤nL−1

C∆hi,L−1∆y = ∆y (5)

when l = L−1, where ∆hi,l is the change in the activation of the ith neuron
of layer l due to the input relative to the reference. C∆hi,l∆hk,l+1

is computed
from the Linear, Rescale and RevealCancel rule from [44].
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Given the reference input x̄ and the original input x, we substitute ∆y =
f(x)− f(x̄) and g(x) = f(x), giving us an equation for the model g:

g(x) = f(x̄) +
∑
i,l

C∆hi,l∆y (6)

where the contribution of nodes in each layer l to the output y is given by
C∆hi,l∆y [44]:

C∆hi,l∆y = ∆hi,l
∑
k,l

C∆hi,l∆hk,l+1

∆hi,l

C∆hk,l+1∆y

∆hk,l+1
(7)

Contribution of nodes in all layers 0 ≤ l < L to the output y is obtained by
backpropagating contributions of layers to the output. For nodes in each layer
l ∈ {0, . . . , L− 1}, we compute the salience score vector cl given by:

cl =
(
C∆hi,l∆y

)
i<nl

(8)

where C∆hi,l∆y is derived from Equation 7. The DeepLIFT method [44]
computes the layer’s salience scores based on change in the output from a ref-
erence, allowing information to propagate across the network layers even when
the gradient is zero. We compute the average contributions for all layers over
multiple test samples to get the final salience score for each feature.

2.3. LEAN: Layerwise elimination of accessory nodes

A decoder can identify a subset of distinguishing input features and weights
that are important to classify samples. We proposed a brain decoding strategy
in [16], where we obtained the salience scores for input features and hidden
layer nodes. In the proposed scheme, a fraction µ of nodes with the lowest
salience scores ck from layers k ∈ {0, . . . , L − 1} are removed iteratively and
the pruned model is fine-tuned at each step. Although the proposed strategy
improved the classification performance, the process involved multiple iterations
of elimination and fine-tuning that is time-consuming and cumbersome. Thus,
we propose an efficient strategy to find a layerwise salience score threshold,
below which nodes from the layers (input and hidden) of the DNN are removed.

For the salience score vector cl in each layer, we determined the best fit dis-
tribution by computing the log likelihood of the model fit. We did not make any
assumption about the best fit distribution and used multiple distributions (viz;
power-law, log-normal, exponential and stretched exponential) to find the best
fit for the salience score distribution at each layer. The power-law distribution
is defined by the distribution of the salience scores cil for nodes i < nl in layer
l [2, 10]:

ppower(cil) = kc−αil

where α is the scaling parameter, k = (α− 1) cα−1
min , and cmin is the minimum

degree that obeys the power-law. The distribution parameters were computed
using maximum likelihood estimation [10]. We compute statistical significance
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for the salience scores of nodes in their respective layers and remove the nodes
with p − value ≥ 0.95. The complete overview of the layerwise elimination of
nodes is given in Algorithm 1.

Algorithm 1 LEAN: Layerwise elimination of accessory nodes

Input: DNN with layers {li}Li=0

Output: Reduced DNN with layers {l′i}Li=0

Train DNN with layers {li}Li=0

for each layer li in {li}L−1
i=0 do

ci ← C∆h∗,li∆y

l′i ← {cik | p− value(cik) ≥ 0.95}

2.4. CLIP: Correlation-based elimination of inputs

Besides the presence of a large number of correlated features, brain func-
tional connectomes are also known to be modular in nature [17, 47] and such
modularity or clusters give rise to correlated features. Different modules cor-
respond to different sub-systems in the brain, performing a specific function.
Examples of these modules are shown in Figure 1(a). Modules or clusters have
stronger connectivity between nodes within the module and weaker connectivity
with nodes outside the module. This gives rise to the intuition that the func-
tional connectivity for some regions of interest (ROI) - especially ROIs within
the same module - are correlated with each other.

Although some modules involved in cognition and decision-making vary
across subjects, others involved in functions related to perception and motor
control are stable across subjects [17, 32]. This gives rise to inter-subject re-
lationships among functional connectivity features. While the extent of how
high correlations is difficult to determine, the correlation between pairs of inter-
cluster connections would likely be lower than the correlation between pairs
of intra-cluster connections. This is because of the sparser and variable inter-
cluster connections, and the relatively denser and more stable intra-cluster con-
nections due to similar modularizations as shown in Figure 1(b) and (c). For
example, the dense connections within the visual module [17, 32], which has a
low inter-subject variability, should be highly correlated across subjects.

2.4.1. Finding clusters of correlated features

While there are other dimensionality reduction approaches such as Principal
Component Analysis or Independent Component Analysis that reduce the prob-
lem of multicollinearity [22], such approaches require either prior knowledge of
the number of components to be used, or extensive experimentation to arrive
at the optimal number. Alternatively, a clustering-based approach presented
below provides a more principled solution. Figure 2 provides a schematic of the
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Figure 1: Visualization of the functional connectivity matrices. (a) The matrix has its rows
rearranged such that nodes in the same functional clusters are placed consecutively. The
labels of different functional modules are given by the left color bar. Image from [17]. (b) A
magnified view of a subset of the correlation matrix is provided. Cells colored white have a
higher weight than the cells colored blue. The white patches along the left diagonal represent
intra-cluster connections, while the blue patches along the right diagonal represents inter-
cluster connections. Intra-cluster connections have high and inter-cluster connections have
low values across subjects and are therefore positively correlated. (c) A schematic of how
some of the clusters are similar across subjects.

intuition behind finding such clusters that are spread across the distribution of
salience scores.

We formulate this problem in terms of finding clusters/communities of cor-
related features, where we compute the similarity matrix, S = {sij}, where sij
denotes the correlation between features i and j from the training data:

sij =
Cov(xi, xj)

σ(xi)σ(xj)
(9)

where Cov finds the covariance between two variables and σ finds the standard
deviation, and xk denotes the vector containing values of feature k across the
samples.

We perform clustering of the similarity matrix S to obtain a cluster vector
m = (mk) where each element mk corresponds to the cluster label assigned to
each voxel k from a set {1, 2, . . . ,M} and M of clusters. This is done by the
minimization of the normalized cut cost given by:

cut-cost(S,M) =
1

M

M∑
l=1

(
1− uTl Sul

uTl D
kul

)
(10)

where D denotes the diagonal degree matrix of S and U = {ul}Ml=1 is a set of

binary matrices representing m, such that lth module is given by ul = (uli)
|x|
i=0

where uli = 1(mi = l) and 1(·) denotes the identity function.
The minimization of the cut-cost in (10) is performed by multi-class spectral

clustering [49]. The number of clusters is found by computing the elbow point
[42] (i.e. the point of maximum curvature) of the scree plot of the eigenval-
ues of similarity matrix S. However, since the number of features |x| are often
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Figure 2: Schematic of how the features are distributed in different clusters throughout the
distribution of salience scores and how salience scores consider only features from a few clus-
ters.

large, the similarity matrix has a large size and computing its eigendecomposi-
tion becomes expensive. Therefore, we sparsified the matrix S by thresholding
correlations with values less than 0.3 (which is a recognised threshold for low
correlation values [20]). Thereafter, we used the Implicitly Restarted Arnoldi
Method [29] to perform eigendecomposition on the sparse matrix to obtain the
eigenvalues.

2.4.2. Selecting subsets of correlated features

For each of the computed clusters, a subset of features that have the highest
correlation with features from the same cluster was selected. We do this by
using the intra-cluster degree, αi, of feature i given by

αi =
∑

mj=mi

sij (11)

We select a fraction of nodes with the highest αi values from each cluster and
include them as features in addition to the ones selected from one-shot elimina-
tion pruning. The whole process for removal of subsets of correlated features is
summarized in Figure 3 and Algorithm 2.

2.5. Combining LEAN and CLIP

We argue that the presence of correlated features leads to a sudden drop in
accuracy with LEAN because while performing recursive elimination, we retain
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Figure 3: Overview of the feature selection process. To generate S, the vector of features
representing each subject is concatenated and the similarity matrix is computed. Thereafter,
clustering is performed on S and a subset of nodes with the highest intra-cluster degree each
cluster are retained, while the rest are discarded. The matrix on the right has been rearranged
such that nodes in the same cluster are placed consecutively.

Algorithm 2 CLIP: Correlation-based elimination of inputs

Input: Concatenated features from training data: {x}, k
Output: Reduced feature set l′0

S ← Cov(xi,xj)
σ(xi)σ(xj)

M ← elbow(S)
m← minimize cut-cost(S,M)
l′0 ← l′0 ∪ top k% features from each module in m

a fraction of features from clusters of correlated features at different thresholds.
However, with LEAN, entire clusters of correlated features are lost at once. This
problem has been studied previously for various linear and non-linear classifiers
[62] by using different feature selection methods [54]. For instance, in ordinary
least square regression, the existence of multicollinearity leads to a larger stan-
dard error [14] and affects the interpretation of feature salience - a feature that
would have been deemed as important is no longer significant when another
correlated feature is present. We hypothesize that LEAN discards too many
input features at once and using the additional subsets of correlated features
(identified by Algorithm 2) will improve the model accuracy. Thus, while hidden
layers nodes are eliminated only using LEAN (Algorithm 1), the input features
are first eliminated using LEAN and then some are added back from the subsets
of correlated features via CLIP (Algorithm 2).

2.6. Decoding the brain functional connectome associated with brain disease

Brain decoding is defined as the identification of brain activity patterns that
emerge from activations as well as interactions among specific brain regions and
connections, which distinguish one brain state from another. Decoding the DNN
trained on connectome features translates to identifying salient features of the
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DNN, which correspond to biomarkers (i.e. key brain connections and ROI)
associated with the brain state. We demonstrated this approach in [16] for the
first time by using feedforward DNN. We successfully adopted DeepLIFT in de-
coding brain functional connectivity in [16], which efficiently computes salience
scores for input features in a single pass and then recursively eliminate irrele-
vant. Such an approach only focuses on input features and does not optimize
the DNN architecture. In this paper, we improve upon our previous work by
proposing a combination of LEAN and CLIP for not only to decode the input
feature but also finds leaner DNN model for efficient classification without the
loss of accuracy. By using LEAN and CLIP on resting-state fMRI brain scans
gathered in brain disease, we achieve state-of-art accuracies for disease classifi-
cation with leaner DNN models and salient input features. The decoded input
features correspond to brain connections that are associated with brain disease.

3. Results

3.1. Datasets

We downloaded resting state functional MRI scans for AD and MCI from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI); for ADHD from the In-
ternational Neuroimaging Datasharing Initiative (INDI) [6]; for MDD from the
data provided by the Creativity and Affective Neuroscience Lab in the Brain
Imaging Center of Southwest University and for ASD from the Autism Brain
Imaging Data Exchange (ABIDE). The details of the acquisition protocols, sub-
jects, preprocessing pipelines are attached in the supplementary materials.

3.2. Features for classification

We used the Power atlas [35] to obtain functionally diverse 264 ROIs span-
ning the entire cerebral cortex. Average time series were computed for voxels
within a spherical radius of 2.5mm surrounding each ROI, and the functional
connectivity matrix for each scan was generated by computing the Pearson
correlation coefficient (without thresholding) for each pair of ROI. Since the
matrices are symmetrical, we consider only the upper triangular connectivity
matrix and flatten it into an input vector for the network. This resulted in an
input vector with 34716 elements.

3.3. Classification for full feature set

Both the encoder and decoder were implemented in Python using the Keras,
Tensorflow and DeepLIFT libraries. For datasets with more than one scan per
subject, we ensured that all the subject scans were either in the training or test
set. For all datasets, a batch size of 8 was used along with a learning rate of
10−4. The dataset was separated into train and test set at a 80:20 split.

Besides the feedforward neural networks (FFN), different convolution neu-
ral network (CNN) architectures [8, 31] and support vector machines (SVM)
were implemented with different parameters. For CNNs, we gave the connec-
tivity matrix as an input, and varied the number of filters and the number of
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layers. The number of filters in each layer was varied based on the number of
weights in the corresponding FFN such that the number of trainable param-
eters were same in both the architectures. The number of trainable weights
were changed from 1.7× 104 to 3.5× 107. For SVMs, we varied the parameters
(C ∈ {0.001, 0.01, 0.1, 1, 10}, γ ∈ {0.001, 0.01, 0.1, 1}) and tried different kernels
such as linear, polynomial, RBF and sigmoid. For the FFN, the number of
hidden layers and the number of neurons in each hidden layer were varied. The
final architecture for the full feature set was obtained using grid search from
accuracies obtained from stratified 5-fold cross validation on the train set. We
added dropout of 0.1 to the hidden layers and imposed early stopping to pre-
vent overfitting. The details of the different configurations for the DNNs can be
found in the supplementary materials. We observed that the highest accuracies
were still given by FFN (except in case of CN vs AD, where the difference was
insignificant). The average accuracies along with the standard deviation for the
SVM, CNN and FFN models are reported in table 1 and the corresponding
architectures are reported in table S5 in the supplementary materials. These
accuracies are obtained from repeating the experiments using 10 different seeds.
For each seed, 5-fold cross validation was performed.

Table 1: Performances of the best models of different models on the neuroimaging datasets.

Disorder SVM CNN FFN

ASD 68.0% ± 3.3% 70.6% ± 2.9% 70.9% ± 4.2%
AD 71.3% ± 6.5% 78.1% ± 5.3% 77.4% ± 4.6%

ADHD 54.8% ± 5.5% 60.5% ± 4.5% 61.1% ± 4.2%
MCI 64.6% ± 4.3% 66.5% ± 3.8% 67.5% ± 4.1%
MDD 73.3% ± 3.9% 77.1% ± 3.6% 78.3% ± 3.2%

3.4. Classification with feature subsets from CLIP and LEAN

We tried 3 different elimination approaches: ‘LEAN’, ‘CLIP + LEAN (In-
puts Only)’ and ‘LEAN + CLIP’. ‘LEAN’ (described in Algorithm 1) involves
keeping only statistically significant features at each layer; ‘CLIP + LEAN (In-
puts Only)’ includes subsets of correlated features (Algorithm 2) in addition to
DeepLIFT features, but no elimination is performed for the hidden layers; and
‘CLIP + LEAN’ goes even further to prune the hidden layers, as described in
Section 2.5. For CLIP, we generated the similarity matrix (described in Section
2.4.1) to derive a subset of correlated features that are combined with features
obtained from LEAN. We did this for each of the seeds and folds and retained
5% of the top features for each cluster. Table 2 summarises the changes in clas-
sification accuracy and remaining number of trainable parameters (compared to
the the original model) for different approaches on the 3 datasets.

As seen in table 2, we observe that relative to the full feature set, LEAN is
able to reduce the model parameters drastically to around 0.5% to 2.1% of the
original number of parameters. Intuitively, keeping the most important features
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should lead to a model with minimal drop in accuracy. However, we found that
the drop in accuracy is large (1.6% in ADHD to 3.1% in MDD) and thus LEAN
cannot be directly used. One can argue that a different p-value threshold can
be used to allow more features to be included, but it will take several iterations
to arrive at the threshold which gives the optimal model. Furthermore, such a
tuned threshold is unlikely to generalize to other situations.

We reduced the drop in accuracy by identifying subsets of correlated fea-
tures in ‘CLIP + LEAN (Inputs Only)’. Evidently, our approach leads to a
smaller drop in accuracy as compared to the LEAN approach (and even lead to
an increase in accuracy for CN/AD). Although we obtain similar classification
performance when we only prune the inputs (and not the hidden layers), the
number of remaining parameters (7% to 11% of the original) are much larger
than LEAN. By extending the node elimination process to the hidden layers
in ‘CLIP + LEAN’, we further reduced the number of parameters involved to
levels quite close to the LEAN approach, with similar accuracies (and with
consistently higher accuracies than LEAN).

Comparing the results of ‘CLIP + LEAN (Inputs Only)’ and ‘CLIP +
LEAN’, it is seen that there is no significant trend in terms of change in ac-
curacy. This shows that we can safely remove hidden nodes to obtain a leaner
model. Thus, our subsequent analysis will be focused on LEAN and ‘CLIP +
LEAN’.

Table 2: Comparison of functional connectivity based classifiers. Params represent the number
of parameters left in the reduced model, relative to the model that uses the full feature set.

All
Features

LEAN CLIP + LEAN
(Inputs Only)

CLIP + LEAN

Disorder Accuracy Acc Params Acc Params Acc Params

ASD 70.9% 68.1% 0.5% 69.3% 9.5% 68.9% 1.1%
AD 77.4% 75.8% 0.7% 78.1% 7.7% 78.1% 2.0%

ADHD 61.1% 59.0% 2.1% 59.3% 9.9% 59.4% 5.7%
MCI 67.5% 64.5% 0.6% 65.3% 6.9% 66.2% 2.0%
MDD 78.3% 75.2% 1.2% 76.4% 10.9% 76.0% 2.6%

3.4.1. Reduction in overfitting

Overfitting happens during model training when the test loss increases after
reaching a minimum [60]. If a model overfits, it fails to generalise and remembers
only the training data. To evaluate overfitting, we use the difference between
the test set loss and train set loss at the epoch as evaluated by cross-entropy
when the best model was found. Because of the small size of the datasets, the
difference of train and test losses renders a stable measure of overfitting [33].

The model was first trained with early stopping, such that the best model
was chosen by looking at the test accuracies of each of the epochs. The best
model is chosen at the epoch where test accuracy is highest. Table 3 shows the
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Table 3: The differences of test and train losses computed using cross-entropy.

Disorder All Features LEAN CLIP + LEAN

ASD 0.50 0.28 0.20
AD 0.34 0.14 0.13

ADHD 0.29 0.06 0.01
MCI 0.13 0.002 0.02
MDD 0.61 0.31 0.36

extent of overfitting for each of the datasets with cross-entropy being the metric
used to compute the loss. The reported scores were calculated by averaging over
5 folds. As shown in the table, there is a clear reduction of overfitting across all
datasets for both LEAN and ‘CLIP + LEAN’, after these algorithms were used
to generate the leaner model.

3.4.2. Comparison with other redundancy removal methods

Table 4: Accuracies of models produced by keeping X% most important features from SVM
and logistic regression models. C + L = CLIP + LEAN.

Disorder FFN C + L 1% 5% 10% 100%

ASD 70.9% 68.9%
SVM 53.0% 59.0% 67.7% 68.0%

Logreg 63.1% 67.0% 66.6% 67.9%

AD 77.4% 78.1%
SVM 66.8% 70.2% 71.6% 71.3%

Logreg 70.9% 72.7% 72.2% 71.3%

ADHD 61.1% 59.4%
SVM 53.2% 51.6% 52.0% 53.1%

Logreg 52.5% 51.9% 52.1% 53.2%

MCI 67.5% 66.2%
SVM 64.6% 62.9% 60.1% 58.7%

Logreg 56.1% 57.9% 58.4% 58.7%

MDD 78.3% 76.0%
SVM 69.4% 72.5% 72.9% 73.3%

Logreg 70.5% 72.6% 72.9% 73.3%

We compared performances of ‘CLIP + LEAN’ with those of SVM and lo-
gistic regression, including their own feature importance methods. Experiments
were conducted, keeping 1%, 5% and 10% of features as this is the same range of
remaining features obtained from our proposed algorithms. For SVM, only the
linear kernel is able to provide importance scores and for this comparison, the
best model with a linear kernel was chosen for each dataset. As seen in table
4, as the number of features remaining increases, model accuracy for logistic
regression generally increases but such a trend is less pronounced for SVM. Ul-
timately, ‘CLIP + LEAN’ still generally outperforms both the SVM and logistic
regression models.
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Additionally, since traditional models like SVM and logistic regression as-
sume that the used features are uncorrelated, we used CLIP to retain a subset
of uncorrelated features and compared the performance of the resulting models.
As seen in table 5, the classification accuracy usually suffers when a feature
subset is used. However, the accuracy is significantly lower (p− value < 10−3)
than the corresponding FFN in all the cases (except for MCI).

Table 5: Accuracies of baseline models before and after CLIP was applied.

SVM Logistic Regression

Disorder Before After Before After

ASD 68.0% ± 3.3% 62.0% ± 2.9% 67.9% ± 3.1% 61.9% ± 3.1%
AD 71.3% ± 6.5% 67.6% ± 6.4% 71.3% ± 6.6% 70.7% ± 7.0%

ADHD 54.8% ± 5.5% 55.9% ± 4.8% 53.2% ± 5.7% 51.6% ± 5.4%
MCI 64.6% ± 4.3% 64.6% ± 4.3% 58.7% ± 5.4% 56.3% ± 5.5%
MDD 73.3% ± 3.9% 71.9% ± 5.0% 73.3% ± 4.3% 68.9% ± 3.7%

3.4.3. Comparison of algorithm runtime

Table 6: Average time taken per epoch (in seconds) for each variant of the proposed algorithms.
mil = million.

Disorder
Dataset

Size
Initial

Params
All

Features
LEAN CLIP + LEAN

ASD 823 1.74 mil 0.71 0.53 0.52
AD 299 1.74 mil 0.36 0.24 0.24

ADHD 396 1.74 mil 0.47 0.34 0.37
MCI 554 0.69 mil 0.53 0.42 0.41
MDD 457 34.78 mil 2.09 0.42 0.54

In order to evaluate time efficiency of different algorithms, average time taken
per epoch to train the neural network were computed. As shown in table 6, all
variants of our proposed redundancy reduction algorithms lead to a reduction
of time taken - the increase being greater especially if the original ‘All Features’
model used was large like in the case of MDD. Here, we also specified the time
taken for the one time operation to compute the feature clusters in CLIP. On
average (over datasets and seeds), pre-processing took 135 minutes where the
eigenvalue computation of the similarity matrix S is the source of the bottleneck.
This can be significantly reduced by lowering the number of eigenvalues to be
computed - in our experiments, we defined it to be 1000. Also, importance
score computation took, on average, a range of approximately 20s for AD to
approximately 2 minutes for MDD (which starts off from a large model). All
experiments were performed using 4 x NVIDIA Tesla P100 16GB on a Linux
server with 72 cores. Comparing the proposed algorithms with each other, there
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are slight variations in the timings but the differences are largely insignificant
(except for the case of MDD) and both variants take approximately the same
amount of time to run. We also concluded that the pruned models, LEAN and
‘CLIP + LEAN’, take a significantly shorter amount of time to run as compared
to the full model (p − value < 10−4). When a relatively small model is used,
both variants take approximately the same amount of time to run.

3.5. Salient brain features

Thus far, we have seen how salience scores help to reduce the number of pa-
rameters involved, leading to a leaner model with minimal reduction in accuracy
(or at times, even leading to an increase in model accuracy). We also use the
salience scores to identify important features and ROI for the different diseases.
The input fed into our neural network model is a 34716-dimensional vector and
each element in the vector represents a correlation score between a pair of ROI
(i.e. strength of a functional connection). We analyse the importance of the
functional connections by using the salience scores and the importance of ROI
by computing the sum of salience scores of the functional connections incident
on the ROI. Since the Power atlas [35] does not provide anatomical labels, the
Crossley atlas [12] (which has anatomical labels) was used to map ROI from the
Power atlas on the basis of Euclidean distance. Then, ROI with the top 10%
highest scores are visualised using Nilearn.

From Figure 4b, we found that the salient connections for MDD lie be-
tween the transverse temporal gyrus and lingual gyrus; the transverse tempo-
ral gyrus and thalamus; superior occipital gyrus and precuneus, and between
extra-nuclear and inferior temporal gyrus. For AD, we found that the con-
nections between the superior temporal and subcallosal; superior temporal and
extra nuclear, and between the uncus and inferior temporal regions were salient
(Figure 4a). For MCI, however, we found that only the connections between
the uncus, subcallosal and uncus inferior temporal were salient (supplementary
figure S2(b)). For ADHD, the salient connections were found between the para-
central and superior temporal; paracentral and inferior frontal; inferior temporal
and superior occipital; supramarginal and sub-gyral; and supramarginal and ex-
tra nuclear regions (supplementary figure S2(a)). For ASD, salient connections
were found between regions in the frontal inferior orbital to the putamen, frontal
superior orbital, and frontal inferior operculum; the putamen and temporal pole
superior; and cerebellum and the vermis (supplementary figure S2(c)).

For all the diseases, ROI in the inferior temporal gyrus and paracentral lob-
ule were common among the salient regions. The other most distinctive ROI
for MDD were located in the subcallosal gyrus, supplementary motor area, the
medial frontal gyrus, the parahippocampal gyrus and the posterior cingulate
(Figure 5b); for ADHD in the postcentral gyrus, inferior frontal gyrus, trans-
verse temporal gyrus, superior occipital gyrus, the insula and the medial frontal
gyrus (supplementary figure S3(a)). For both AD and MCI, the salient regions
were found to be in the cerebellum, temporal pole middle, frontal superior me-
dial, parahippocampal and fusiform gyrus (Figure 5a and supplementary figure

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 27, 2020. ; https://doi.org/10.1101/2020.04.22.056382doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.22.056382
http://creativecommons.org/licenses/by-nc-nd/4.0/


S3(b), respectively). For ASD, salient regions were found in the inferior tem-
poral lobe, the rectus, heschl’s gyrus, cerebellum, and the paracentral lobule
(supplementary figure S3(c)).

(a) CN vs AD (b) CN vs MDD

Figure 4: The salience scores of functional connections between brain regions derived while
classifying normal and diseased participants for (a) Alzheimer’s Disease; and (b) Major De-
pressive Disorder. Mid: Middle, Inf: Inferior, Sup: Superior, G: Gyrus

4. Discussion

4.1. DNN models for full feature set

As seen in table 1, the feedforward DNN using the entire feature set is
generally able to achieve better classification accuracies than CNNs and SVMs.
The rather high standard deviation is attributable to the size of the datasets
[57], which typically do not contain more than a few hundred scans. The low
accuracy for ADHD is attributable to the mismatch between the age of the
subjects and the age of the subjects used to derive the Power atlas [35]. Also,
more subtle connectivity differences with respect to CN subjects makes it harder
to classify MCI as compared to AD.

We found that CNNs and DNNs perform consistently better than SVMs.
However, the difference in performance between CNNs and feedforward DNNs
are subtle: except for CN-AD, feedforward DNNs did better than CNNs but
the difference is rarely more than 1%. From these results, CNNs - even the
customised ones - do not seem to be getting any additional significant informa-
tion for functional connectivity. Although CNNs have desirable features such
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(a) CN vs AD

(b) CN vs MDD

Figure 5: The axial, sagittal and coronal views of top 10% salient ROI differentiating normal
and diseased patients for (a) Alzheimer’s Disease, and (b) Major Depressive Disorder.

as parameter sharing, they only capture information within their local receptive
field (usually a small square-shaped subset, or a row or column along a matrix).
Such information is not sufficient to capture the functional connectivity present
in brains as these receptive fields do not consider global connectivity patterns.
On the other hand, the fact that CNNs have fewer parameters than feedforward
DNNs shows the possibility of redundancies in feedforward DNNs which makes
it important to eliminate accessory nodes from feedforward DNNs. With LEAN,
we are able to get a leaner model while methodically removing less salient fea-
tures and nodes (instead of being constricted by the spatial limitations of local
receptive fields).
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4.2. LEAN + CLIP: high accuracy with few parameters

From the results in table 2, we observe that LEAN has the largest accuracy
drop but the smallest number of remaining parameters; but, ‘CLIP + LEAN
(Inputs Only)’ results in the small drop in accuracy but retains the largest num-
ber of parameters. However, ‘CLIP + LEAN’ gives the best of both worlds - the
number of weights retained is close to levels from LEAN, but the accuracy drop
is similar to that of ‘CLIP + LEAN (Inputs Only)’. An implication of our re-
sults is the presence of correlated features in functional connectomes, which can
be exploited to reduce input feature set in functional/structural connectomes.
In our case, we observed that LEAN led to drastic reduction in the input fea-
ture set, thereby removing sets of correlated features entirely. Our results show
that adding a subset of the correlated features in ‘CLIP + LEAN’ (and also in
‘CLIP + LEAN (Inputs Only)’) led to an improvement in the performance of
the classifier.

Crucially, our results show that there is a large amount of redundancy in
neural network models. Our experiments with quantification of overfitting and
time taken per epoch for the proposed model show that the proposed model not
only leads to a reduction in overfitting but is also faster. The latter was ex-
pected since there is a significant reduction in the number of trainable network
parameters. Feedforward networks have been used by researchers in the past
[19, 25, 27] to perform classification on functional connectivity data. However,
these works often use the full set of features and overfitting is a key limitation
in such approaches. In our work, we have proposed a way to reduce the effects
of overfitting and showed how even as it leads to a drastic reduction of param-
eters, the drop in accuracy is minimal. Thus, just a simple feedforward DNN
is sufficient to capture crucial patterns in the data to classify healthy and dis-
eased brains. Adding more nodes in the hidden layers does not improve model
accuracy much (and in some cases such as CN-AD classification, doing so even
leads to poorer generalization).

Although we have only tested our approaches on neuroimaging datasets, they
are also widely applicable to other datasets. LEAN (Algorithm 1) is applicable
in settings where the number of features greatly outnumber the size of the
dataset, or in cases where the dataset is small and will benefit from using fewer
features so as to increase generalizability of the model. CLIP (Algorithm 2) is
applicable to any datasets where there are features that have strong correlations
with each other.

4.3. Identified salient features are clinically relevant

For our algorithm to perform well, it is important that the features classified
as salient by our decoder have clinical relevance to the respective condition. To
verify this, we compare the results of our decoder with results from previous
studies finding disease biomarkers.

For AD/MCI, previous studies have consistently pointed out to changes in
the hippocampal and medial temporal lobe [9, 11, 52]. Accordingly, we found al-
terations in the inferior temporal, parahippocampal [58], fusiform [9], and para-
central lobule [52]. We observed that the most salient connections were from
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the uncus for both AD and MCI, an anterior extremity of the parahippocam-
pal gyrus known for disruption during both AD [59] and MCI [65]. Multiple
functional networks such as the fronto-parietal task-control network, involved
in attention and emotion regulation; the default mode network, for internal
medication; the dorsal attention network, for directing external attention; and
the salience network, which helps in emotion processing or monitoring salient
events have been implicated in MDD [23, 46]. Deficits in cognitive control can
be traced to the anomalies in the fronto-parietal task-control network, whereas
too much internal rumination (and lesser engagement with the external world)
may be reflected in the aberrant connectivity of the default mode network with
other goal-directed networks. The amygdala [26, 36] (part of the subcallosal re-
gion), regions in the inferior temporal [56], the medial frontal lobe [56], posterior
cingulate cortex [63] and supplementary motor area [64] have been implicated
in MDD. In [61], disruption between the connections between regions in the
thalamus and the transverse temporal gyrus were reported, which is consistent
with our results.

Multiple studies have reported anomalies in the default-mode and dorsal at-
tention networks in children and adults suffering with ADHD suggesting altered
functional connectivity with attention and cognitive processing [45, 51, 53, 55].
The postcentral gyrus and paracentral lobule areas involved in motor function-
ing [45, 51], medial and inferior frontal gyrus [39, 45], superior occipital gyrus
[55], and the insula [53] have been found to be different for children/young
adoloscents having ADHD, which are consistent with our results.

Likewise, the frontal orbital regions and Heschl’s gyrus are involved in sen-
sory integration, speech processing and decision-making [24, 37], the putamen
responsible for focusing attention [41], the cerebellar (and vermis) involved in
motor regulation [3] have been previously identified as biomarkers for ASD.

5. Conclusion

In summary, we have proposed two algorithms - LEAN and CLIP - to reduce
overfitting in DNNs making them more generalizable than models that use the
entire feature set. Our approach leads us to an optimal neural network architec-
ture in a single shot that is more efficient than previous methods that relied on
recursive removal of features and nodes. Furthermore, via CLIP, the approach
is customised to reduce the effects of correlated features that are present in
neuroimaging datasets. Our experiments show that using both ’LEAN + CLIP’
took into account both redundancy and correlation in input features and gave
the best balance between drop in accuracy and reduction in trainable weights.
We successfully applied the proposed algorithms on 4 datasets (and 5 different
neurological disorders), showing its application in brain decoding and biomarker
identification. The proposed approach has applications to both structural and
functional neuroimaging datasets and to investigate brain disease.
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[12] Crossley, N.A., Mechelli, A., Vértes, P.E., Winton-Brown, T.T., Patel,
A.X., Ginestet, C.E., McGuire, P., Bullmore, E.T., 2013. Cognitive rel-
evance of the community structure of the human brain functional coac-
tivation network. Proceedings of the National Academy of Sciences 110,
11583–11588.

[13] Deco, G., Kringelbach, M.L., 2014. Great expectations: using whole-brain
computational connectomics for understanding neuropsychiatric disorders.
Neuron 84, 892–905.

[14] Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G.,
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