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ABSTRACT 21 

Infection with hepatitis C virus (HCV) remains to be a major cause of morbidity and mortality 22 

worldwide despite the recent advent of highly effective direct-acting antivirals. The envelope 23 

glycoproteins of HCV are heavily glycosylated with a high proportion of high-mannose glycans 24 

(HMGs), which serve as a shield against neutralizing antibodies and assist in the interaction with 25 

cell-entry receptors. However, currently there is no approved therapeutic targeting this 26 

potentially druggable biomarker. Here, we investigated the therapeutic potential of the lectibody 27 

Avaren-Fc (AvFc), a HMG-binding lectin-Fc fusion protein. In vitro assays showed AvFc’s 28 

capacity to neutralize cell culture-derived HCV in a genotype independent manner with IC50 29 

values in the low nanomolar range. A histidine buffer-based AvFc formulation was developed 30 

for in vivo studies using the PXB human liver chimeric mouse model.  Systemic administration 31 

of AvFc was well tolerated; after 11 consecutive doses every other day at 25 mg/kg, there were 32 

no significant changes in body or liver weights, nor any impact noted in blood human albumin 33 

levels or serum alanine aminotransferase activity. Gross necropsy and liver pathology further 34 

confirmed the lack of discernible toxicity. This treatment regimen successfully prevented 35 

genotype 1a HCV infection in all animals, while an AvFc mutant lacking HMG binding activity 36 

failed to block the infection. These results suggest that targeting envelope HMGs is a promising 37 

therapeutic approach against HCV infection. In particular, AvFc may provide a safe and 38 

efficacious means to prevent recurrent infection upon liver transplantation in HCV-related end-39 

stage liver disease patients.  40 
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INTRODUCTION 41 

Hepatitis C virus (HCV) is an enveloped monopartite positive sense ssRNA virus in the 42 

family Flaviviridae and the causative agent of hepatitis C disease. Its genome encodes three 43 

structural (core, E1, E2) and seven non-structural proteins (p7, NS2, NS3, NS4A, NS4B, NS5A, 44 

NS5B) (1). HCV is highly heterogenous and globally distributed, consisting of seven genotypes 45 

each further subdivided into multiple subtypes. Genotype 1 is the predominant genotype 46 

worldwide and particularly concentrated in high-income and upper-middle income countries, 47 

whereas genotype 3 and 4 are more common in lower-middle and low-income countries (2). In 48 

the United States, injection drug use represents the primary risk factor for contracting HCV 49 

infection (3, 4). Around 15-25% of people acutely infected with HCV will clear the virus, while 50 

the remainder will develop chronic infection that can persist largely unnoticed for decades. 51 

Indeed, many HCV carriers discover their chronic infection after they have developed cirrhosis 52 

(5). Chronic HCV infection is also associated with the development of hepatocellular carcinoma, 53 

and those with the disease are more likely to develop cryoglobulinemia and non-Hodgkin’s 54 

lymphoma (6). 55 

There is no vaccine currently available for HCV. Prior to 2011, the standard chronic 56 

HCV treatment was a non-specific antiviral medication using ribavirin combined with a 57 

pegylated interferon-α, which was associated with significant toxicity and limited treatment 58 

efficacy (7). In 2011, the U.S. Food and Drug Administration approved the first generation of 59 

direct-acting antivirals (DAAs) for HCV: boceprevir and telaprevir, both of which inhibit the 60 

viral protease (NS3/4A) but required cotreatment with ribavirin and peginterferon (8, 9). Further 61 

approval of more potent DAAs, such as NS3/4A, NS5B and NS5A inhibitors led to the 62 

development of oral ribavirin/peginterferon-free regimens (5). Multi-DAA regimens achieve 63 
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sustained virologic response (defined as a period of time with no viral RNA detection) rates as 64 

high as 100%, and are less toxic and more tolerable than their predecessors (10-13). While the 65 

cure rates are remarkable, there exist populations of patients who may not benefit from DAA 66 

therapy (14), especially patients with decompensated cirrhosis due to chronic HCV infection, for 67 

whom liver transplantation may be a last resort (15). Moreover, recurrent infection occurs 68 

universally and rapidly post liver transplantation (16, 17), which increases the risk of accelerated 69 

cirrhosis, graft failure and death (18). DAAs, by their nature, cannot prevent recurrent infection. 70 

Therefore, alternative or complementary therapies to DAAs that can block viral entry to target 71 

cells, such as antibodies or other molecules acting alike, may need to be considered in these 72 

circumstances (18, 19). However, there is currently no entry inhibitor approved for HCV 73 

treatment. 74 

The HCV envelope proteins E1 and E2 are heavily glycosylated and, like glycoproteins 75 

of other enveloped viruses (HIV and the coronaviruses, for instance), have a high proportion of 76 

high-mannose-type N-glycans (HMGs) on their surface (20-22). These glycans are typically 77 

processed to hybrid and complex forms on glycoproteins secreted by healthy cells (23). Thus, the 78 

HMGs on the surface of HCV may be considered a druggable target. We have previously 79 

described the development of an HMG-targeting lectin-Fc fusion protein, or “lectibody”, called 80 

Avaren-Fc (AvFc), which was shown to bind with high affinity to clusters of HMGs on the HIV 81 

envelope protein gp120 and effectively neutralize multiple HIV clades and groups including 82 

HIV-2 and simian immunodeficiency virus (24). Further analysis indicated that AvFc can bind to 83 

HCV E2 protein (24). Therefore, in this study, we aim to investigate the anti-HCV therapeutic 84 

potential of AvFc in in vitro neutralization assays and an in vivo HCV challenge study using 85 

PXB-mice®, a chimeric uPA/SCID mouse model transplanted with human hepatocytes (25).  86 
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 87 

MATERIALS AND METHODS 88 

Animal Care 89 

The use of animals was approved by the University of Louisville’s Institutional Animal 90 

Care and Use Committee and the Animal Ethics Committee of PhoenixBio Company, Ltd. 91 

(Resolution No.: 2281). All animals were given a standard diet and water ad libitum and housed 92 

in a temperature and humidity-controlled facility with a 12-hour day/night cycle.  93 

 94 

Production of AvFc and non-HMG-binding AvFc variant.  95 

 AvFc and a non-HMG-binding variant (AvFc
lec-

) were produced by agroinfiltration with 96 

magnICON® vectors in Nicotiana benthamiana plants as previously described (24). AvFc was 97 

purified from plants after a 7-day incubation period using protein A and ceramic hydroxyapatite 98 

(CHT) chromatography.  99 

 100 

HCV neutralization assays 101 

Huh-7 cells (26) and HEK-293T cells (ATCC) were cultured in Dulbecco's modified 102 

Eagle's medium (DMEM) supplemented with 10% heat-inactivated fetal calf serum and 1% 103 

penicillin/streptomycin. To produce cell cultured HCV (HCVcc), we used a modified version of 104 

the plasmid encoding JFH1 genome (genotype 2a), provided by T. Wakita (National Institute of 105 

Infectious Diseases, Tokyo, Japan) (27, 28). The H77/JFH1 chimera, which expresses the core-106 

NS2 segment of the genotype 1a polyprotein within a genotype 2a background, has been 107 

described previously (29). The genotype 4a ED43/JFH1 (30), genotype 5a SA13/JFH1 (31), and 108 

genotype 6a HK6a/JFH1 (32) infectious HCV recombinants were provided by J Bukh 109 
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(University of Copenhagen, Denmark). Retroviral pseudotypes bearing HCV envelope 110 

glycoproteins of JFH1 virus (HCVpp) expressing the Firefly luciferase reporter gene were 111 

produced in HEK-293T as previously described (33). Inhibitory effects were determined by 112 

quantifying infectivity by indirect immunofluorescence with the anti-E1 mAb A4 (34) or an anti-113 

NS5A polyclonal antibody kindly provided by M Harris (University of Leeds, UK). 114 

 115 

Formulation buffer optimization  116 

Initial buffer screening was performed in 30 mM glutamate, acetate, citrate, succinate, 117 

histidine and phosphate buffers at pH 4.5 – 7.5 (see Supplementary Table 1). All the buffer 118 

agents were purchased from MilliporeSigma (Burlington, MA, USA). AvFc was diafiltrated and 119 

adjusted to 1 mg/mL (or 62.5 μM) in respective buffers. Stability was evaluated by SDS-PAGE 120 

following incubation for 2 weeks at 37°C. The melting temperatures of AvFc were determined 121 

by differential scanning fluorimetry performed on an Applied Biosystems StepOnePlus RT-PCR 122 

system as described previously (24). Briefly, AvFc formulated in various buffers at a 123 

concentration of 50 μM was mixed with a final concentration of 50x SYPRO® Orange 124 

(ThermoFisher Scientific, Waltham, MA, USA) in a 96 well template (USA scientific, Ocala, 125 

FL, USA). The melting temperature (Tm) was determined by the vertex of the first derivative of 126 

the relative fluorescence unit values in the melt curves. AvFc formulated into the optimized 127 

histidine buffer or PBS was then concentrated to 10 mg/mL and incubated at 4°C or room 128 

temperature. Absorbance at 280 nm and 600 nm was measured immediately after concentration 129 

and then again after 16 and 72 h. A280 was measured after centrifugation of precipitate.  130 

 131 

Pharmacokinetic analysis 132 
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A pharmacokinetic profile for AvFc was generated following a single 25 mg/kg i.p. 133 

injection in C57bl/6 mice (The Jackson Laboratory, BarHarbor, ME, USA; 8-week-old males 134 

and females; n=4 per time point) and sampling blood at 0.5, 1, 2, 4, 8, 12, 24 and 48 h post 135 

injection. The concentration of AvFc was then measured using an HIV gp120-coated ELISA. 136 

Briefly, a recombinant gp120 (HIV CM235, NIH AIDS Reagent Program) was coated overnight 137 

at 0.3 μg/mL followed by blocking with 5% dry milk-PBST. Serum samples at varying dilutions 138 

were incubated for 2 h followed by detection by a goat anti-human Fc-HRP secondary antibody 139 

(ThermoFisher Scientific). The plasma concentration of AvFc was calculated by interpolating 140 

from a standard curve. PK parameters were calculated using the PKSolver Microsoft Excel Add-141 

on (35). 142 

 143 

Toxicological analysis and HCV challenge study in PXB-mice  144 

The mouse model of toxicological analysis and HCV infection and toxicological analysis 145 

was performed in PXB-mice® (cDNA-uPA
wild/+

/SCID, cDNA-uPA
wild/+

: B6;129SvEv-Plau, 146 

SCID: C.B-17/Icr-scid/scid Jcl). These mice contain transplanted human hepatocytes with a 147 

replacement index of greater than 70% as determined by blood human albumin (h-Alb) 148 

measurements prior to virus inoculation (25). Mice were separated into 3 treatment groups: 149 

AvFc
lec-

 (25 mg/kg, n=5) for 11 doses, or AvFc (25 mg/kg, n=5 each) for 8 or 11 doses. 150 

Treatments were co-administered i.p. with virus inoculation (5 x 10
5
 copies/kg) on day 0 with a 151 

genotype 1a strain (PBC002) and every other day thereafter. The general conditions and body 152 

weights of the animals were monitored every other day, while serum HCV RNA and blood h-Alb 153 

were measured every 7 days by RT-PCR and latex agglutination immunonephelometry (LZ Test 154 

“Eiken” U-ALB, Eiken Chemical Co., Ltd.) respectively. Serum alanine aminotransferase 1 155 
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(ALT) levels were determined either using a Fujifilm DRI-CHEM NX500sV clinical chemistry 156 

instrument or by ELISA (Institute of Immunology Co., Ltd., Tokyo, Japan). At the study 157 

termination on day 35, animals were euthanized and subject to gross necropsy and general 158 

health. Blood was also drawn via cardiac puncture and used for ALT, HCV RNA and h-Alb 159 

analyses.  160 

 161 

Histopathological analysis of liver tissues 162 

 Hematoxylin and eosin-stained liver sections from 3-4 mice per group were generated by 163 

Nara Pathology Research Institute Co., Ltd. (Nara, Japan) and evaluated by pathologists at 164 

SkyPatho, LLC. All slides were examined by a blinded, board-certified veterinary pathologist 165 

under a light microscope (BX43, Olympus Corporation, Tokyo, Japan). The tissues were 166 

assigned a severity score for a number of characteristics based on the 5-point scoring system of 167 

the CDISC SEND Controlled Terminology where 0: unremarkable, 1: minimal, 2: mild, 3: 168 

moderate, 4: marked; 5: severe; and P: present. 169 

 170 

Statistical Analyses 171 

 Statistical significance was analyzed by the GraphPad Prism 6 software (La Jolla, CA, 172 

USA). Mouse body weights, Alb, ALT and HCV RNA levels were compared using a repeated 173 

measures two-way analysis of variance (ANOVA) with the Geisser-Greenhouse correction. 174 

Multiple comparisons between groups at each time point were conducted and corrected using the 175 

Tukey method with the threshold of significance set at p = 0.05. Liver:body weight ratios were 176 

compared using one-way ANOVA. 177 

 178 
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RESULTS 179 

AvFc exhibits broad anti-HCV activity in vitro 180 

 Building on our previous observation that AvFc has affinity to a recombinant HCV E2 181 

envelope protein (24), we first examined whether AvFc inhibits HCV infection in vitro using 182 

multiple genotypes of cell culture-produced virus (HCVcc) or pseudotyped virus (HCVpp). 183 

AvFc significantly blocked the infection of the human liver cell line Huh-7 by HCVcc from 184 

genotypes 1a, 2a, 4a, 5a, and 6a, with 50% inhibitory concentration (IC50) values in the low 185 

nanomolar range (Table 1 and Figure 1A). Compared to Avaren monomer, AvFc overall 186 

showed approximately 2-log higher activity, while no inhibitory effect was observed for a plant-187 

produced anti-HIV broadly neutralizing antibody VRC01 that shares the same human IgG1 Fc 188 

region with AvFc (36). Additionally, Avaren and AvFc, but not VRC01, effectively neutralized 189 

HCVpp harboring a murine leukemia virus backbone, suggesting that the lectin and the lectibody 190 

act as an entry inhibitor (Figure 1B).  191 

 192 

Formulation of AvFc into a biocompatible buffer for in vivo studies 193 

Previously, we found that AvFc has limited solubility in phosphate-buffered saline (PBS) 194 

at concentrations above 1 mg/mL (unpublished observation). In order to facilitate in vivo studies 195 

we screened for an optimal liquid formulation for systemic administration that can impart 196 

improved stability and solubility to AvFc at higher concentrations. Initial buffer screening 197 

revealed that AvFc is prone to degradation at and below pH 6.5, suggesting that AvFc is not 198 

stable in acidic pH conditions (Figure S1). Further pre-formulation studies led us to identify an 199 

optimal buffer composed of 30 mM histidine, pH 7.0, 100 mM sucrose and 100 mM NaCl. 200 

Although AvFc showed comparable Tm in the histidine buffer and PBS in differential scanning 201 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 24, 2020. ; https://doi.org/10.1101/2020.04.22.056754doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.22.056754


 10 

fluorimetry (62.49 ± 0.13°C vs. 62.68 ± 0.25°C; Figure 2A), SDS-PAGE analysis revealed that 202 

the lectibody holds superior stability in the histidine buffer upon accelerated stability testing via 203 

overnight incubation at 55°C (Figure 2B). When concentrated to ~10 mg/mL, AvFc remained 204 

stable in solution in the histidine buffer over 72 h at 4°C and room temperature, while showing a 205 

significant concentration decrease concomitant with increasing turbidity in PBS (Figure 2C), 206 

further demonstrating the histidine buffer’s superiority for AvFc formulation. 207 

 208 

Pharmacological and toxicological analysis of AvFc in mice 209 

To determine an optimal dosing regimen for an HCV challenge experiment, a 210 

pharmacokinetic analysis of AvFc was conducted in C57bl/6 mice. After a single i.p. injection of 211 

AvFc at a dose of 25 mg/kg, peak drug concentration was observed between 2 and 4 h, with a 212 

half-life of 24.5 h in male and 18.5 in female animals (Figure 3). After 48 h, in both male and 213 

female animals the plasma concentration of AvFc remained above a target trough concentration 214 

of 130 nM (10 μg/mL), at which AvFc showed >90% neutralization effects against HCV (see 215 

Figure 1). Consequently, these results suggested that administration of the drug every other day 216 

(Q2D) might be sufficient to keep the virus under control in a murine HCV challenge model.  217 

We then assessed the safety of Q2D administration of AvFc in PXB-mice®. To 218 

effectively discern potential toxicity associated with AvFc’s HMG-binding activity, we included 219 

an AvFc variant lacking HMG-binding activity as a control (AvFc
lec-

; Figure S2). PXB mice 220 

received either the vehicle (the histidine buffer described above) Q2D for 11 total doses, AvFc at 221 

25 mg/kg Q2D for a total of 8 or 11 doses, or AvFc
lec-

 at 25 mg/kg Q2D for 11 total doses. As 222 

shown in Figure 4A-C, no significant differences in either body weights, blood h-Alb levels or 223 

serum ALT activity were observed. Additionally, no significant differences in relative liver 224 
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weight were seen (Figure 4D). These results indicate that AvFc, formulated in the histidine 225 

buffer, is well tolerated in the immunocompromised mice engrafted with human hepatocytes.  226 

 Histopathology was performed to evaluate any potential toxicity to the human liver grafts 227 

due to AvFc administration (Table 2 and Figure 5). In the human hepatocyte area, slight to 228 

moderate (score 2 to 3 in Table 2) macrovesicular fatty change, a characteristic change of human 229 

hepatocytes in the PXB-mouse, was observed in all mice including the vehicle-treated group 230 

(Figure 5A-C). Minimal inflammatory cell infiltration around vacuolated hepatocytes (Score 1) 231 

was seen in one mouse each from the 11 dose AvFc and AvFc
lec-

 groups (Figure 5D, E); 232 

however, this was unlikely treatment-related as a similar change is occasionally seen in PXB-233 

Mice (PhoenixBio, unpublished observation). No AvFc treatment-specific change was observed, 234 

except for an incidental pigmentation in the Glisson’s sheath in one mouse (Figure 5F). 235 

Collectively, it was concluded that there was no treatment-related adverse effect in the liver 236 

tissue. The full pathology report may be found in the Supplementary Information. 237 

 238 

AvFc protects against HCV infection in vivo 239 

Lastly, we assessed AvFc’s protective efficacy against HCV infection in vivo using the 240 

treatment regimen described above. PXB mice were inoculated i.p. with a genotype 1a virus 241 

along with initial treatment with 25 mg/kg of AvFc or AvFc
lec-

 on day 0. As shown in Figure 242 

6A, AvFc
lec-

-treated mice showed high serum HCV RNA levels from day 7 post challenge 243 

through the end of the study on day 35. In sharp contrast, animals treated with both 8 and 11 244 

doses of AvFc did not show any detectable level of HCV RNA in sera, indicating that the 245 

lectibody prevented the infection of human liver grafts by the virus. Similar to the results in 246 

Figure 3, overall no major toxicity signal was noted in body weights, h-Alb or h-Alt levels 247 
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between the test groups although there was a temporal drop in body weight and h-Alb in one of 248 

the AvFc-treated group at an early timepoint, indicating that the liver grafts remained functional 249 

over the course of the study (Figure 6B-D). 250 

 251 

DISCUSSION 252 

In this study we demonstrated that the HMG-binding lectibody AvFc exhibits broad 253 

genotype-independent anti-HCV activity. Additionally, systemic administration of AvFc 254 

effectively protected chimeric human-mouse liver mice from infection with a genotype 1a virus 255 

without apparent toxicity, providing the first in vivo proof-of-concept for the lectibody’s antiviral 256 

potential.  257 

The mechanism of HCV neutralization by AvFc is likely through binding to HMGs on 258 

the E1/E2 envelope protein dimer, which blocks their interaction with host cell receptors and 259 

viral entry. Unlike HIV envelope glycoproteins, whose glycan content can vary widely between 260 

strains, the number and position of glycosylation sites on E1/E2 are highly conserved, indicating 261 

their critical role in HCV’s infectious processes (37). The notion that AvFc functions as an entry 262 

inhibitor is supported by the facts that the lectibody has affinity to the E2 protein (24) and that 263 

other mannose-binding lectins, such as Griffithsin or Cyanovirin-N, inhibit entry in this manner 264 

(38, 39). AvFc inhibited multiple genotypes of HCV with an average IC50 over 100-fold lower 265 

than that of the monomer Avaren lectin (Table 1), indicating that the multivalent recognition of 266 

HMGs on the surface of the virus, brought about by the dimerization of Avaren via Fc fusion, led 267 

to greater entry inhibition. Unlike other antiviral lectins, however, the inclusion of the human 268 

IgG1 Fc region implicates the possibility of Fc-mediated effector functions, such as antibody-269 

dependent cell-mediated cytotoxicity, against infected cells. In fact, Fc-mediated effector 270 
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functions greatly contributed to the antiviral potency of AvFc against HIV, as determined by a 271 

primary cell-based inhibition assay and an antibody-dependent cell-mediated viral inhibition 272 

assay (24). Accordingly, the remarkable efficacy seen in the present in vivo HCV challenge study 273 

may be partially Fc-mediated. Further investigations are necessary to address this possibility. 274 

The present study also demonstrated that AvFc therapy is well tolerated in mice and 275 

human hepatocytes, as Q2D i.p. administration of 25 mg/kg of AvFc up to 11 doses did not show 276 

any obvious toxicity in PXB mice by gross necropsy or histopathology of engrafted human 277 

hepatocytes, nor did it result in significant changes in body weight, h-Alb, or ALT levels (Figure 278 

3, 4). We hypothesize that the lack of any significant toxicity is attributable to AvFc’s unique 279 

HMG-binding mechanism, whereby it requires multivalent interaction with several HMGs in 280 

proximity to exhibit high affinity binding to a glycoprotein target. In line with this hypothesis, 281 

Hoque et al. demonstrated that the three binding pockets of the parent lectin actinohivin can bind 282 

up to three independent HMGs, providing high affinity binding when the HMGs are in relatively 283 

close proximity (40). This implies that AvFc may not effectively interact with healthy normal 284 

cells and tissues that do not usually exhibit clusters of HMGs on their surfaces. In contrast, 285 

glycoproteins of many enveloped viruses display a high proportion of these immature forms of 286 

N-glycans (20-22). While HCV E2 has fewer N-glycosylation sites (around 11) than the HIV 287 

glycoprotein gp120 (which has between 20 and 30 depending on the strain), E2 is likely present 288 

on the surface of HCV at a higher density and thus provides higher local concentrations of 289 

HMGs (41). Further studies are necessary to reveal a threshold HMG concentration which 290 

enables efficient interaction between AvFc and the surfaces of cells or viruses. 291 

While alcoholic liver disease has now surpassed HCV infection as the number one 292 

indication for liver transplantation in the US, a large number of procedures will continue to be 293 
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performed for the foreseeable future in patients with HCV-related decompensated cirrhosis (42). 294 

A major outstanding issue is the lack of effective treatment protecting the allograft liver from 295 

recurrent infection by the virus that remained circulating in the periphery at the time of 296 

transplant. As a consequence, reinfection of donor livers universally occurs, as early as in the 297 

first 90 minutes upon reperfusion (17), and can result in accelerated fibrosis and increased risk of 298 

graft failure, cirrhosis, and hepatocellular carcinoma (43). In fact, allograft failure due to 299 

reinfection is the leading cause of secondary transplants and death in HCV-infected patients who 300 

have received liver transplant (44), Patients cured of HCV with DAAs after liver transplantation 301 

still have a higher than normal risk of hepatocellular carcinoma (45), and the high cost of the 302 

drugs represents a significant barrier to their widespread use. Furthermore, emergent drug 303 

resistance even in DAA combination therapies, though rare, represents a particular challenge for 304 

further treatment (46). Thus, while the effectiveness of DAAs is not in question, there are still 305 

unmet needs that may be addressed through the use of entry inhibitors. As of yet, no entry 306 

inhibitor has been approved for the treatment or prevention of HCV. Two major drug candidates, 307 

Civacir® and MBL-HCV1, have shown some promise in clinical trials (NCT01804829, 308 

NCT01532908) (47, 48). Though larger studies are needed, it appears that entry inhibitors in 309 

combination with DAAs may represent a new treatment paradigm for HCV patients receiving 310 

liver transplant. Despite that both MBL-HCV1 and Civacir® are capable of neutralizing a broad 311 

range of HCV genotypes, viral resistance can still develop through mutations in the envelope 312 

proteins E1/E2, in particular through shifting glycan positions (49, 50). In this regard, AvFc in its 313 

own right could be less susceptible to amino acid mutations because it targets the glycan shield 314 

of the virus rather than a specific epitope. Deletions of glycans, even if occurring following 315 

prolonged exposure to a carbohydrate-binding agent like AvFc, may result in significant 316 
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decrease in viral fitness by decreasing E1/E2 incorporation into HCV particles or increased 317 

susceptibility to humoral immunity due to breach in the glycan shield (37, 51). Our results 318 

provide a foundation to test the above hypotheses and feasibility of the HMG-targeting anti-HCV 319 

strategy. 320 

In conclusion, the present study provided an important proof of concept for the 321 

therapeutic potential of AvFc against HCV infection via targeting envelope HMGs. In particular, 322 

the lectibody may provide a safe and efficacious means to prevent recurrent infection upon liver 323 

transplantation in HCV-related end-stage liver disease patients. 324 
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FIGURES 520 

 521 

Figure 1: In vitro HCV inhibition assays. (A) Avaren and Avaren-Fc (AvFc) inhibit cell 522 

culture derived HCV. JFH1 virus was preincubated with Avaren, AvFc or the control antibody 523 

VRC01 for 30 min at 37°C before incubation with Huh-7 cells. At 48 h post-infection, infected 524 

cells were quantified by indirect immunofluorescence with an HCV-specific antibody. Results 525 

are expressed as percentage of infection compared to a control infection in the absence of 526 

compound. Error bars indicate standard errors of the mean (SEM) values from at least three 527 

independent experiments. (B) Avaren and AvFc inhibit HCV entry. Retroviral pseudotypes 528 

bearing HCV envelope glycoproteins of JFH1 virus (HCVpp) were preincubated with Avaren, 529 

AvFc or the control antibody VRC01 for 30 min at 37°C before incubation with Huh-7 cells. At 530 

48 h post-infection, cells were lysed to quantify the luciferase activity. Results are expressed as 531 

percentage of infection compared to the control infection in the absence of compound. Error bars 532 

indicate SEM values from at least three independent experiments. 533 
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 534 

Figure 2: Liquid formulation development for AvFc. (A) Differential Scanning Fluorimetry 535 

(DSF) for melting temperature (Tm) measurement. AvFc was prepared in 30 mM histidine buffer, 536 

100 mM NaCl, 100 mM sucrose (“Histidine”; black line) or phosphate buffered saline (PBS; 537 

grey line) at a concentration of 1 mg/mL and analyzed in triplicate in the presence (solid line) or 538 

absence (dashed line) of the fluorescent dye SYPRO® Orange. Tm values were 62.49 ± 0.13°C in 539 

the Histidine buffer and 62.68 ± 0.25°C in PBS, as determined by the vertex of the first 540 

derivative of relative fluorescence unit values. (B) Accelerated stability testing of AvFc in the 541 

histidine buffer and PBS. AvFc, prepared at 1 mg/mL in the histidine buffer (“Histidine”; see 542 

above) or PBS were incubated overnight at 55°C, and 10 µg of the protein from each formulation 543 
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was analyzed by SDS-PAGE under non-reducing conditions. A representative Coomassie-544 

stained gel image is shown. The band at around 75 kDa corresponds to AvFc. Note that, after 545 

overnight incubation, PBS shows less band intensity for AvFc and more large-size aggregate 546 

bands than the histidine buffer. (C) Time course of concentration change and turbidity of AvFc 547 

solution in the histidine buffer and PBS. AvFc was formulated at 10 mg/mL in respective buffers 548 

and incubated at 4°C or room temperature (RT). After 16 and 72 h, the concentration was 549 

measured using a theoretical extinction coefficient at 280 nm of 1.6493 (mg/mL)
-1

 cm
-1

, whereas 550 

turbidity was assessed by absorbance at 600 nm. Representative data are shown for samples 551 

analyzed in triplicate.  552 
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 553 

Figure 3: Pharmacokinetics of AvFc in Mice. AvFc pharmacokinetics were evaluated in 554 

C57bl/6 mice following a single i.p. injection of 25 mg/kg with blood sampled at various time 555 

points. Data are expressed as mean ± SEM from 4 mice per group. The average half-life was 556 

24.5 h and 18.5h in male and female mice, respectively, as determined by the PKSolver 557 

Microsoft Excel Add-on. The peak concentration occurred between 2 and 4 h post 558 

administration. The target trough concentration of 130 nM (corresponding to 10 μg/mL) is 559 

indicated by a dashed line.  560 

 561 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 24, 2020. ; https://doi.org/10.1101/2020.04.22.056754doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.22.056754


 28 

 562 

Figure 4: Toxicological analysis of systemically administered AvFc in the PXB® human 563 

liver chimeric mouse model. PXB mice were administered i.p. with AvFc or AvFc
lec-

 at 25 564 

mg/kg (n=4 each), or the histidine buffer vehicle control (n=3) every 2 days (Q2D) and 565 

monitored for body weights, blood human albumin (h-Alb) levels and serum alanine 566 

aminotransferase (ALT) levels over 42 days. (A) Percent change of body weights from the initial 567 

day of dosing (Day 0). (B) Blood h-Alb levels. (C) Serum ALT levels. (D) Ratio of the liver 568 

weight to the body weight of individual mice at necropsy. Each data point represents mean ± 569 

SEM (A-C) and individual data with mean ± SEM (D) in each group. No significant changes in 570 
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any of the safety endpoints were noted between the groups (A-C: two-way analysis of variance 571 

(ANOVA); D: one-way ANOVA). 572 

  573 
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 574 

Figure 5: Histopathological examination of PXB mouse liver tissues. Representative 575 

hematoxylin/eosin-stained liver tissue section images corresponding to histopathological findings 576 

in Table 2 are shown. Liver tissues are from the toxicological study in Figure 4. (A) A 4x image 577 

from an animal in the vehicle control group (mouse ID: 103 in Table 2) showing low 578 

magnification of vacuolated hepatocytes. (B) A 10x image from a portion of panel A, containing 579 

many human hepatocytes with a large, well-defined rounded vacuole. (C) Higher magnification 580 

(40x) of panel B. (D) A 10x image from an animal in the AvFc
lec-

 group (ID: 202 in Table 2), 581 

showing small foci of inflammatory cell inflammation in the human hepatocyte area. (E) Higher 582 

magnification (40x) of panel D. Inflammatory cells appear to surround vacuolated hepatocytes. 583 

(F) A 20x image from an animal in the AvFc group (8 total doses; ID: 401 in Table 2). 584 

Histiocytic brown pigmentation in the Glisson’s sheath is noted only in this mouse. 585 
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 587 

Figure 6: The protective effect of AvFc against HCV challenge in PXB mice. PXB mice were 588 

challenged i.p. with a HCV genotype 1a virus on Day 0 simultaneously with an initial treatment 589 

i.p. with either 25 mg/kg of AvFc or AvFc
lec-

. Treatment was continued Q2D for a total of 8 or 590 

11 doses for AvFc and 11 doses for AvFc
lec-

 (n=5 each). The general conditions and body 591 

weights of the animals were monitored every other day, while serum HCV RNA and blood h-Alb 592 

were measured every 7 days. (A) Serum HCV RNA levels. AvFc treatment (both 8 and 11 doses) 593 

showed no detectable HCV RNA at any time point. **, ***p < 0.01, 0.001 (AvFc
lec-

 vs. both 594 

AvFc 8 and 11 doses); two-way ANOVA with Tukey’s multiple comparison test. (B-D) Time 595 

course of body weight change from day 0 (B), blood h-Alb levels (D) and serum h-Alt 596 

concentrations (D). Each data point represents mean ± SEM in each group. *p < 0.05 (AvFc
lec-
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vs. AvFc 8 doses in B and AvFc
lec-

 vs. AvFc 11 doses in C]; two-way ANOVA with Tukey’s 598 

multiple comparison test. No significant difference between groups at any timepoint was noted in 599 

D. 600 

 601 

 602 

TABLES 603 

Table 1: IC50 values for AvFc and Avaren against HCVcc 604 

Virus Genotype Avaren IC50 (nM) AvFc IC50 (nM) 

JFH1/H77 1a 529.28 ± 158.78 1.69 ± 0.39 

JFH1 2a 484.62 ± 109.16 1.69 ± 0.78 

JFH1/ED43 4a 204.27 ± 1.65 2.85 ± 0.91 

JFH1/SA13 5a 148.86 ± 2.48 2.33 ± 0.13 

JFH1/HK6a 6a 114.95 ± 52.93 1.95 ± 0.78 

 Average: 269.39 ± 65.00 2.10 ± 0.60 

 605 

 606 

Table 2: Histopathology of chimeric mouse liver tissue 607 

 Vehicle AvFc
lec- 

AvFc, 11 doses AvFc, 8 doses 

 101 102 103 201 202 203 204 301 302 303 304 401 402 403 404 

Mouse hepatocytes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Human hepatocytes 

Fatty change, 

macrovesicular 
2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 

Infiltrate, inflammatory cell, 

around vacuolated 

hepatocyte 

0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 

Portal canal and others 

Hepatocellular carcinoma, 

trabecular, with 

extramedullary 

hematopoiesis 

P 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Metaplasia, osseus 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pigmentation, brown, 

histiocyte, Glisson’s 

sheath, focal 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
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