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Abstract: Background- The bacterial GlgE pathway is the third known route to glycogen and 

is the only one present in mycobacteria. It contributes to the virulence of Mycobacterium 

tuberculosis. The involvement of GlgE in glycogen biosynthesis was discovered twenty years 

ago when the phenotype of a temperature-sensitive Mycobacterium smegmatis mutation 

was rescued by the glgE gene. The evidence at the time suggested glgE coded for a 

glucanase responsible for the hydrolysis of glycogen, in stark contrast with recent evidence 

showing GlgE to be a polymerase responsible for its biosynthesis. Methods- We 

reconstructed and examined the temperature-sensitive mutant and characterised the 

mutated GlgE enzyme. Results- The mutant strain accumulated the substrate for GlgE, a-

maltose-1-phosphate, at the non-permissive temperature rather than glycogen. The 

glycogen assay used in the original study was shown to give a false positive result with a-

maltose-1-phosphate. The accumulation of a-maltose-1-phosphate was primarily due to the 

lowering of the kcat
app of GlgE, rather than a loss of thermo stability. The reported rescue of 

the phenotype by GarA appeared not to involve a direct interaction with GlgE. It more likely 

acts as a decoy to prevent the Ser/Thr protein kinase PknB from phosphorylating GlgE, 

alleviating the polymerase from negative regulation. Conclusions- We have therefore been 

able to reconcile apparently contradictory observations and shed light on the molecular basis 

for the phenotype of the temperature-sensitive mutation. General Significance- This study 

highlights how perturbing flux through the GlgE pathway without blocking it can affect the 

growth rate of mycobacteria. 
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1. Introduction 
 

A third biosynthetic pathway to produce glycogen has been elucidated relatively recently 

[1,2]. This involves the enzyme GlgE (Fig. 1) acting as the polymerase [1,3]. GlgE was first 

identified as an enzyme involved in glycogen metabolism in 1999 [4]. Intriguingly, it was then 

reported that a temperature-sensitive mutant appeared to accumulate glycogen, which is the 

opposite of what would be expected given our current understanding of the GlgE pathway. 

This study addresses this apparent discrepancy. 

 

 
Fig. 1. Glycogen (α-glucan) pathways in mycobacteria. The scheme shows how glucose-6-

phosphate (G6P) can be converted to α-glucan via the following intermediates; glucose-1-

phosphate (G1P), ADP-glucose (ADPG) or UDP-glucose (UDPG), trehalose-6-phosphate 
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(T6P), and a-maltose-1-phosphate (M1P). The regulation of GlgE and GarA by PknB is 

indicated. The figure is adapted from [5]. 

 

 

Glycogen is well known as a carbon and energy storage molecule [6]. When a temperature-

sensitive Mycobacterium smegmatis mutant was isolated that appeared to accumulate 

glycogen (SMEG53), the phenotype was complemented by the glgE gene [4]. The sequence 

of the genomic copy of the glgE gene revealed a His349Tyr amino acid substitution was 

present in the GlgE protein of the temperature-sensitive mutant. There appeared to be a 

correlation between the accumulation of glycogen with the cessation of exponential growth 

at the non-permissive temperature of 42 °C. Furthermore, there also appeared to be a 

correlation between the accumulation of glycogen and growth rate and colony morphology at 

lower permissive temperatures. Suppression of the temperature-sensitive phenotype was 

observed in certain growth conditions and by the over-expression of garA, which codes for a 

forkhead-associated domain protein [7]. 

 

GlgE is a GH13_3 CAZy family member [8]. The GH13 family comprises proteins with 

several enzyme activities, most notably α-amylases [9]. On this basis, GlgE was initially 

predicted to be a hydrolase capable of degrading the α-1,4 linkages of glycogen (glucanase) 

[4]. Given the interpretation of the results of the above study and the bioinformatic prediction, 

it was concluded that GlgE is a glucanase and that it is involved in glycogen recycling that is 

essential for exponential growth. 

 

However, it has subsequently and unequivocally been shown that GlgE possesses α-

maltose-1-phosphate:(1→4)-α-D-glucan 4-α-D-maltosyltransferase polymerase-type activity 

(EC 2.4.99.16) and some disproportionation activity, but no detectable hydrolase activity 

[1,10]. The polymerases for each of the known glycogen biosynthetic pathways extend 

existing oligomers and polymers to generate linear α-1,4-linked chains [3,11]. In all three 

pathways, a branching enzyme GlgB then introduces α-1,6 branchpoints. The GlgE pathway 

uses a-maltose-1-phosphate as the building block for the biosynthesis of an α-glucan that is 

similar to classical glycogen except for its fine structure [3]. There are two routes to the 

formation of a-maltose-1-phosphate in mycobacteria (Fig. 1). One is via trehalose and 

maltose plus ATP, involving trehalose synthase and maltose kinase [1,2], while the other is 

via glucose-1-phosphate plus ADP-glucose involving a-maltose-1-phosphate synthase 

[5,12]. The GlgE-derived glycogen is partially exported by Mycobacterium tuberculosis to 

form a loosely attached capsule that is associated with increased virulence [5,13]. By 
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contrast, the two classical glycogen biosynthetic pathways that use ADP-glucose or UDP-

glucose [6] are now known to be absent in mycobacteria [5]. 

 

In summary, there is an apparent inconsistency between the initial study suggesting GlgE is 

a hydrolase [4] and subsequent work showing that it is a polymerase [1,2,10]. Since GlgE is 

a polymerase that uses a-maltose-1-phosphate, a presumably compromised version of GlgE 

would be expected to accumulate this building block, as has been observed in other studies 

[1]. It is therefore possible that the glycogen assay used in the 1999 study, based on an 

amyloglucosidase and the quantification of released glucose [4], was also capable of 

detecting a-maltose-1-phosphate. Interestingly, the GarA protein is known to regulate 

carbon and nitrogen metabolism through binding to other proteins [7]. Perhaps GarA binds to 

GlgE and rescues the temperature-sensitive version. However, it is also a substrate of the 

regulatory Ser/Thr protein kinase PknB, which in turn has also been shown to negatively 

regulate GlgE [14]. Perhaps GarA therefore rescues the GlgE mutation through interfering 

with the regulatory function of PknB. The present study aims to test these hypotheses. 

 

2. Materials and methods 
 
2.1. Recombinant M. smegmatis GlgE and GarA 

 
The M. smegmatis glgE gene was synthesized with optimized codon usage for expression in 

Escherichia coli (Genscript Corporation, Piscataway, NJ), allowing the production of GlgE 

with a 6×His tag and a TEV cleavage site at its N-terminus. The gene coding for the H349Y 

GlgE variant was generated from the synthesized wild-type glgE gene using a QuikChange 

Lightening kit (Agilent). The constructs were ligated into pET21a expression vectors 

(Novagen, Darmstadt, Germany) using NdeI and BamHI restriction sites. E. coli BL21 (DE3) 

Star (Novagen) bearing each plasmid were grown at 25 °C to an optical density of 0.6 at 600 

nm in Lysogeny Broth (LB) and expression was induced with 0.5 mM isopropyl β-D-

thiogalactopyranoside (IPTG). Bacteria were harvested and lyzed after a further 16 h 

incubation. The enzyme was purified using a 1 ml HisTrap FF column (GE Healthcare, 

Amersham, United Kingdom) with imidazole gradient elution and an S200 16/60 gel filtration 

column (Pharmacia Biotech, Amersham, United Kingdom) eluted with 20 mM Tris buffer, pH 

8.5, containing 100 mM NaCl. GlgE-containing fractions were pooled and concentrated to 

~1.5 mg/ml and aliquots were stored at -80 °C. An M. smegmatis garA construct was ligated 

into a pETPhos expression vector using NdeI and BamHI restriction sites [14]. E. coli BL21 

(DE3) Star (Novagen) bearing this plasmid was grown at 30 °C to an optical density of 0.6 at 
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600 nm in LB and expression was induced with 0.2 mM IPTG. Bacteria were harvested and 

lyzed after a further 3 h incubation. The enzyme was purified using a 1 ml HisTrap FF 

column (GE Healthcare, Amersham, United Kingdom). The enzyme was dialysed into 20 

mM Bis-Tris propane, pH 7.0, containing 150 mM NaCl and concentrated to 9 mg/ml and 

aliquots were stored at -80 °C. A Duet strategy was used to generate hyper-phosphorylated 

GlgE and H349Y proteins as described previously [14]. The glgE genes were cloned into the 

pCDFDuet-1 vector already carrying the sequence encoding the M. smegmatis PknB kinase 

domain, thus generating the plasmids pDuet_glgE and pDuet_H349Y. Purification was 

identical to that of the non-phosphorylated GlgE variants to yield phosphorylated wild-type 

and H349Y GlgE. 
 

2.2. Enzyme assays 

 
Unless otherwise stated, all enzyme assays were carried out in 100 mM Bis-Tris propane, 

pH 7.0, containing 50 mM NaCl. GlgE activity was monitored at 21 °C using an end-point 

assay monitoring the quantitative release of inorganic phosphate with malachite green [15]. 

The concentration of free inorganic phosphate was estimated from a standard curve. 

Reaction mixtures of 25 μl comprised 1 mM maltohexaose and 0.25 mM a-maltose-1-

phosphate. Enzyme concentrations were such to allow reactions to progress linearly for 10 

min with total donor consumption being < 40%. Reactions were quenched with 175 μl of 

malachite green and incubated for 20 min at 21 °C before the absorbance at 630 nm was 

measured on a SpectraMAX Plus microplate spectrophotometer using SOFTmax PRO 3.1.1 

software. The effect of pH was determined using 100 mM MES (pH 6.0), Bis-Tris (pH 6.5), 

Bis-Tris propane (pH 7.0), HEPES (pH 7.5) and Tris (pH 8.0) buffers. Acceptor preference 

used maltose, maltotriose, maltotetroase, maltopentaose, maltohexaose and maltoheptaose 

at 1 mM each. The effect of salt was determined from 0 to 350 mM NaCl. Temperature de-

activation of GlgE and GlgE H349Y was performed by pre-incubating protein at 21, 35, 40, 

45 and 50 °C for 20 min and assaying at 21 °C. Temperature de-activation rescue 

experiments were performed as above, but in the presence of 50 µM M. smegmatis GarA. 
The effect of temperature on enzyme activity was determined by measuring initial rates 

(v0/[E]) over a temperature range of 25 to 55 °C in 5 °C increments, with reaction mixtures of 

40 µl comprising 1 mM maltohexaose and 1 mM a-maltose-1-phosphate. Enzyme kinetics at 

permissive (30 °C) and non-permissive (42 °C) temperatures were performed with 

maltohexoase concentrations between 1 and 150 mM and 1 mM a-maltose-1-phosphate. 

Initial rates were measured by quenching 6 μl reaction aliquots in 94 μl of 1 M HCl at time 

points from 1 to 8 min. The quenched reactions were incubated with 700 μl of malachite 
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green assay solution for 20 min at 21 °C, and the absorbance at 630 nm was measured on a 

Perkin Elmer Lambda 18 or 25 spectrophotometer. Reaction rates were linear over at least 

the first 4 min. Enzyme kinetics for maltohexaose were fitted to a substrate inhibition model. 

 

𝑣!/[𝐸] 	= 	
𝑘"#$	[𝑆]

𝐾% + [𝑆](1 + [𝑆]𝐾&	
)

 

 

The hydrolysis of a-maltose-1-phosphate was tested using Aspergillus niger 

amyloglucosidase from Megazyme (high purity for use in Megazyme Total Starch method) in 

100 mM sodium acetate buffer, pH 4.0, at 25 °C. 

 

2.3. Thermofluor assay 

 
Assay mixtures of 50 µl containing 0.6 mg/ml protein, 20 mM Bis-Tris propane, pH 7.0 and 

SYPRO Orange protein stain dye (Sigma). Melting curves were recorded with a temperature 

range of 20 to 95 °C, using a DNA Engine Opticon 3 real time PCR system (MJ Research) 

with Opticon Monitor 3.1 analysis software (BioRad). 

 

2.4. Circular Dichroism 

 
Experiments were performed using a Chirascan-Plus CD spectrophotometer (Applied Photo-

physics). Purified proteins were dialysed into 10 mM sodium phosphate, pH 7.0. CD 

measurements were carried out in a quartz glass cell with a 0.5 mm path length at a ~0.3 

mg/ml protein concentration. To obtain overall CD spectra, wave- length scans between 180 

and 260 nm were collected at 20, 30 and 42 °C using a 1.0 nm bandwidth, a 0.5 nm step 

size, and a time per point of 1 second. Triplicate spectra were averaged, followed by the 

subtraction of buffer only control spectra. Time course spectra were recorded when the 

sample reached 42 °C and again two hours later. The raw data in millidegree units were 

corrected for background and converted to mean residue molar ellipticity. Secondary 

structure assignments were made using the DichroWeb server [16], using the CDSSTR 

algorithm and reference set 7 [17]. Thermal melt curves were determined with wavelength 

scans between 195 and 260 nm using 1 nm bandwidth, 1.0 nm step size and time per point 

of 0.7 seconds. The temperature was increased from 20 to 90 °C at a rate of 1 °C per min 

and a complete scan was collected at 1 °C intervals. The raw data, in millidegree units, from 

201 to 260 nm, at each temperature measured, were analyzed using the Global 3 software 
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package (Applied Photophysics). The Global 3 package fits the full-spectrum data using the 

nonlinear regression method of Marquardt and Levenberg [18] to generate a global analysis 

of unfolding. This procedure determines fitted and optimized temperatures of transition 

(melting points: Tm) and their associated Van't Hoff enthalpies (ΔH). 

 

2.5. Surface plasmon resonance 

 
Experiments recording were measured on a Biacore T200 system (GE Healthcare). 

Immobilisation of either GarA or GlgE was attempted using both amine coupling (CM5 chip) 

and nickel affinity (NTA chip) approaches.  

 
2.6. Spectrofluorimetry 

 
Experiments were recorded on a Perkin-Elmer LS55 fluorescence spectrometer connected 

to a PTP1 Peltier system. All assays were recorded using 100 mM Bis-Tris propane, pH 7.0, 

containing 50 mM NaCl. Anisotropy experiments used GlgE and GlgE variants labelled with 

dansyl chloride in 50 mM HEPES, pH 9.0, containing 50 mM NaCl over 45 mins at 21 °C 

[19]. Labelled protein was then dialysed into 20 mM Tris, pH 8.5. Excitation and emission 

wavelengths were 335 and 515 nm, respectively. Experiments were carried out by titrating 

GarA into 1 µM labelled protein, up to a concentration of 630 µM at 25 and 42 °C. 

Tryptophan fluorescence was measured with 1 µM H349Y and a GarA concentration up to 

100 µM. 

 

2.7. Bacteriology 

 
Two strains of M. smegmatis mc2155 were used. The parent strain was c-glgE-tet-off [5], 

which allowed the glgE gene to be silenced in the presence of anhydrotetracycline (ATc). A 

plasmid bearing the H349Y variant of the glgE gene, pMV361(Apra)::glgE-Ts, was 

introduced into this strain. Cells were grown aerobically at 30 or 42 °C in Middlebrook 7H9 

medium supplemented with 0.5% v/v glycerol and 0.05% v/v tyloxapol and containing 10% 

v/v ADS enrichment (5% w/v bovine serum albumin fraction V (BSA), 2% w/v glucose, 

0.85% w/v sodium chloride). Hygromycin (50 mg/l), kanamycin (20 mg/l) and apramycin (10 

mg/l) were added for the selection of appropriate strains. Starter cultures of M. smegmatis 

strains with the appropriate antibiotic selection were grown at 30 °C in the presence or 

absence of ATc until they reached logarithmic phase. They were then diluted to an optical 

density of 0.3 at 600 nm and divided into two equal aliquots, one of which was grown at 30 

°C and the other at 42 °C. When one of the cultures reached an optical density of ≥ 1.5 at 
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600 nm, they were each harvested by centrifugation, washed twice with phosphate buffered 

saline and resuspended in 2 ml of water. Soluble metabolites were released from cells by 

heating at 95 °C for 4 h, and cell debris was removed by centrifugation. The resulting 

supernatant was filtered, freeze-dried and re-suspended in 500 µl of D2O. 1H nuclear 

magnetic resonance spectra were recorded on a Bruker Avance III 400 MHz spectrometer at 

22 °C and data were analysed using Topspin 3.5 software (Bruker Biospin Ltd). 

 

3. Results 
 

3.1. The temperature sensitive mutant accumulates a-maltose-1-phosphate at the non-

permissive temperature 

 

If the H349Y mutation in GlgE compromises enzyme activity, it would be expected that this 

would lead to the accumulation of a-maltose-1-phosphate [1]. To determine which small 

water-soluble metabolites accumulate in M. smegmatis as a result of the presence of the 

H349Y variant of GlgE at permissive and non-permissive temperatures, a gene silencing 

approach was used. The glgE gene has previously been brought under the control of a 

repressible promotor [5], allowing it to be robustly silenced in the presence of ATc. This was 

important because mutations in glgE are known to cause genetic instability over time 

because of toxicity associated with the accumulation of a-maltose-1-phosphate, particularly 

during growth in the presence of this metabolite’s precursor trehalose. To generate the 

temperature sensitive mutant, the H349Y variant of the glgE was introduced on a plasmid 

into the conditionally silenced strain. The addition of ATc to the growth medium would 

silence the wild-type copy making the H349Y variant the only GlgE present. Thus, it was 

possible to generate the temperature sensitive mutant synthetically, avoiding the possibility 

of additional mutations being introduced elsewhere in the genome during storage or 

manipulation.  

 

The two bacterial strains were then grown in the presence or absence of ATc at either the 

permissive or non-permissive temperatures of 30 and 42 °C, respectively. Growth kinetics 

confirmed that the c-glgE-tet-off strain expressing the H349Y variant of the glgE gene in the 

presence of ATc (Fig. 2) faithfully reproduced the temperature-sensitive phenotype reported 

for the SMEG53 strain [4]. This shows that the H349Y mutation of the glgE gene is sufficient 

to result in temperature-sensitivity at the cellular level. 
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Fig. 2. The growth of M. smegmatis is compromised by the H349Y mutation of GlgE, 

particularly at 42 °C. The optical density of cultures was monitored at 600 nm. The c-glgE-

tet-off strain grew more rapidly at 42 than 30 °C in the absence of ATc, as expected for a 

wild-type-like strain with a functional GlgE. The temperature-sensitive H394Y c-glgE-tet-off 

pMV361::glgETs strain in the presence of ATc grew more slowly than the wild-type strain at 

each respective temperature. The temperature-sensitive strain initially grew more rapidly at 

42 °C than at 30 °C, but growth was increasingly arrested after 2 hours of growth. These 

data with the reconstructed mutant faithfully recapitulate those reported for the isolated 

MSEG53 mutant [4]. 

 

 

The soluble metabolites were then extracted from the strains grown under the different 

conditions and analysed using 1H-NMR spectroscopy. Whenever ATc was absent, the wild-

type GlgE would be expected to be present. It would therefore be expected that no a-

maltose-1-phosphate would accumulate [1] whether or not the H349Y variant of GlgE was 

present. This was indeed the case (Table 1 and Fig. 3). Note that trehalose was the only 

metabolite that accumulated, as reported previously for the wild-type strain. When ATc was 

added in the absence of the H349Y variant, no GlgE would be expected to be present. This 

would lead to the accumulation of a-maltose-1-phosphate (to non-lethal levels because no 

trehalose was added to the grown medium). Accumulation indeed occurred even after a few 

hours of bacterial growth. Finally, when ATc was added in the presence of the H349 variant, 

the mutated H349Y version of GlgE would be expected to be the only form present. When 

this strain was grown at 30 °C, only a trace of a-maltose-1-phosphate was detected. 

However, at 42 °C, a moderate amount of a-maltose-1-phosphate had clearly accumulated. 

This rate of accumulation was nevertheless lower than when no GlgE was present at 42 °C. 

The level of trehalose that accumulated in each strain was similar. One can therefore 

conclude that the temperature sensitivity of the H349Y GlgE strain led to the accumulation of 
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a-maltose-1-phosphate implying GlgE was somehow compromised by the mutation, 

particularly at the higher temperature. 

 

 
Fig. 3. The H349Y mutation of GlgE leads to the accumulation of a-maltose-1-phosphate 

when M. smegmatis is grown at 42 °C. The c-glgE-tet-off strain accumulated a-maltose-1-

phosphate when grown in the presence of ATc due to the silencing of the glgE gene. The c-

glgE-tet-off pMV361::glgETs strain accumulated a hint of a-maltose-1-phosphate when 

grown in the presence of ATc at 30 °C and a moderate amount at 42 °C. See also Table 1. 

 

 

strain T ATc GlgE present M1P 

 °C    

c-glgE-tet-off 30 - wild-type - 

c-glgE-tet-off 30 + none ++ 

c-glgE-tet-off 42 - wild-type - 

c-glgE-tet-off 42 + none ++ 

c-glgE-tet-off pMV361(Apra)::glgE-Ts 30 - wild-type + H349Y - 

c-glgE-tet-off pMV361(Apra)::glgE-Ts 30 + H349Y trace 

c-glgE-tet-off pMV361(Apra)::glgE-Ts 42 - wild-type + H349Y - 

c-glgE-tet-off pMV361(Apra)::glgE-Ts 42 + H349Y + 
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Table 1 
The temperature sensitive strain accumulates a-maltose-1-phosphate at the non-permissive 

temperature. The glgE gene in M. smegmatis was silenced with ATc using a tet-off system. 

The temperature sensitive H349Y variant of glgE was introduced into the parent strain on a 

plasmid. Each of the two strains were grown at either 30 or 42 °C in either the absence or 

presence of ATc. The expected presence of each variant of the GlgE enzyme is indicated in 

each case. The presence of a-maltose-1-phosphate (M1P) according to 1H-NMR 

spectroscopy is also indicated: -, absent; +, low level; ++, high level. See also Fig. 3. 
 

 

3.2. a-Maltose-1-phosphate is hydrolysed by amyloglucosidase 

 

An anomeric mixture of α/β-maltose-1-phosphate was incubated with A. niger 

amyloglucosidase. Both anomers were efficiently degraded by the enzyme to yield glucose-

1-phosphate and glucose (Fig. 4). As expected for this type of enzyme (EC 3.2.1.3), the b 

anomer of glucose was liberated initially, which subsequently reaches an equilibrium with the 

a anomer within an hour or so. It is therefore clear that any a-maltose-1-phosphate that 

accumulates in M. smegmatis would be degraded by this enzyme to yield glucose. 

 

 
Fig. 4. A. niger amyloglucosidase cleaves the a-1,4-linked non-reducing end glucose from 

both a and b-maltose-1-phosphate. An anomeric mixture of a/b-maltose-1-phosphate was 

incubated with amyloglucosidase. The reaction was monitored using 1H nuclear magnetic 

resonance spectroscopy. The peaks for maltose-1-phosphate (M1P), glucose-1-phosphate 

(G1P) and glucose (Glc) were assigned as previously reported [10,20]. The 1¢-H resonances 

of a/b-maltose-1-phosphate associated with the a-glucosyl-(1®4)-glucose linkage are lost at 
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the same time as those of the 1-H reducing end of glucose appear. The 1-H resonances of 

a-maltose-1-phosphate and a-glucose-1-phosphate are essentially coincident. They are also 

slightly down-field compared with Fig. 3 because the solution was buffered at pH 4.0. Note 

that the 1-H resonances from b-maltose-1-phosphate and b-glucose-1-phosphate are not 

shown for clarity. 

 

 

3.3. The H349Y GlgE mutation leads to a loss of enzyme activity and an increased 

temperature sensitivity 

 
If the activity of GlgE is compromised by the H349Y mutation, it could manifest itself through 

a loss of either activity or stability. First, the kinetics of the extension of maltohexaose with a-

maltose-1-phosphate by wild-type and H349Y GlgE were each monitored by the release of 

inorganic phosphate. The activities of the two enzymes as a function of either pH or NaCl 

concentration were similar (Fig. 5A and 5B). Thus, both enzymes show optimal activity at pH 

7.0, and NaCl had little effect on either enzyme. Each enzyme had an acceptor preference 

for maltohexaose or maltoheptaose (Fig. 5C) with little or no difference between their 

acceptor profiles. The mutation therefore had little or no effect on these properties of GlgE. 
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Fig. 5. The H349Y mutation changes neither the pH optimum, salt-sensitivity nor acceptor 

specificity of M. smegmatis GlgE at 21 °C. (A) shows the pH optima of wild-type (solid line) 

and H349Y (broken line) GlgE to be 7. Error bars represent standard errors (which are very 

small) from triplicate experiments. (B) shows the tolerance of wild-type (solid line) and 

H349Y (broken line) GlgE to NaCl up to 350 mM. (C) shows the acceptor preferences of 

wild-type (plain bars) and H349Y (shaded bars) GlgE are very similar. The acceptors tested 

ranged from maltose (degree of polymerisation (DP) of 2) up to maltoheptaose (DP of 7). 

The error bars represent standard errors from triplicate experiments. 
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To ascertain what effect temperature had on the wild-type and H349Y GlgE, their 

temperature stabilities were determined by pre-incubating each at a range of temperatures 

before assaying them at 21 °C. The wild-type GlgE enzyme showed a 20 to 30% drop in 

activity after exposure to a temperature of over 35 °C (Fig. 6). By contrast, the activity of 

H349Y GlgE was more severely affected at 40 °C and above such that it lost all activity at 50 

°C. Nevertheless, the reduced temperature stability cause by the H349Y mutation at ~42 °C 

was modest at about 10% compared with the wild-type enzyme. 

 

 
Fig. 6. Temperature deactivation of wild-type and H349Y GlgE enzyme activity. Residual 

activity of wild-type (solid line) and H349Y GlgE in the absence (broken) or presence of 

GarA (dotted line) after pre-incubation at an elevated temperature for 20 min before 

assaying at 21 °C. Error bars represent standard errors of triplicate experiments. 

 

 

Over-expression of GarA in vivo resulted in a partial rescue of the temperature sensitive 

phenotype of SMEG53 cells [4] and GarA has been demonstrated to bind to and regulate not 

only phosphorylated but also non-phosphorylated targets [21]. To test whether GarA can 

directly protect H349Y GlgE from temperature de-activation, H349Y was pre-incubated with 

GarA. However, GarA showed no significant protective effect (Fig. 6). Indeed, it seemed to 

somewhat further destabilise H349Y GlgE. 

 

The effect of temperature on GlgE activity was also determined. The wild-type enzyme 

showed an increase in activity between 25 and 45 °C, followed by a modest decrease at 50 

and 55 °C (Fig. 7). By contrast, H349Y GlgE was considerably less active, and showed only 

a modest increase in activity between 25 and 40 °C, followed by a complete loss of activity 
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at 50 °C and above, consistent with the temperature stability experiments. In contrast to the 

wild-type enzyme, there was no significant difference in the activity of the H349Y GlgE at 30 

and 40 °C. There was therefore an almost 5-fold difference in turnover rates between the 

two enzymes at 40 °C. 

 

 
Fig. 7. The effect of temperature on the enzyme activities of wild-type and H349Y GlgE. The 

activity of wild-type (solid line) and H349Y (broken) GlgE as a function of temperature was 

determined by monitoring phosphate release. Error bars represent standard errors of 

triplicate experiments. 

 

 

To address whether the impaired activity of H349Y GlgE was due to a kcat or Km effect, the 

kinetic parameters with maltohexaose were measured for each enzyme at permissive and 

non-permissive temperatures for bacterial growth. The data exhibited substrate inhibition, so 

were fitted to a substrate inhibition model (Fig. 8 and Table 2). Substrate inhibition can be 

rationalised by high concentrations of maltohexaose promoting a competing disproportion 

reaction [1,10]. With the wild-type enzyme, both the kcat
app and Km

app for maltohexaose 

increased slightly at the higher temperature, resulting in a similar kcat
app/Km

app value (Table 2). 

The affinities of H349Y GlgE for maltohexaose at each temperature were very similar to 

those of the wild-type enzyme. By contrast, the values of kcat
app, and therefore kcat

app/Km
app, 

were at least five-fold lower, consistent with the above experiments. Thus, the H349Y 

mutation affects kcat rather than the Km for maltohexaose. Importantly, the kcat
app/Km

app value 

for H349Y GlgE was about a third lower at the non-permissive vs the permissive 

temperature. 
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Fig. 8. Kinetics of maltohexaose extension with a-maltose-1-phosphate by wild-type and 

H349Y GlgE. The kinetics were determined with enzyme concentrations between 12.5 and 

100 nM and 1 mM a-maltose-1-phosphate at either 42 (squares) or 30 °C (circles) with wild-

type (solid line) or H349Y (broken line). Experiments were carried out in duplicate. The lines 

of best fit adhere to a substrate inhibition model. See Table 2 for the derived kinetic 

constants. 

 

 

GlgE T kcat
app Km

app Ki kcat
app/Km

app 

 °C s-1 mM mM M-1 s-1 

wild-type 30 79.0 ± 5.2 9.7 ± 1.3 125.9 ± 20.8 8100 ± 1200 

wild-type 42 112.7 ± 11.0 14.4 ± 2.7 187.2 ± 51.3 7800 ± 1600 

H349Y 30 15.0 ± 1.0 10.0 ± 1.2 95.3 ± 13.8 1500 ± 200 

H349Y 42 14.5 ± 1.6 12.5 ± 2.8 366.7 ± 168.1 1000 ± 250 

 

Table 2 
Kinetics of wild-type and H349Y GlgE. Enzyme activity was monitored by detecting 

phosphate release. Assays were performed in duplicate and values are expressed with 

standard errors. Quoted constants are apparent because the enzyme obeys ping-pong 

(substituted enzyme) kinetics [1]. See also Fig. 8. 
 

 

3.4. The H349Y mutation reduces thermal stability but does not affect the overall secondary 

structure of GlgE at the non-permissive temperature 
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Circular dichroism spectroscopy was used to probe the secondary structure and temperature 

stability of wild-type and H349Y GlgE. The two forms of GlgE had indistinguishable 

secondary structure at 25 and 42 °C, including after two hours incubation at 42 °C (Table 3). 

Melting temperatures were determined by monitoring the loss of secondary structure as a 

function of temperature. The H349Y mutation led to a 7.6 °C destabilisation of the GlgE 

protein from 55.7 ± 0.2 to 48.1 ± 0.3 °C. Indeed, a Thermofluor assay that follows the 

thermal denaturation of proteins via binding of a fluorescent dye was in close agreement, 

showing a 9 °C destabilisation from 60 to 51 °C. Therefore, gross denaturation of the protein 

occurred above the non-permissive temperature for bacterial growth, so any loss of activity 

at 42 °C was not necessarily associated with such gross changes. 

 

GlgE T t % helix % sheet % turns % unstructured 

 °C h     

wild-type 25 0 22 30 21 28 

wild-type 42 0 21 28 20 30 

wild-type 42 2 20 32 20 29 

H349Y 25 0 23 26 20 31 

H349Y 42 0 20 31 20 29 

H349Y 42 2 18 30 21 30 

 

Table 3 
Net secondary structures of wild-type and H349Y M. smegmatis GlgE. The values were 

determined using circular dichroism spectroscopy. Values are means of triplicate 

measurements. 

 

 

3.5. Neither GlgE nor phospho-GlgE bind to GarA 

 
Although GarA was shown above not to rescue the temperature sensitivity of the H394Y 

mutation, it was not possible to rule out a protein-protein interaction between the two. We 

therefore employed several methods to explore whether any interaction could occur. A 

surface plasmon resonance approach was not possible because neither protein bound 

successfully to a CM5 sensor chip at all values of pH tested. Similarly, only non-specific 

binding was observed when attempting to use an NTA sensor chip to bind the His-tagged 

proteins. 
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GlgE has intrinsic fluorescence with its 17 tryptophan residues, which could change when 

another protein binds to GlgE. However, the intrinsic fluorescence of GlgE did not change in 

the presence of GarA. The labelling of GlgE with dansyl groups allowed the measurement of 

fluorescence anisotropy. This signal would change when the tumbling rate of GlgE slows on 

binding another protein. However, no such change was detected in the presence of GarA. It 

was also not possible to repeat the experiment with labelled GarA due to protein solubility 

limitations. 

 

It has been shown that M. tuberculosis GlgE is negatively regulated by phosphorylation by 

PknB [14]. GarA can bind to phosphorylated proteins and is itself phosphorylated by PknB, 

which prevents it from binding to its targets [7]. We therefore tested whether GarA interacts 

with the phosphorylated form of either wild-type or H349Y GlgE using fluorescence 

anisotropy of dansylated GlgE. However, no interaction was detected. 

 

4. Discussion 
 

We have shown that the temperature-sensitive mutation in the glgE gene leads to the 

accumulation of a-maltose-1-phosphate at the non-permissive temperature (Table 1 and Fig. 

3). This is entirely consistent with the phenotype of other mutations in mycobacterial glgE 

reported recently [1,5], but contrasts with the 1999 study [4]. It is easy to reinterpret the 1999 

study with hindsight, but the conclusions drawn at the time were entirely reasonable. First, 

GlgE was predicted to be a glucanase and second, the only known potential precursors of 

glycogen at that time were UDP-glucose or ADP-glucose, which would not have been 

susceptible to hydrolysis by amyloglucosidase. By contrast, the recently discovered a-

maltose-1-phosphate precursor possesses a glucosyl-(1®4)-glucose linkage that is 

susceptible, leading to the liberation of glucose. Since the standard glycogen assay involves 

the detection of glucose liberated by amyloglucosidase, a-maltose-1-phosphate would have 

given a false positive result. It therefore follows that the interpretation of the observations in 

1999 that led to the conclusion that glycogen recycling was essential for growth were based 

on an assumption that we now know to be incorrect. It therefore remains to be seen whether 

glycogen recycling is indeed essential for growth. 

 

The primary molecular basis for the temperature-sensitivity of the H349Y mutation appears 

not to be instability or a loss of the gross structural integrity of the enzyme at the non-

permissive temperature (Fig. 6, Fig. 7 and Table 3). Rather, it appears to be mainly down to 

the loss of activity of the enzyme at the non-permissive temperature caused by a five-fold 
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reduction in the kcat
app (Fig. 8 and Table 2). There was also a four-fold reduction in activity at 

the permissive temperature (Fig. 8), implying that adequate flux through the GlgE pathway is 

on a knife-edge somewhere between the permissive and non-permissive temperatures. 

Indeed, the SMEG53 mutant accumulated more carbohydrate than the wild-type strain at the 

permissive temperature [4], consistent with our detection of a trace of a-maltose-1-

phosphate (Fig. 3 and Table 1). At the higher temperature, the accumulation of a-maltose-1-

phosphate is evidently correlated with reduced bacterial growth-rate, consistent with all 

previous studies [1,5]. The H349Y mutation of GlgE maps onto a part of the protein that is 

near its surface but is not close to any of the substrate binding sites [10,22]. Quite how it 

affects enzyme activity is therefore not clear, which mirrors our lack of understanding of how 

phosphorylation lowers activity [14]. 

 

GarA has been reported to rescue the temperature-sensitive mutation by reducing the 

accumulation of carbohydrate [4]. All attempts to identify an interaction between GarA and 

GlgE, whether phosphorylated by PknB or not, suggested no such interaction occurs. 

Further, GarA did not strongly influence the temperature stability of GlgE (Fig. 6). Both GarA 

and GlgE are substrates of the phosphorylase PknB. Phosphorylation of GlgE leads to its 

negative regulation, primarily through a lowering of kcat
app by up to two orders of magnitude 

[14]. The most likely explanation for the ability of GarA to rescue the mutation is therefore 

that it acts as a decoy at high concentrations, preventing the negative regulation of GlgE. It 

therefore follows that GlgE would normally be somewhat negatively regulated by PknB at the 

non-permissive temperature, perhaps to counter its temperature-dependent increase in 

activity (Fig. 7). It could therefore be the combination of negative regulation and a reduced 

kcat
app that breaks the threshold for tolerance of a-maltose-1-phosphate toxicity in the mutant 

at the higher temperature. 

 

Interestingly, the growth of SMEG53 at the non-permissive temperature was somewhat 

rescued by sucrose or NaCl [4]. It is possible that such osmotic stress could lead to the 

accumulation of trehalose as an osmoprotectant [23], which would lead to lower flux through 

the GlgE pathway and therefore less accumulation of a-maltose-1-phosphate. In addition, 

the altered colony morphology of SMEG53 giving transparency and irregular borders could 

be due to less of the polymer being exported to the capsule [5]. 

 

5. Conclusions 
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In this study, we have shown that it is possible to reconcile the original report that GlgE is a 

glucanase [4] with what is now known about the biosynthesis of glycogen in mycobacteria 

[5]. When GlgE is compromised by the H349Y amino acid substitution, a-maltose-1-

phosphate accumulates to toxic levels due to a partial loss of polymerase activity, 

particularly at an elevated temperature. This implies the regulation of GlgE is delicately 

balanced to control flux through the glycogen biosynthetic pathway without compromising 

growth. This increases the attractiveness of the GlgE pathway as a potential drug target [24]. 
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