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Abstract 

Despite recent advances in understanding how respiration affects neural signalling to influence 

perception, cognition, and behaviour, it is yet unclear to what extent breathing modulates brain 

oscillations at rest. We acquired respiration and resting state magnetoencephalography (MEG) data 

from human participants to investigate if, where, and how respiration cyclically modulates 

oscillatory amplitudes (2 - 150 Hz). Using measures of phase-amplitude coupling, we show 

respiration-modulated brain oscillations (RMBOs) across all major frequency bands. Sources of 

these modulations spanned a widespread network of cortical and subcortical brain areas which 

formed clusters with distinct spectro-temporal modulation profiles. Globally, gamma modulation 

increased with distance to the head centre, whereas delta and theta modulation decreased with height 

in the sagittal plane. Overall, we provide the first comprehensive mapping of RMBOs across the 

entire brain, highlighting respiration-brain coupling as a fundamental mechanism to shape neural 

processing within canonical resting-state and respiratory control networks.  
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Introduction  

We all breathe. Human respiration at rest comes naturally and comprises active (but automatic) 

inspiration and passive expiration 
1. The rhythmicity of each breath is initiated and coordinated by 

coupled oscillators periodically driving respiration, most prominently the preBötzinger complex 

located in the medulla 
2. This microcircuit typically controls respiration autonomously, making the 

act of breathing seem effortless. Importantly, however, respiration is also under top-down control, 

as evident from adaptive breathing during e.g. speaking, laughing, and crying 
3. Hence, there is a 

bidirectional interplay of the cortex and rhythmic pattern generators of respiration: Efferent 

respiratory projections from the preBötzinger complex (via the locus coeruleus) and olfactory nuclei 

project to cortical areas through the vagus nerve 
4. In turn, cortical areas evoke changes in the primary 

respiratory network, e.g. to initiate specific motor acts (e.g. swallowing or singing) or brain state 

transitions (e.g. during panic attacks).   

As neural oscillations have been established as sensitive markers of brain states in general  
5, the 

question arises to what extent rhythmic brain activity is modulated by the rhythmic act of breathing. 

Indeed, studies of respiration-brain coupling have recently attracted increased attention, reporting a 

range of cognitive and motor processes to be influenced by respiration phase. Human participants 

were found to spontaneously inhale at onsets of cognitive tasks 
6 and respiration phase modulated 

neural responses in sensory 
7 and face processing 

8 tasks as well as during oculomotor control 
9. Parallel 

to this body of work, animal studies have conclusively shown respiration to entrain brain oscillations 

not only in olfactory regions 
10, but also in rodent whisker barrel cortex 

11 and even hippocampus 
12. 

In other words, brain rhythms previously attributed to cognitive processes such as memory were 

demonstrated to at least in part reflect processes closely linked to respiration 
13.  

Despite significant advances in the animal literature, these links are still critically understudied in 

humans. Notable exceptions include intracranial EEG (iEEG) work in epileptic patients 

corroborating that oscillations at various frequencies can be locked to the respiration cycle even in 

non-olfactory brain regions 
8. Moreover, two non-invasive studies recently linked respiration phase 

to changes in task-related oscillatory activity 
6. Overall, both animal and human studies all lead to 

three fundamental questions that recognise respiration as a vital, continuous rhythm persisting 

during all tasks and activities as well as at rest: i) to what extent does breathing modulate rhythmic 
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brain oscillations at rest, ii) where are these modulatory effects localised in the brain, and iii) how 

does modulation unfold over the course of the respiration cycle. Therefore, what is needed is a 

comprehensive account integrating recent findings of respiration-brain coupling against the 

anatomical backdrop of canonical resting state and respiratory control networks (RCN). A variety 

of neural networks have extensively been described to organise the brain’s intrinsic or ongoing 

activity, among which the default mode network (DMN), the dorsal attention network (DAN), and 

the salience network (SN) have received particular attention 14. Previous studies have demonstrated 

intriguing anticorrelated dynamics of activity between these large-scale networks (i.e., increases in 

one network lead to decreases in another 15). Such fluctuating relationships between cortical 

networks could conceivably be modulated by changes in body states such as respiration. The full 

picture is complemented by equally promising networks of deeper sites known to be involved in 

respiratory control. In addition to pattern generators like the preBötzinger complex in the medulla, 

other subregions within the brain stem 
16 as well as cerebellar nuclei  

17 and, naturally, olfactory areas 

10 have been shown to be associated with the act of breathing. Interestingly, the respiratory control 

network also includes directly connected cortical sites like primary and supplementary motor areas  

18 and even shows anatomical overlap with resting state networks, namely within medial prefrontal 

cortex 
19, insula 

20, and ACC 
21. We thus aimed to investigate respiration-related modulations of 

oscillatory brain activity and its spectro-temporal characteristics at rest, relating their anatomical 

sources to canonical networks of both resting state activity and respiratory control.  

To this end, we simultaneously recorded spontaneous respiration and eyes-open resting state MEG 

data from healthy human participants. Using the modulation index as a measure of cross-frequency 

phase-amplitude coupling 
22, we first assessed respiration-induced modulation of brain oscillations 

globally across the entire brain. We then extracted single-voxel time series to localise the anatomical 

sources of these global modulation effects using beamforming (Fig. 1a). We employed non-negative 

matrix factorisation (NMF) to reduce high dimensionality in the data, effectively yielding a spatially 

constrained network of cortical and subcortical sources of respiration phase-dependent changes in 

rhythmic brain activity. By means of hierarchical clustering, we finally identified distinct spectro-

temporal profiles of network components, highlighting an intriguing organisational pattern behind 

respiration-induced modulation of neural oscillations across the brain.  
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Results 

Respiration phase modulates global field power  

To assess the fundamental question of whether respiration modulates oscillatory brain activity at 

rest, we first computed the modulation index (MI) for whole-brain global field power ranging from 

2 - 150 Hz. This analysis quantifies to what extent the amplitude of global brain oscillations is 

modulated by the phase of respiration. Our analysis revealed significant respiration-induced 

modulation of global field power indicated by the high normalised MI across the entire frequency 

spectrum (Fig. 1b). Local peaks with strongest modulation occurred at about 2, 30, 75, and 130 Hz 

indicating differential modulation of specific brain oscillations. Next, we computed the phase-

triggered average (PTA) to characterise these global modulation effects over a respiratory cycle. PTA 

is computed as the average of oscillatory amplitude across windows centred on all time points of 

peak inhalation. We found respiration phase to differentially modulate oscillations of various 

frequencies with distinct time courses (Fig. 1c).  

This first analysis therefore revealed that the amplitude of global oscillatory brain activity is 

significantly modulated by respiration in a broad frequency range from 2 to 150 Hz with a temporal 

modulation that differs across frequencies. To gain a deeper understanding of how respiration 

modulates rhythmic activity across the brain, two questions immediately ensued, namely to localise 

the anatomical sources of such modulation effects and to explore their spectro-temporal profiles in 

more detail.   
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Fig. 1 | Respiration-induced modulation of global field power. a, Exemplary schematic of our analysis approach showing 

the wavelet transform of time series data from each voxel. The modulation index quantifies to what extent the amplitude 

envelopes of frequency-specific brain oscillations (top right, red) were modulated by respiration (centre right, blue). This 

way, we computed modulation indices for each voxel, frequency, and participant. b, Mean normalised modulation index (± 

SEM) over the entire frequency spectrum. Random permutations of respiration phase were employed to correct for low-

frequency bias and to express MI in units of standard deviation of a surrogate distribution (leading to normalised MI, see 

Methods section). c, Mean phase-triggered average (PTA) across the respiratory cycle over the entire frequency spectrum. 

PTAs were constructed by averaging frequency-specific amplitude envelopes (panel a) time-locked to peak inhalation. 

 

Modulatory effects of respiration phase can be traced to cortical and subcortical networks 

To identify the anatomical sources of these global modulations, we quantified how strongly 

respiration modulated the amplitude of brain oscillations within each voxel in the brain of each 

participant at each frequency between 2 and 150 Hz by computing the modulation index (MI). 

Next, we used sparse non-negative matrix factorisation (NMF) to reduce the dimensionality of the 

three-dimensional data set (participants x voxels x frequency; see Methods section). This resulted in 

an optimal low-dimensional representation consisting of 17 components. Each component reflected 

respiration-modulated brain oscillations (RMBOs) in different brain areas (comprising cortical and 

subcortical sites) and at different frequencies. After testing the RMBOs of each component for 
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significance, we rejected one component whose modulations across frequencies were not significant 

(see Methods section). For the remaining 16 components, we show the spatial location of the 

network on an inflated brain, PTAs that illustrate the modulation of its oscillatory activity across 

the respiration cycle, and the full MI spectrum with shading corresponding to frequency bands of 

significant modulation (see Fig. 2). Together, this provides a comprehensive spatio-temporo-spectral 

account of respiration-modulated networks in the resting brain. 

Figure 2a shows a network of cortical sources localised along the midline (ACC, SMA, PCC, cuneus, 

lingual sulcus) as well as in lateralised frontal (FEF, insula), temporal, and parietal cortices (angular 

gyrus, IPS). A second array of deeper, subcortical sites included several lateralised (crus 1, lobules 

7b/8) and midline (vermis 9/10) subsections within the cerebellum as well as medial sources in the 

olfactory bulb and brain stem (Fig. 2b).  

These results provide several important insights. First, respiration significantly modulates oscillatory 

brain activity within a specific, but widely distributed cortical and subcortical brain network. 

Second, across these areas significant RMBOs can be found across almost the entire frequency range 

from 2-150 Hz. Third, time-frequency PTA maps demonstrate that the temporal modulation 

pattern of RMBOs is by no means uniform across frequencies and brain areas. Instead, some 

RMBOs are strongest at peak inhalation with others peaking at maximum expiration or at different 

times in between. Nevertheless, and irrespective of anatomical location, some components showed 

similar modulation patterns (e.g. olfactory bulb and brain stem), raising the question if we can 

identify functional subnetworks with similar modulation patterns. 
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Fig. 2 | Anatomical locations and spectral modulation profiles of NMF components whose neural oscillations were 

significantly modulated by respiration. a, Cortical components plotted on an inflated brain surface. Time-frequency plots 

show z-transformed modulation within thresholded locations for each frequency over the course of the respiration cycle 

(centred on its peak). Right panels show normalised modulation index with significant frequencies marked in red and shaded. 

Horizontal lines mark borders between frequency bands (delta to high gamma), dotted line marks the respective significance 

threshold based on individual null distributions computed separately for each component. b, Subcortical components plotted 

on transverse and sagittal slices of the MNI brain. Same format as a. Note that we rejected one of the originally 17 

components (located within parahippocampal cortex) since its modulation effects across frequencies were not significant 

(see Methods section for details).   

 
Modulation sites are organised in clusters with distinct spectro-temporal profiles 

Therefore, having localised the anatomical network underlying RMBOs, we wanted to test the 

hypothesis that distinct modulation patterns could be mapped to anatomical subnetworks, with 

similarly modulated sites being grouped together. To this end, we employed hierarchical clustering 

of all 16 network components based on their modulation index across the frequency spectrum (as 

shown in Fig. 2). This data-driven approach yielded a total of seven clusters comprising between one 

and five components (Fig. 3, see Supplementary Fig. 1 for the dendrogram): Cluster A consisted of 

a single component within left insular cortex and showed significant modulation in the delta, beta, 

and low gamma band. Cluster B showed a clear cortical organisation along the midline, comprising 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 25, 2020. ; https://doi.org/10.1101/2020.04.23.057216doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.23.057216
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

9 

two bilateral PCC and SMA components with significant modulation from theta to low gamma 

oscillations. Similarly, cluster C comprised two components within bilateral ACC and FEF with 

significant modulation from theta to beta oscillations. Cluster D was formed by a total of five 

components spanning temporal (STG, MTG, ITG) and parietal cortices (aIPS/TPJ, angular gyrus) 

as well as deep cerebellar areas showing RMBOs. Due to its widespread topography, at least one 

cluster component showed significant modulation across the entire frequency spectrum. Cluster E 

again consisted of a single component (spanning left cuneus und bilateral lingual sulcus) with 

significant modulation in the theta, beta, and high gamma band. Finally, two clusters were formed 

exclusively by deep sources: Cluster F comprised two components within the left cerebellum where 

theta and high gamma oscillations were significantly modulated by respiration. Cluster G consisted 

of three components within the brain stem, cerebellum, and olfactory bulb and showed significant 

modulation in all frequency bands except the alpha band. For more details on clustering results, see 

Supplementary Fig. 1. 
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Fig. 3 | Time-frequency characteristics and anatomical distribution of component clusters. Hind view of the glass brain 

illustrates spatial distribution of component clusters A-F (numeration according to Fig. 2; see Supplementary Fig. 2 for top 

and side views). Spheres mark peak locations of components and are coloured according to cluster affiliation. Top curve plots 

depict z-transformed modulation indices of individual components within the cluster (± SEM) over the log-transformed 

frequencies. Vertical bars mark borders between frequency bands, superimposed horizontal bars indicate frequency bands 

in which at least one of the cluster’s components showed significant modulation due to respiration phase (also see Fig. 2). 

Polar plots illustrate the temporal modulation of RMBOs of these frequency bands averaged within clusters as a function of 

respiration phase (shown in angular units where 180° corresponds to the peak of the respiration signal). Significant 

frequencies are shown in a grey scale that codes frequency bands (from black (delta band) to light grey (high gamma band)).  

 

The clusters’ spectral profiles revealed two noticeable links between the components’ anatomic 

location and oscillatory modulations: First, clusters of lateral components appeared to show stronger 

modulation of high frequencies (particularly within the high gamma band) than those closer to the 

head centre. Second, low frequencies (particularly within the delta band) appeared to be more 

strongly modulated within clusters whose components were located low in the sagittal plane 

compared to those located higher on the z axis. Linear mixed effect models corroborated these 

relationships, showing that the fixed effect of distance to the head centre significantly influenced 
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low gamma (t(446) = 2.29, p = .02) and high gamma modulations (t(446) = 5.00, p < .001) with 

stronger modulations for more lateral components. Moreover, height in the sagittal plane was found 

to significantly reduce modulatory effects on delta (t(446) = -4.95, p < .001) and theta oscillations 

(t(446) = -2.36, p = .02), demonstrating stronger low-frequency modulation for deeper brain areas.  

Intriguingly, not only were different frequency bands modulated within a network of cortical and 

subcortical sites, but the time courses of these modulatory effects were equally frequency-specific. 

Polar plots in Figure 3 show the temporal modulation of RMBOs across the respiratory cycle for 

each cluster. Respiration phase was differentially coupled with amplitudes of low-frequency 

oscillations (such as delta and theta) compared to high-frequency oscillations (e.g. within the gamma 

band). Low frequencies consistently showed higher amplitudes during the beginning and end of a 

respiration cycle (with lowest amplitudes around the respiration peak), whereas the pattern appeared 

reversed for higher frequencies (see Figs. 3 and 4d as well as Supplementary Fig. 3). While specific 

spatio-temporal interactions of respiration-brain coupling exceeded the conceptual scope of this 

study, our findings are the first to suggest such spatio-spectral gradients and thus warrant detailed 

examination in future work. 

 

Component clusters closely map to resting state and respiratory control networks 

Extending the distinction of deep vs more superficial clusters, cortical components within our 

network of modulation sites closely resembled canonical resting state networks (shown in Fig. 4a). 

With the exception of components within SMA (which has been shown to control respiratory 

functioning, see below) and ITG, all cortical modulation sites have previously been established as 

nodes within the DMN (PCC, angular gyrus, precuneus), DAN (FEF, aIPS), or SN (insula, ACC; 

Fig. 4b). Moreover, all deep and cerebellar modulation sites corresponded to a mostly subcortical 

network of brain areas controlling respiratory function, including bilateral cerebellum, olfactory 

bulb, brain stem, and SMA (Fig. 4c). Finally, Figure 4d illustrates that although RMBOs of different 

frequencies had distinct temporal modulation profiles in general, we also found certain sequential 

modulation patterns across clusters within a particular frequency. For example, while significant 

modulation of beta oscillations showed a general peak around expiration onset (distinct from e.g. 

high gamma modulation), this peak occurred earlier and less pronounced in cluster B (PCC, SMA) 

than in cluster D (vermis, MTG, ANG). Overall, our results provide a unique perspective on the 
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link between respiration phase and changes in oscillatory activity, mapping the sources of these 

modulatory effects to nodes of canonical networks in control of resting state activity and respiratory 

function.  

 

 
 
Fig. 4 | Mapping clusters of NMF components to canonical neural networks. a, Top-view stylised illustrations 

of neural nodes composing the default mode network (DMN), dorsal attention network (DAN), and salience network 

(SN) as described in the literature. b, Cortical brain areas showing significant RMBOs (as in Fig. 3) are colour-

coded according to their correspondence to the resting state networks shown in a. As the MTG has increasingly 

been included in the DMN but was not part of its original formulation, NMF components located within the MTG are 

marked with a dashed line. Components within SMA and ITG were the only cortical sites not mapping to resting 
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state networks (but see the Discussion for SMA as an established site of respiratory control). c, Direct mapping of 

all 16 clustered NMF components to the resting state neural networks (see a) and the respiratory control network 

(RCN) gained from the literature. Colour code for clusters A - G taken from Fig. 3. d, Waterfall plots show z-

transformed amplitude modulation phase-locked to the respiration cycle exemplified for beta (left) and high gamma 

oscillations (right; see Supplementary Figure 3 for remaining frequency bands). Clusters of NMF components are 

shown in the same order as in c. Right-panel bar graphs show the number of participants whose modulation within 

the respective component was strongest for the depicted frequency band (vs all other frequency bands). Coloured 

bars and circular segments mark NMF components for which the respective frequency band was significantly 

modulated by respiration phase.  

 
Discussion 

Using non-invasive MEG recordings of human participants at rest we performed the first spatially 

and spectrally comprehensive analysis of brain activity that is modulated by respiration. We 

identified respiration-modulated brain oscillations (RMBOs) across the entire spectrum between 2 

and 150 Hz within a widespread network of cortical and subcortical brain areas. These RMBOs 

represent frequency-specific rhythmic brain activity with an amplitude that is significantly 

modulated across the respiratory cycle. Therefore, brain areas with RMBOs show significant cross-

frequency phase-amplitude coupling to respiration. Intriguingly, instead of a uniform modulation 

pattern across brain areas and frequencies, our analysis revealed respiratory modulation signatures 

that differed between brain areas in frequency and the temporal modulation profile. Globally, 

respiration modulated gamma oscillations more strongly in lateral cortical areas compared to 

subcortical areas whereas the opposite was true for low frequency brain activity in the delta and theta 

band. More specifically, brain areas with similar modulation signatures closely mapped to canonical 

networks of resting state activity and respiratory control. Our results demonstrate that respiration 

significantly modulates oscillatory brain activity in a manner that is precisely orchestrated across 

functional brain networks and frequency bands. In what follows, we will integrate our novel results 

with the existing animal and human literature, characterise the functionality of neural oscillations 

within distinct networks, and attempt to provide an overview of potential multi-level mechanisms 

behind RMBOs.  

 

Subcortical and cortical sites of respiration-brain coupling 

Notably, all deep and subcortical nodes within our RMBO network are established contributors to 

respiratory control. Gamma oscillations within the olfactory bulb (OB) were the first to be described 

in detail 
23 and reflect local computations within the OB 

24. In a next step, slower (e.g. beta band) 
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oscillations are thought to organise such local activity across brain areas 
25 and appear to be the most 

coherent within OB 
26. Similarly, even slower theta oscillations play a crucial role in the temporal 

organisation of neural activity within the hippocampal network and, consequently, its coordination 

with the mPFC 
27. Our findings substantially advance these notions by showing that respiration 

phase modulates both low and high oscillatory frequencies within a spatial cluster comprising OB, 

brain stem, and cerebellum. As described earlier, the preBötzinger complex is widely regarded as the 

main pattern generator of respiratory rhythms 
4 within the brain stem and several studies have 

implicated surrounding medullar as well as cerebellar sites in mediating voluntary control of 

respiration 3. This functional co-activation stems from ascending catecholaminergic neurons in the 

brain stem receiving projections from the cerebellum, particularly the vermis 
28. In addition to brain 

stem projections, the vermis regulates autonomic responses including cardiovascular tone and 

respiration through connections to the spinal cord and hypothalamus 
29. Going back to gamma 

oscillations, the cerebellum has been suggested to use cerebello-thalamic pathways to exert its effect 

on cortical gamma activity, especially within sensorimotor cortices 
30: The cerebellum sends 

projections to the ‘motor’ ventral anterior lateral nucleus (VAL) of the thalamus, the (higher-order) 

posterior thalamic nucleus (VP, connected to primary motor and sensory cortices), and intralaminar 

nuclei, allowing cerebello-thalamic connections to coordinate and synchronise gamma oscillations 

across cortical areas 
31. As our findings critically underscore both the prominence of cerebellar nodes 

in respiratory processing and their link to cortical oscillatory activity outlined above, it is worth 

looking at the overall functional connections within the RMBO network in more detail.  

Indeed, well-established bidirectional connections exist between the cerebellum and the neocortex 

via medullar and thalamic pathways. The cerebellum itself projects to motor (see above) and 

nonmotor cortical areas, including the prefrontal and posterior parietal cortex 
32. In turn, it receives 

considerable input from a wide range of higher-order, nonmotor areas within the extrastriate cortex, 

posterior parietal cortex, cingulate cortex, and the parahippocampal gyrus 
32. In a similar vein, the 

(para-)hippocampal network is monosynaptically connected to the OB 
33. Linking cortical and deep 

nodes of the RMBO network, distinct thalamic pathways can be found within the thalamus: While 

the anterior thalamus is strongly connected to the SMA, premotor and (pre-) frontal cortex, and the 

ACC (the ‘motor’ projections referenced above), a similar connectivity profile has been shown for 

the insular cortex 
16.  
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In sum, our findings integrate and extend a variety of individual results in two ways: First, cortical 

nodes within the RMBO network precisely reflect bidirectional projection areas of the deep and 

subcortical nodes (OB, brain stem, and cerebellum) via medullar and thalamic pathways. Second, 

the cortical nodes markedly resemble ‘sensorimotor distributions’ shown in multiple fMRI studies 

of respiratory control 
34, raising the question as to how different cortical areas  - motor areas, ACC, 

and insular cortex - are involved in the act of breathing. As both premotor and supplementary motor 

cortices contain representations of respiratory muscles 
35, they have long been implicated in 

respiratory control. Similarly, ACC has been identified in studies of air hunger 
21 and CO2-

stimulated breathing. Finally, insular cortex activation is a consistent feature of many neuroimaging 

studies of dyspnoea 
20. While all these regions are tied to deeper RMBO nodes as projection sites of 

cerebellar and medullar activation, the close mapping of frontal, cingulate, and parietal areas to 

canonical resting state networks (see Fig. 4) suggests a general involvement of respiration in human 

brain processing irrespective of particular task demands. In this context it is noteworthy that nodes 

of resting state networks exhibit amplitude correlations predominantly in the beta frequency band 

36. In our data, this frequency band shows strongest global modulation by respiration (Fig. 1b) and 

features prominently in the coupling of  specific resting state networks to respiration (Figs. 3 and 4). 

This suggests that these amplitude correlations within resting state networks are at least partially 

related to respiration.  

 

Active sensing, respiration, and behaviour 

The widespread extent of the RMBO network critically corroborates previous suggestions of 

respiration as an overarching ‘clock’ mechanism organising neural excitability throughout the brain 

11. Excitability adapts neural responses to current behavioural demands, which is why respiratory 

adaptation to such demands in animals 
37 and humans 

38 have accordingly been interpreted as 

functional body-brain coupling: With cortical excitability fluctuating over the respiration cycle, 

information sampling and motor execution during phases of high excitability optimises efficient 

communication between brain areas and/or effector muscles. Indeed, numerous studies have 

underscored perceptual 
7, cognitive 

8, and behavioural benefits 
6 during particular phases of human 

respiration. While the continuous link between breathing and sampling behaviour is rather intuitive 

in the sniffing of animals, the scope of these interpretations was substantially extended by a recent 
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report of spontaneous inhalation at task onset in humans 
6. Hence, animals as well as humans appear 

to actively align their breathing to time points of particular behavioural relevance for the sake of 

efficiency through optimised neural processing. Consequently, human respiration has fittingly been 

cast as active sensing 
39, adopting key premises from predictive brain processing accounts 

40 to explain 

how respiration synchronises time frames of increased cortical excitability with the sampling of 

sensory information. Regarding the triad of respiration, behaviour, and neural oscillations, it 

remains an intriguing question how changes in respiration conceivably cause changes in brain 

oscillations related to task performance or indicative of a particular brain state. Our results provide 

first insights into how established mechanisms like cross-frequency phase-amplitude coupling are 

implemented on a global scale to translate respiratory rhythms into neural rhythms of various 

frequencies and how the resulting anatomical pattern of RMBOs reflects spectral specificity. 

 

Potential mechanisms behind RMBOs 

Cross-frequency coupling is widely regarded as the core mechanism of translating slow rhythms into 

faster oscillations and has conclusively been shown to be driven by respiratory rhythms within the 

OB in mice 
11. Here, slow respiration-induced bulbar rhythms are transmitted through piriform 

cortex and subsequent cortico-limbic circuits to modulate the amplitude of faster oscillations in 

upstream cortical areas 
41. With reference to the concept of active sensing introduced above, we argue 

that a similar case can be made for the cerebellum: There is broad consensus that the cerebellum is 

indeed involved in computations attributed to internal forward models, predominantly in the 

domain of motor control 
42. These forward models refer to an internal representation of potential 

outcomes of an action in order to compare estimated and actual consequences. Importantly, they 

are just as crucial for perception and cognition as they are for motor performance, leading to the 

suggestion that cerebellar processing may help to align and adaptively modify cognitive 

representations for skilled and error-free cognitive performance 
32. As outlined above, the cerebellum 

exerts its influence on cerebrocortical activity through gamma synchronisation relayed through 

medullar and thalamic connections. Therefore, one way in which respiration potentially modulates 

global computations within the RMBO network is through cross-frequency coupling, meaning that 

slow respiratory rhythms drive slow neural oscillations which are subsequently translated into faster 
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cortical rhythms (e.g., gamma oscillations). 

Fittingly, in mice, respiratory rhythms and overlapping theta oscillations have been dissociated as 

two separate long-range signals which differentially modulate neural activity in distinct gamma 

channels depending on the recorded region and behavioural state 
43. Using in vivo LFP and single-

unit recordings, greater efficacy of respiration than theta rhythms 
19 was shown in modulating 

prefrontal gamma oscillations, underscoring the role of respiration as a central oscillatory source in 

the integration of local and distributed processing within networks. Although human respiration at 

rest occurs at much lower frequencies than in mice (and therefore does not overlap with theta or 

even delta oscillations), cross-frequency coupling of slow respiratory and oscillatory rhythms with 

high-frequency oscillations conceivably links body and brain states in a highly similar way. Strong 

support for this hypothesis comes from a recent study 
44 showing that the cortical readiness potential, 

originating within premotor areas, fluctuates with respiration. Notably, the authors suggest cross-

frequency coupling to involve neural interactions between premotor areas and both insular and 

cingulate cortex as well as the medulla, which is precisely the pathway we propose to connect deep 

and cortical nodes within the RMBO network. A simple graph model of excitatory and inhibitory 

cells has been shown as proof of principle for cortical gamma modulation through respiration 

(modelled as sinusoidal input) 
45. The authors later concluded that respiration-locked brain activity 

has two driving sources 
46: On the one hand, respiration entrains OB activity via mechanoreceptors 

(i.e., phase-phase coupling), as seen in LFP 
23. On the other hand, Heck and colleagues propose 

extrabulbar sources within the brain stem. As argued above, the preBötzinger complex and 

connected medullar nuclei constitute an ideal candidate to drive high-frequency oscillations through 

respiratory rhythms (i.e., phase-amplitude coupling 
11). Functionally, respiration thus appears to 

modulate higher oscillatory frequencies (e.g. gamma) for the purpose of integrating locally generated 

assemblies across the brain 
47, much like it was previously proposed for theta-gamma coupling 

25. Our 

data now critically extend these suggestions, showing that respiration-brain coupling i) spans an even 

more extensive network including deep cerebello-thalamic pathways and ii) involves a wider variety 

of oscillatory modulation than previously assumed. It remains an intriguing question as to which 

lower-level mechanisms are employed to drive respiration-dependent changes in oscillatory network 

activity. 
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One potential physiological mechanism depends on arterial CO2 levels, usually operationalised as 

the CO2 gas partial pressure at the end of exhalation (pETCO2). Natural fluctuations in arterial CO2 

during normal breathing were shown to be sufficient to significantly influence neural oscillatory 

power in delta, alpha, beta, and gamma frequencies 
48. Most likely, this dependence is of 

neurochemical origin through an inverse relationship between the concentration of arterial CO2 and 

pH 
49. In turn, pH is mediated by extracellular adenosine, whose release acts to reduce cortical 

excitability during hypercapnia 
50. This explanation fits well with previous reports showing that 

inspiration increases cortical excitability (see above), a link that appears to be exploited in self-paced 

protocols (e.g., spontaneous inspiration at behavioural responses 
6) and has proven beneficial for 

performance, e.g. in motor control 
9 and cognitive processing 

8.  

While the RMBO network presented here provides the most comprehensive account of human 

respiration-brain coupling to date, central research questions emerge as objectives for future work. 

First, having established the sources of respiration-related changes to neural oscillations, the 

transition from resting state to task context will illuminate the relevance of RMBOs for behaviour. 

Cognitive, perceptive, and motor performance have been shown to be modulated by respiration, 

warranting a closer assessment of the where (i.e., which site) and when (i.e., at which phase) of task-

related RMBOs. Second, we have outlined functional pathways connecting the cerebellum to 

cerebral cortex via medullar and thalamic projections as well as the close link between olfactory bulb 

and parahippocampal and prefrontal cortices. These putative hierarchies should be tested with 

directional measures of functional connectivity (e.g., Granger causality) in order to reveal 

organisational relations within the RMBO network. Similarly, directed connectivity analysis can 

disambiguate bottom-up and top-down signals within the wider RMBO network. Finally, more 

work is needed to investigate the formation and functional significance of distinct modulation time 

courses across nodes even within one frequency. Akin to findings in mice, where overlapping theta 

and respiration rhythms differentially modulated distinct gamma frequencies 
43, different nodes 

being modulated at different phases within the same frequency could point to distinct channels or 

types of information simultaneously transmitted across the brain. 

In summary, our comprehensive investigation of respiration-brain coupling emphasizes respiration 

as a powerful predictor for amplitude modulations of rhythmic brain activity across diverse brain 

networks. These modulations are mediated by cross-frequency coupling and encompass all major 
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frequency bands that are thought to differentially support cognitive brain functions. Furthermore, 

respiration-brain coupling extends beyond the core respiratory control network to well-known 

resting-state networks such as default mode and attention networks. Our findings therefore identify 

respiration-brain coupling as a pervasive phenomenon and underline the fact that body and brain 

functions are intimately linked and, together, shape cognition. 
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Methods 

Participants. Twenty-eight volunteers (14 female, age 24.8 ± 2.87 years [mean ± SD]) participated 

in the study. All participants denied having any respiratory or neurological disease and gave written 

informed consent prior to all experimental procedures. The study was approved by the local ethics 

committee of the University of Muenster and complied with the Declaration of Helsinki.  

 

Procedure. Participants were seated upright in a magnetically shielded room while we 

simultaneously recorded respiration and MEG data. MEG data were acquired using a 275 channel 

whole-head system (OMEGA 275, VSM Medtech Ltd., Vancouver, Canada) and continuously 

recorded at a sampling frequency of 600 Hz. During recording, participants were to keep their eyes 

on a fixation cross centred on a projector screen placed in front of them. To minimise head 

movement, participants’ heads were stabilised with cotton pads inside the MEG helmet.  

Data were acquired in two runs of 5 min duration with an intermediate self-paced break. Participants 

were to breathe automatically while tidal volume was measured as thoracic circumference by means 

of a respiration belt transducer (BIOPAC Systems, Inc., Goleta, United States) placed around their 

chest.  

For MEG source localisation we obtained high-resolution structural MRI scans in a 3T Magnetom 

Prisma scanner (Siemens, Erlangen, Germany). Anatomical images were acquired using a standard 

Siemens 3D T1-weighted whole brain MPRAGE imaging sequence (1 x 1 x 1 mm voxel size, TR = 

2130 ms, TE = 3.51 ms, 256 x 256 mm field of view, 192 sagittal slices). MRI measurement was 

conducted in supine position to reduce head movements and gadolinium markers were placed at the 

nasion as well as left and right distal outer ear canal positions for landmark-based co-registration of 

MEG and MRI coordinate systems. Data preprocessing was performed using Fieldtrip 
51 running in 

Matlab R2018b (The Mathworks, Inc., Natick, United States). Both MEG and respiration data were 

resampled to 300 Hz prior to further analyses.  

 

MRI co-registration. Co-registration of structural MRIs to the MEG coordinate system was done 

individually by initial identification of three anatomical landmarks (nasion, left and right pre-

auricular points) in the participant’s MRI. Using the implemented segmentation algorithms in 
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Fieldtrip and SPM12, individual head models were constructed from anatomical MRIs. A solution 

of the forward model was computed using the realistically shaped single-shell volume conductor 

model 
52 with a 5 mm grid defined in the MNI template brain (Montreal Neurological Institute, 

Montreal, Canada) after linear transformation to the individual MRI. 

 

Extraction of time series in source space.  Source reconstruction was performed using the linearly 

constrained minimum variance beamformer approach 
53, where the lambda regularisation parameter 

was set to 0%. This approach estimates a spatial filter for each location of the 5-mm grid along the 

direction yielding maximum power. The sensor covariance matrix used for the LCMV-beamformer 

was computed across the whole data set.  

 

Computation of modulation index and phase-triggered average. The modulation index (MI) 

quantifies cross-frequency coupling and specifically phase-amplitude coupling 
22. Here, it was used 

to study to what extent the amplitude of brain oscillations at different frequencies is modulated by 

the phase of respiration. To this end, the instantaneous phase of the respiration time course was 

computed with the hilbert transform. Next, the time series at each sensor location were sequentially 

subjected to a continuous morlet wavelet transformation at frequencies ranging from 2-150 Hz 

(with 2 Hz spacing below 20 Hz and 5 Hz spacing above 20 Hz) using the cwtft function in matlab 

with default settings. We then computed the amplitude envelope and smoothed it with a 1s-moving 

average. MI computation was then based on the average amplitude at 20 different phases of the 

respiratory cycle. Any significant modulation (i.e. deviation from a uniform distribution) is 

quantified by the entropy of this distribution. To test for significance of MI and to account for 

frequency-dependant biases we followed previously validated approaches 
8,54 and computed 200 

surrogate MIs by random permutation of respiratory phase. The normalised MI was computed by 

subtracting the mean of all surrogate MIs and dividing by their standard deviation leading to MI 

values in units of standard deviation of the surrogate distribution (see Fig. 1b). Visual inspection 

confirmed that this removed the frequency bias in raw MI values (stronger MI for low frequencies 

compared to high frequencies). The computation resulted in normalised MI values for each voxel, 

frequency, and participant.   

To assess oscillatory modulation over time, the phase-triggered average (PTA) was computed from 
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the smoothed, band-specific amplitude envelopes averaged across all sensors and further averaged in 

a window centred on times of peak inhalation. Computations were done separately for both MEG 

runs, normalised across the time domain, and finally averaged across runs and participants.  

 

Rank optimisation and non-negative matrix factorisation. In our efforts to anatomically 

localise respiration phase-dependent modulation effects, we employed a spatially sparse variant of 

non-negative matrix factorisation to reduce the high (voxelwise) dimensionality in our data. Sparse 

NMF allows us to describe modulation indices across the brain as a low-dimensional combination 

of locally constrained network components, each of which provides a spectral profile for each 

participant. In order to balance baseline differences between participants in preparation of the 

NMF, modulation index matrices of all 28 participants (20,173 voxels x 36 frequencies) were first 

normalised by their standard deviation 
55. These matrices were then averaged across both runs to 

yield one average matrix per participant. Individual matrices were transposed and concatenated to 

form one group-level input matrix (1008 [frequencies x participants] x 20,137 voxels) for the NMF. 

To determine the number of main components to be extracted from NMF, we used the choosingR 

Matlab function 
56 that chooses the optimal rank based on singular value decomposition and resulted 

in a dimensionality of 17. Subsequently, we initialised the sparsenmfnnls algorithm from the NMF 

toolbox for Matlab 
57 to reduce more than 20,000 voxels to a total of 17 main components. As NMF 

solutions vary as a function of their random starting position, we repeated this procedure 50 times 

and selected the best sparse solution based on its residuals. Two matrices were generated as the 

output of this procedure: First, the basis matrix (1008 [frequencies x participants] x 17 components) 

represents the participant-specific spectral profile, effectively quantifying each participant’s relative 

contribution to the network components separately for each frequency. The basis matrix was 

reshaped to a 36 x 28 x 17 (frequencies x participants x network components) matrix for all further 

analyses. As the second NMF output, the coefficient matrix (17 components x 20,173 voxels) 

represents the spatial profile of the network components, quantifying each voxel’s relative 

contribution to the components.   

In order to methodologically validate our approach, we conducted two series of control analyses: 

First, we computed the NMF with Matlab’s builtin nnmf function using the same parameters as in 

the sparse NMF algorithm. This analysis yielded highly similar components with a less spatially 
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sparse extent which could otherwise be matched to the sparsenmfnnls components by visual 

inspection. Second, we conducted two alternative versions of the original NMF analysis, re-running 

the sparsenmfnnls algorithm to yield 15 and 20 main components, respectively (once again selecting 

the best solution out of 50 full iterations). While the 15-component solution combined selected 

cerebellar components that the original 17-component solution yielded as separate, the 20-

component solution included additional noisy or insufficiently powered components which did not 

explain variance in the data. Otherwise, the components again remained virtually unchanged, 

demonstrating that our data-driven approach yielded highly reliable results.   

 

Component-level statistical analyses. While most components represented a single focal location 

due to the sparsity constraints embedded in the NMF algorithm, four components comprised 

distinct sub-networks of two or three anatomical sites. Spatial maps of all 17 network components 

were thresholded at p = .01 (see Fig. 2) and the resulting maps were used as binary masks so that all 

further analyses were restricted to above-threshold voxels. To characterise each component’s average 

spectral profile (i.e. modulation indices across frequencies), the reshaped basis matrix (36 frequencies 

x 28 participants x 17 components) was normalised by its standard deviation across frequencies and 

subsequently averaged across participants. To determine the frequency range(s) for which the 

modulation index within a particular component was significant on the group level, we computed 

5000 random permutations of frequency x subject matrices for all 17 components. Individual 

significance thresholds were obtained for each component by considering the 95th percentile of its 

5000 random permutations, above which the actual mean modulation indices were considered 

significant. Of the 17 components yielded by sparse NMF, all but one component showed group-

level significant modulation of oscillatory activity, validating the parameter selection within the 

NMF. It is worth noting that the only non-significant component #6 within left (para-)hippocampal 

cortex would have been considered meaningful at a conventional fixed threshold like z ≧ 2 but did 

not meet our more rigorous random permutation criterion.  Therefore, component #6 was omitted 

from all further analyses which were conducted on and are reported for the remaining 16 

components.  
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Linear mixed effect models. We employed linear mixed effect modelling (LMEM) to investigate 

the relationship between the spatial organisation and spectral characteristics within the network of 

modulated components. LMEM models a response variable (in our case, modulation within a 

particular frequency band) as a linear combination of fixed effects shared across the population (i.e. 

anatomical coordinates of network components) and participant-specific random effects (i.e 

modulatory variation between participants). To assess potential links between spatial and spectral 

component properties, we first computed each component’s anatomical distance to the head centre 

as the vector norm of MNI coordinates in the x, y, and z plane: 

 

r = √𝑥² +  𝑦² +  𝑧²      (1) 

 

We specified two LMEMs to predict high frequency modulation indices (low gamma, high gamma) 

within each component as a function of its distance to the head centre, respectively: 

 

MIj = 𝛽0 + (𝛽1 + S1j) * r + ej      (2) 

 

For participant j, the modulation index is expressed as a combination of the intercept (𝛽0), the fixed 

effect of the component’s distance to the head centre (𝛽1), and an error term (ej ~ N(0,σ²)). We 

accounted for between-participant variation by specifying a random slope (S1j). An analogous 

approach was used to predict low frequency modulation indices (delta, theta) within each 

component as a function of its height in the sagittal plane (i.e. the z value of its MNI coordinates):  

 

MIj = 𝛽0 + (𝛽1 + S1j) * z + ej      (3) 

 

Hierarchical clustering and cluster-level statistical analyses. Having localised the sources of 

global field power modulations within a constrained subset of anatomical sites, our next aim was to 

characterise these sources in terms of their spectro-temporal fingerprints. This way, we hoped to 

reveal systematic patterns of phase-locked oscillatory modulations over time and/or frequencies 

within the cortical and subcortical network. To this end, we first computed the group-level average 

matrix of modulation indices for 20173 voxels x 36 frequencies x 20 time bins. We used the 
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anatomical distribution of each network component (thresholded at p = .01) to reduce this matrix 

to a component-specific ROI and aggregated 36 single frequencies into frequency bands as follows: 

delta (2-4 Hz), theta (4 - 8 Hz), alpha (8-12 Hz), beta (12-30 Hz), low gamma (30-70 Hz), and high 

gamma (70-150 Hz). This yielded one matrix (6 frequency bands x 20 time bins) per network 

component, all of which were concatenated to construct a distance matrix for the hierarchical 

clustering using the hcluster function within the Icasso toolbox for Matlab 
58. This data-driven 

approach was employed to detect similarities of and differences between network components with 

regard to how oscillatory activity was modulated over the course of a respiration cycle. Visual 

inspection of the resulting dendrogram led to a total of seven clusters (see Fig. 3). We computed the 

average course of modulation indices over frequency bands within each cluster based on z-

transformed spectral profiles of the contributing network components (as described above).  
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