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ABSTRACT

The rapid, sensitive and specific detection of SARS-CoV-2 is critical in responding to the current
COVID-19 outbreak. In this proof-of-concept study, we explored the potential of targeted mass
spectrometry based (MS) proteomics for the detection of SARS-CoV-2 proteins in both research
samples and clinical specimens. First, we assessed the limit of detection for several SARS-CoV-2
proteins by parallel reaction monitoring (PRM) MS in infected Vero E6 cells. For tryptic peptides of
Nucleocapsid protein, the limit of detection was in the mid-attomole range (9E-13 g). Next, this PRM
methodology was applied to the detection of viral proteins in various COVID-19 patient clinical
specimens, such as sputum and nasopharyngeal swabs. SARS-CoV-2 proteins were detected in these
samples with high sensitivity in all specimens with PCR Ct values <24 and in several samples with
higher CT values. A clear relationship was observed between summed MS peak intensities for SARS-
CoV-2 proteins and Ct values reflecting the abundance of viral RNA. Taken together, these results
suggest that targeted MS based proteomics may have the potential to be used as an additional tool
in COVID-19 diagnostics.
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INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus
disease 2019 (COVID-19), which is a severe respiratory disease [1]. The World Health Organization
(WHO) has designated the ongoing pandemic of COVID-19 a Public Health Emergency of
International Concern [2]. As of now, over one million deaths have been reported worldwide and
this is probably an underestimation because of lack of testing capacity in large parts of the world.

SARS-CoV-2 is a positive-sense single-stranded RNA virus, which encodes several non-structural
proteins such as spike, envelope, membrane and nucleocapsid protein [3]. Rapid, sensitive and
specific diagnosis of SARS-CoV-2 is widely recognized to be critical in responding to this outbreak,
but also for long-term improvements in patient care. Importantly, the reduction of time required to
identify SARS-CoV-2 infections will significantly contribute to limiting the enormous social and
economic consequences of this large global society paralyzing outbreak. Conventional methods for
diagnostic testing of viral infections, which are also widely used for SARS-CoV-2 testing, are based on
polymerase chain reaction (PCR) or other (multiplexed) nucleic-acid based technologies and antigen
detection. Since its emergence late 2019 it has become clear that additional diagnostic tools that
target SARS-CoV-2 should be developed to complement existing tools in a “proactive approach”
proposed by the Coronaviridae Study Group of the International Committee on Taxonomy of Viruses
[1]. Alternative and/or complementary SARS-CoV-2-specific diagnostic tests are desperately needed
since the current testing capacity is insufficient, amongst others because of shortages of supplies
such as RNA extraction kits, PCR reagents and delivery issues for primers and probes.

Besides PCR based approaches, immunoassays have been employed in the detection of other
viruses. In addition, mass spectrometry (MS) based techniques have been applied previously, for
instance to detect influenza virus proteins [4] and human metapneumovirus (HMPV) in clinical
samples [5]. Recent developments in targeted proteomics methods and Orbitrap mass spectrometry
such as parallel reaction monitoring (PRM) have shown a substantial sensitivity increase. Although
mass spectrometry based approaches have been used in several SARS-CoV-2 studies [6—10] (and
reviewed in [11] and [12]), is not yet clear whether state-of-the-art proteomics technologies could
provide the sensitivity and specificity needed in diagnostics.

Here, we explore the use of targeted mass spectrometry based proteomics for SARS-CoV-2 detection
in research and clinical samples. For this, we first assessed the limit of detection by parallel reaction
monitoring (PRM) on an Orbitrap mass spectrometer for specific tryptic peptides of SARS-CoV-2
proteins. The sensitivity was found to be in the mid-attomole range (~9.0E13 g) for Nucleocapsid
protein. Next, we sought whether this sensitivity is sufficient for the detection of SARS-CoV-2 in
clinical specimens such as nasopharyngeal swabs, mucus and sputum. This largely depends on the
absolute amounts of viral proteins as well as on the complexity and abundance of the proteinaceous
matrix background present in such samples. Using PRM, we could indeed detect various proteolytic
peptides of several SARS-CoV-2 proteins in sputum and swab samples. In different cohorts of
individuals tested positive for COVID-19, using this PRM MS we were able to detect and relatively
qguantify SARS-CoV-2 tryptic peptides. Moreover, we observed a clear relationship between the peak
intensities in the mass spectra and the Ct (threshold cycle) values obtained from PCR assays of the
same samples. For all samples with Ct values of up to ~24, tryptic peptides were detected and
guantified. Even for several samples with higher Ct values, SARS-CoV-2 peptides could reliably be
detected. In addition, we have explored several methods to increase the sensitivity of the method
even further and to decrease the sample analysis times.
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In conclusion, this proof-of-concept study shows that the sensitivity of targeted proteomics is
sufficiently high for the detection of viral material in patient samples such as swabs, sputum, mucus
and suggests that other types of body fluids can be used as source material. The method that we
describe here can be transferred to clinical diagnostic labs that host mass spectrometry equipment.
Subsequent steps should be focused on sample preparation protocols that are in agreement with
validated virus inactivation procedures, improvements in sample throughput and increase in
sensitivity of detection.

Finally, providing novel mass spectrometry based diagnostic tools that complement genomic
approaches is also the major goal of the recently formed COVID-19 mass spectrometry coalition
(www.covid19-msc.org). The aim of this proof-of-concept study is to highlight the potential of mass
spectrometry in identifying SARS-CoV-2 proteins for diagnostics and research.
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METHODS
Virus and cells

Vero E6 cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM, Gibco) supplemented
with 10 % fetal calf serum (FCS), HEPES, sodium bicabonate, penicillin (final concentration 100
IU/mL) and streptomycin (final concentration 100 IU/mL) at 37 °C in a humidified CO; incubator.
SARS-CoV-2 (isolate BetaCoV/Munich/BavPat1/2020; European Virus Archive Global #026V-03883;
kindly provided by Dr. C. Drosten) was propagated on Vero E6 cells in Opti-MEM | (1X) + GlutaMAX
(Gibco), supplemented with penicillin (final concentration 100 IU/mL) and streptomycin (final
concentration 100 IU/mL) at 37 °C in a humidified CO, incubator. Stocks were produced by infecting
cells at a multiplicity of infection (MOI) of 0.01 and incubating the cells for 72 hours. The culture
supernatant was cleared by centrifugation and stored in aliquots at =80 °C. Stock titers were
determined by preparing 10-fold serial dilutions in Opti-MEM | (1X) + GlutaMAX. Aliquots of each
dilution were added to monolayers of 2E04 VeroE6 cells in the same medium in a 96-well plate.
Plates were incubated at 37 °C for 5 days and then examined for cytopathic effect. The TCID50 was
calculated according to the method of Spearman & Karber. All work with infectious SARS-CoV and
SARS-CoV-2 was performed in a Class Il Biosafety Cabinet under BSL-3 conditions at Erasmus
University Medical Center.

Organoid-derived human airway culture secretions

Organoid-derived human airway culture secretions were harvested from cultures that had been
differentiated at air-liquid interphase for 3 weeks as described by Lamers et al. [13]. Secretions could
be harvested by pipetting using a P1000 tip and were not diluted. Secretions were stored at -80 °C
until use. Ten-fold dilutions of virus stock containing 1.21E06 TCID50/ml were made in Opti-MEM |
(1X) + GlutaMAX. Next, 25 pl of each virus dilution was mixed with 25 pl of airway culture secretions.
Virus was inactivated by adding 50 pl of 2X Laemmli buffer (BioRad) and incubating at 95 °C for 10
minutes.

Collection and treatment of patient material samples

Nasopharyngeal swabs from COVID-19 patients were stored in universal transport medium (UTM;
contains bovine serum albumin) after collection. Next, they were centrifuged at 15,000 g for 3 min
to pellet down cell debris (termed ‘swab pellet’). The swabs were then washed twice with PBS to
remove excessive albumin and fixed in 80% acetone (termed ‘swab supernatant’). Sputum from
COVID-19 patients was collected and diluted in UTM. Alternatively, sputum was diluted in medium
after collection and a few droplets were pipetted on glass slides, dried and fixed in 80% acetone.

The nasopharyngeal and throat swabs and sputum samples were obtained from different patients.
Samples of sputum deposited on glass slides were obtained from one single patient.

Proteins present in patient nasopharyngeal and throat swabs or sputum samples in transport
medium were first precipitated with acetone-TCA to remove excessive albumin according to [14].
Briefly, 40 ul of the sample was mixed with 400 pl acetone and 1 % TCA and left overnight at -20 °C.
Proteins were pelleted, washed once with ice-cold acetone and left to dry for 5 min. The protein
pellet was then resuspended in 40 pl 50 mM Tris/HCl, 4 M urea (pH 8.2) and diluted with 160 pl 50
mM Tris/HCI (pH 8.2).

Cellular human and viral material in sputum deposited on glass slides was lysed in 50 ul 2% SDS
dissolved in 50 mM Tris/HCI (pH 8.2) followed by sonication in a Bioruptor Pico (Diagenode). Proteins
were digested using the SP3 protocol as described below.
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Sample preparation for MS

A 90 % confluent T75 flask of VeroE6 was infected at a MOI of 0.3 and incubated for 24 hours at 37
°Cin a humidified CO; incubator. Next, cells were collected by scraping and the medium was
removed after centrifuging at 400 g for 5 min. Cells were lysed in 2X Laemmli buffer (final
concentration; Bio-Rad) and boiled at 95 °C for 20 min to inactivate the virus. Proteins were reduced
and alkylated with DTT (Sigma) and IAA (Sigma) and precipitated using chloroform/methanol [15].
The protein pellet was then dissolved in 100 pl of a 50 mM Tris/HCI buffer (pH 8.0) with 2 M urea.
Proteins were quantified using the BCA protein kit (ThermoFisher Scientific / Pierce, #23225);
peptides were quantified with a quantitative colorimetric peptide assay (ThermoFisher Scientific /
Pierce, #23275). Fifty ug of protein was digested with 1 ug trypsin (Thermo) overnight at room
temperature. The peptide digest was cleaned on a 50 mg tC18 Sep-Pak cartridge (Waters) and the
peptides were eluted with 2 ml acetonitrile/water (1:1) with 0.05 % TFA.

Alternatively, proteins were digested with trypsin using the SP3 protocol [16], with minor
modifications. Briefly, proteins in 30 pl Laemmli buffer were reduced for 30 min at 50 °C with 5 mM
DTT and alkylated with 10 mM IAA. A slurry of 10 ug of Sera-Mag speedbeads (GE Healtcare) in 20 pl
milliQ/ethanol (1:1, vol/vol) was added to the solution and mixed for 10 min at RT. Using a magnetic
rack, the beads were immobilized and washed three times with 100 ul 80 % ethanol. 1 pg trypsin
and 0.5 pg Lys-C in 100 pl 50 mM Tris/HCl pH 8.3 were added to the beads and the sample was
incubated overnight at 37 °C. The tryptic digest was then acidified with TFA and desalted using a
StageTip. Peptides were eluted with 100 pl 40 % acetonitrile and 0.1 % formic acid and dried using a
Speedvac. Before analysis by LC-MS peptides were dissolved in 20 ul 2 % acetonitrile / 0.1% formic
acid.

For PRM measurements, peptide samples with concentrations ranging from 0 to 25 ng/ul were
prepared from SARS-CoV-2 infected VeroE®6 cell lysates. For global proteomics, peptides were
fractionated off-line using high pH reversed-phase (ThermoFisher / Pierce, #84868) into four
fractions.

Synthetic AQUA peptide analogs containing a heavy stable isotope labeled C-terminal Arginine (R10)
residue were purchased from Thermo.

LC-MS

Peptide mixtures were trapped on a 2 cm x 100 um Pepmap C18 column (ThermoFisher Scientific,
#164564) and separated on an in-house packed 50 cm x 75 um capillary column with 1.9 um
Reprosil-Pur C18 beads (Dr. Maisch) at a flow rate of 250 nL/min on an EASY-nLC 1200
(ThermoFisher Scientific), using a linear gradient of 0-32% acetonitrile (in 0.1 % formic acid) during
60 or 90 min. The eluate was directly sprayed into the mass spectrometer by means of electrospray
ionization (ESI).

For targeted proteomics, a parallel reaction monitoring regime (PRM) was used to select for a set of
previously selected peptides on an Orbitrap Eclipse Tribrid mass spectrometer (ThermoFisher
Scientific) operating in positive mode and running Tune version 3.3. Precursors were selected in the
quadrupole with an isolation width of 0.7 m/z and fragmented with HCD using 30 % collision energy
(CE). See Supplementary Table 2 for the isolation list. For global DDA proteomics, data were
recorded on an Orbitrap Fusion Lumos Tribrid mass spectrometer (ThermoFisher Scientific) in data
dependent acquisition (DDA) mode. All MS1 and MS2 spectra were recorded in the orbitrap at
30,000 resolution in profile mode and with standard AGC target settings. The injection time mode
was set to dynamic with a minimum of 9 points across the peak. The sequence of sampling was
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blanks first and then in order of increasing peptide input amounts to avoid any contamination of
previous samples.

Data analysis

Mass spectrometry data were analyzed using Mascot v 2.6.2 within the Proteome Discoverer v 2.3
(PD, ThermoFisher Scientific) framework or with MaxQuant v 1.6.10.43 (www.maxquant.org), all
with standard settings (note: fragment tolerance set to 20 ppm). Raw data recorded on the Orbitrap
Eclipse with the FAIMS option were first converted into mzXML format using the FAIMS MzXML
Generator software tool (Coon Lab) before MaxQuant analysis. PRM data were analyzed with Skyline
(skyline.ms). Spectra and chromatograms were visualized in PD 2.3, Skyline or the PDV proteomics
viewer (pdv.zhang-lab.org). The Skyline output was converted to ridgeline plots using in-house
developed software. For global proteome analyses the UniprotkKB SARS2 database (https://covid-
19.uniprot.org/; 14 entries; May 2020) was concatenated with the UniprotKB database, taxonomy
Chlorocebus (African green monkey) or taxonomy Homo sapiens (version Oct 2019).
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RESULTS

We set off by analyzing the global proteome of Vero E6 cells infected with SARS-CoV-2 using
standard bottom-up proteomics. Upon off-line high pH reversed-phase (RP) peptide fractionation,
LC-MS was performed on an Orbitrap Lumos and RAW files were combined during data analysis.
SARS-CoV-2 proteins were measured with high sequence coverage as exemplified in Figure 1 and
Supplementary Figures 1 and 2. Based on a label free semi-quantitative (LFQ) analysis of MaxQuant
output data, we estimate that 4-5% of the total proteome of this sample (composed of Vero cells,
viral proteins inside cells and viral particles outside of cells in the supernatant) is made up of viral
proteins. Of all SARS-CoV-2 proteins covered Nucleocapsid is the most abundant one, making up >
88 % of all signal intensity as calculated from MaxQuant intensity values. Therefore, if intensity
values can be used as a proxy for total protein abundance, almost 90 % of the SARS-CoV-2 proteome
would consist of Nucleocapsid. Abundance of the Nucleocapsid protein in the samples is due to the
high level production of this protein in cells as a result of the nested set of mMRNAs produced during
replication and the resulting overproduction of this protein. Moreover, the high number of identified
Chlorocebus proteins (>6,000; see Supplementary Table 1) suggests that it is possible to not only
study SARS-CoV-2 proteins, but to also investigate the effects of viral infection on the host cell
proteome in great detail.

Based on the extensive sequence coverage for Nucleocapsid and several other SARS-CoV-2 proteins
we established a list of peptide targets that can be used for PRM targeting. These molecular finger
prints are used to program the mass spectrometer in such a way that it acts as a filter to let only
those specific SARS-CoV-2 proteolytic fragments pass. This way, a specific set of target
peptides/proteins can be searched for in basically any sample from which proteins can be isolated
(e.g., in vitro cell cultures, patient derived samples, etc.).

Three highly mass spectrometric responsive tryptic peptides were selected from the global
proteome data set as targets for PRM, i.e. GFYAEGSR (NCAP_SARS2), ADETQALPQR (NCAP_SARS2)
and EITVATSR (VME1_SARS2). Importantly, there are potentially a few dozens of specific SARS-CoV-2
peptides that could be used for targeting, although some of these may show slightly lower mass
spectrometric responsiveness.

Our test sample, i.e. Vero E6 cells infected with SARS-CoV-2, contained 2.0 mg/ml protein based on a
BCA assay. The results of the colorimetric peptide quantification after digestion were in agreement
with this concentration. A dilution series was prepared from this sample and the injected total
peptide quantities ranged from 50 ng down to 20 pg. These extensively diluted samples were then
subjected to PRM on an Orbitrap Eclipse. Figure 2 shows the results of this PRM assay. The six most
intense (Top6) fragment ion peaks are shown in different colors as overlapping (in terms of retention
time) peaks. The chromatogram excerpts are shown from top to bottom and left to right for
decreasing total protein input concentrations. The lower right chromatogram in each panel shows
the Top6 fragment ions in the sample corresponding to 20 pg total protein input, which could thus
be regarded as the limit of detection (LOD). It should be noted that all PRM assays are performed on
peptide targets that are present in a complex matrix, i.e. a Vero cell lysate.

Detection of SARS-CoV-2 peptides in clinical specimens

As a proof-of-concept experiment we then applied this targeted proteomics technology to detect
SARS-CoV-2 proteins in samples from COVID-19 patients. Several different types of patient samples
were collected and provided to us by the Erasmus MC diagnostic department. Since all viral
infectivity in these clinical specimens needs to be abolished according to established protocols in an
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BSL-3 facility before they can be further processed, the condition of the starting material was not
optimized for subsequent proteomics. Notably, some clinical samples contained high amounts of
contaminants such as detergents, albumin, etc. Sputum diluted in viral transport medium deposited
on glass slides and then simply fixed in 80 % acetone turned out to be the sample type that was
most compatible with the subsequent proteomics workflow. Apparently, the relatively simple
background matrix composition combined with a sample preparation protocol that does not involve
the addition of detergents or albumin offers a substantial advantage for proteomics workflows.

For PRM, we focused on the SARS-CoV-2 Nucleocapsid tryptic peptide AYNVTQAFGR, since this
peptide was found to be one of the most prominent and responsive peptides in the SARS2-CoV-2
infected Vero E6 cell lysate. Also, this amino acid sequence is unique to SARS-CoV-2, even in
comparison to SARS-CoV. Figure 3 shows the reconstructed Skyline PRM chromatograms of various
patient derived samples such as swabs and sputum compared to a pure virus positive control.
Clearly, the fragmentation ion chromatogram patterns match those in the positive control and the
sputum samples show the highest intensities.

In order to unambiguously confirm the presence of Nucleocapsid peptides we compared the
chromatogram patterns of AYNVTQAFGR with those of a variant of this peptide that contains a
heavy isotope labeled C-terminal Arginine. This synthetic AQUA peptide was spiked in all patient
samples and co-elutes with the corresponding (non-labeled) endogenous peptide in LC-MS because
of its similar biophysical properties. For several clinical samples the chromatograms of the AQUA
peptides are shown in Figure 3B, while the corresponding endogenous peptides are shown in panel
C. The similarities in both fragment ion chromatogram pattern and elution time confirm the
presence of SARS-CoV-2 proteins in all sputum samples and sample ‘swab supernatant 4.

To investigate the relationship between amounts of viral RNA as detected by PCR methods and
protein abundances determined by mass spectrometric methods, we collected two cohorts of
clinical specimens with known PCR Ct values ranging from the 12 to >30. These samples were
nasopharyngeal Eswabs, Aptima or Sigma swabs from individuals who had tested positive for COVID-
19 in regular diagnostic assays. The viral material in these swabs was first inactivated in 80% acetone
Swabs and similar proteomics sample preparation procedures were followed as for the sputum
samples described earlier. For several target tryptic peptides of SARS-CoV-2 proteins, AQUA peptide
counterparts were included in the samples as spike-in. Relative protein abundances were defined by
the sum of the AUCs for all fragment ion chromatograms for every peptide of each viral protein
detected in a sample.

For the first patient cohort, the mass spectrometry data are shown in Figure 4A and Supplementary
information 1. For all specimens with E-Gen CT value <20 relatively high mass spectral peak
intensities were observed for various target peptides in our PRM assay. Also, for several specimens
with Ct values in the low 20s viral protein could still be unambiguously detected. For example, in
sample #5 peptide GQGVPINTNSSPDDQIGYYR was identified by eight highly mass accurate fragment
ions (Figure 4B). The correlation between the PCR Ct values and the summed mass spectrometry
intensities is shown in Figure 4C. There is a clear inverse relationship between these sample
characteristics, with a threshold value for detection by targeted mass spectrometry around Ct value
22. For some samples with high Ct values no SARS-CoV-2 peptides could be detected.

The second sample cohort consisted of 15 nasopharyngeal swabs from individuals who had tested
positive for COVID-19. Since the two sample cohorts were collected and analyzed at different COVID-
19 diagnostic testing sites, the results cannot be directly compared to one another. For this reason,
we treat them separately here.
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Viral samples were collected with different types of collection kits, such as Eswabs, Aptima and
Sigma swabs, and the same sample preparation procedures were followed as for the sputum
samples described earlier.

Positive mass spectrometric detection was observed for all specimens with E-Gen CT values <24
(Figure 5), although the absolute summed intensities of target peptide fragments varied widely.
Individual peptide identifications and quantifications are visualized in (Figure 5A, B and
Supplementary_information_2) and compared to corresponding AQUA peptide counterparts if
applicable. Clearly, the highest summed AUCs values were observed for samples 1, 8 and 14, which
have very low PCR CT values and thus a relatively high amount of viral material. Strikingly, for several
patient samples different sets of target peptides were more pronouncedly detected, although the
exact same sample preparation protocols were followed for all samples. This may reflect the
heterogeneity of the samples, possibly leading to quite diverse outcomes of protein digestion
procedures. For example, in sample #6 several relatively long peptides are highly abundant, while
some shorter ones are virtually absent. Whether or not the differences in detected target peptide
sets may reflect the status of the viral particle (e.g. active particles versus aggregated, non-
assembled proteins from viral residue) is the subject of current research.

Overall, there is an inverse relationship (R? = 0.733) between °Log transformed summed AUCs of the
fragment ion chromatograms and the E-Gen Ct values from PCR assays on the same samples (Figure
5D), which makes sense because of the logarithmic nature of the Ct value scale and which reflects
the amounts of virus RNA and proteins present. Obviously, the number of data points is only limited
in our case and the strength of this relationship is expected to become stronger with an increasing
number of data points.

Two target peptides were detected in a sample with a Ct value of 23.2 (Figure 5C; sample #7,
peptides GPEQTQGNFGDQELIR and DQVILLNK. Sample #2 is shown for comparative purposes).
Strikingly, for one specimen with a Ct value of 29.3 a positive detection was reported for at least one
tryptic peptide of VME1 (Figure 5C; sample #4, peptide EITVATSR). When the contaminating peak
that was incorrectly assigned as the b3 fragment ion by Skyline is removed from the chromatograms,
the pattern closely resembles that of its AQUA counterpart peptide.

Finally, we tested two different experimental procedures to obtain higher sensitivity and to decrease
the overall LC-MS analysis time. To increase the measurement sensitivity, high pH reversed phase
fractionation was applied to tryptic digests of clinical specimens. Fractionated peptides were
collected in eight fractions, which were separately analyzed by PRM MS. This leaded in many cases
to improved peptide detection and higher quantitation values, as exemplified in Figure 6A for
several representative target peptides (left panels: unfractionated digests, right panels: fractionated
digests). Peptide abundances were up to five times higher in the fractionated samples, while
absolute quantitation based on comparison to known spiked-in amounts of AQUA counterpart
peptides revealed that SARS-CoV-2 peptides could be detected in the low attomolar range. Shorter
LC-MS gradient (20 min) resulted in overall slightly less identifications and quantitation results. Still,
extremely low abundant target peptides could be reliably identified and quantified, despite the
increased presence of contaminating peaks that are most likely the result of more crowded mass
spectra (Figure 6B).

In conclusion, more sensitivity could be obtained by fractionation of tryptic digests prior to PRM
analysis, although at the costs of longer analysis times. Shorter LC gradients were used to decrease
the overall sample analysis time. While some peptides fell below the detection limit, the far majority
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of target peptides could still be reliably identified and quantified, also in samples of relatively high Ct
values.
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DISCUSSION

We show that proteolytic peptides of SARS-CoV-2 proteins can be detected down to the mid-
attomole range by targeted mass spectrometry. Our rough calculations indicate that the level of
sensitivity should be sufficient to detect protein amounts corresponding to 1.2E7 copies. In addition,
we have shown that the current sensitivity of PRM targeted mass spectrometry is sufficiently high
for the detection of virus proteins, in particular NP, present in patient material such as
nasopharyngeal swabs and sputum. The identification of SARS-CoV-2 tryptic peptides was confirmed
in an assay using AQUA synthesized heavy isotope labeled peptides spiked in as a positive control.
Since we did not detect all SARS-CoV-2 tryptic peptides in every clinical sample that was positively
tested for COVID-19 by PCR, the success of mass spectrometry based methods may depend on both
the total absolute amount of viral proteins present in such samples as well as on the specific type of
clinical specimens and the preparation thereof. Larger sample cohorts need to be included in future
studies to further look into this.

PRM sensitivity in terms of numbers of detected virus particles is — as expected — not as high as that
of RT-qPCR, which has been reported to be able to detect viral RNA in copy numbers as low as
several 100s per reaction [17]. A major difference compared to conventional methods of viral
diagnostics is that in this study proteins are analyzed as opposed to RNA in case of PCR based
methods. This makes it an orthogonal detection method that could serve as a complementary tool
for diagnosing SARS-CoV-2 infection.

The excellent label free quantitation capacity of targeted mass spectrometry over a wide
concentration range makes this method particularly useful for e.g. the study of infection courses
over time. By using spiked in AQUA peptides it should be possible to absolutely quantitate viral
proteins, which would allow for the accurate monitoring of SARS-CoV-2 protein abundances in e.g.
time series. This could be useful in studies to the course of infection and for solving open questions
on the importance of viral load in COVID-19 spreading.

Although several reports describing SARS-CoV-2 protein detection in clinical specimens have been
published recently, we have investigated the relationship between PCR Ct values and mass spectral
intensities in different independent patient cohorts without the need for immunopurification of
SARS-CoV-2 proteins prior to mass spectrometry analysis. We observed an inverse linear relationship
between the Log transformed summed AUCs of the fragment ion chromatograms and the PCR Ct
value, which makes sense because of the logarithmic nature of the Ct value scale. Obviously, the
number of data points is only limited in our case and the strength of this relationship is expected to
become stronger with an increasing number of data points from larger cohorts. Factors that may
contribute to the spread of the data points include the heterogeneity of the samples and differences
in sample collection. Alternatively, the imperfect correlation may also reflect the nature of the
samples. It is possible that both RNA and protein are present outside of infectious viral particles:
RNA could be present without surrounding protein shell, while proteins or protein assemblies from
disintegrated particles may still be floating around after infection. In such cases, a lower degree of
correlation could be expected. Whether or not it is possible to use the developed methodology to
differentiate between infectious virus particles and viral residue should be investigated, preferably in
larger cohorts.
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In conclusion, the current level of sensitivity of PRM proteomics methodology and the successful
detection of SARS-CoV-2 proteins in patient material opens up ways to explore the use of mass
spectrometry as a technology for clinical and diagnostics labs to detect viral infection in clinical
specimens. Subsequent steps should now be focused on the optimization of fast sample preparation

procedures and LC-MS throughput.
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DATA AVAILABILITY

All raw mass spectrometry data were uploaded to the PRIDE repository (www.ebi.ac.uk/pride/)
under accession number PXD025294. Part of this manuscript was published on the bioRxiv preprint
server under accession number 2020.04.23.057810 at https://doi.org/10.1101/2020.04.23.057810.
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FIGURES & TABLES LEGENDS

FIGURE 1 | Numbers of identified proteins in SARS-CoV-2 infected Vero cells (PD2.3/Mascot search
engine, offline high pH RP fractionation into four fractions, total input material 0.6 pug, 90 min LC
gradients on an Orbitrap Lumos).

FIGURE 2 | PRM results visualized in Skyline (skyline.ms). Chromatograms for each of the Top6
fragment ions are shown in different colors in a dilution series for tryptic peptides A) GFYAEGSR
(NCAP_SARS2), B) ADETQALPQR (NCAP_SARS2) and C) EITVATSR (VME1_SARS2). The lower right
chromatogram represents the lowest sample input, i.e. 20 pg. The MS/MS spectrum on the right is
the library spectrum. C) Calibration curves based on PRM data for three target peptides recorded on
an Orbitrap Eclipse. The summed AUC values for the Top6 fragment ions of each peptide were taken
for relative quantitation. ‘Input’ is total protein input from the SARS2-CoV-2 infected Vero E6 cell
lysate; inserts are zoom-ins of the input range 0 — 300 pg.

FIGURE 3 | PRM fragment ion chromatograms of SARS-CoV-2 Nucleocapsid and VME1 tryptic
peptides VAGDSFAAYSR and AYNVTQAFGR_in representative A) sputum specimens and B) throat
swab specimens of COVID-19 patients. Chromatograms for each of the Top6 fragment ions are
shown in different colors. The upper panels show the fragment ion chromatograms of the
corresponding synthetic AQUA peptides VAGDSFAAYS[R] (m/z 605.79) and AYNVTQAFG[R] (m/z
568.79). See Supplementary Figure 4 for additional clinical specimens.

FIGURE 4 | PRM data of clinical specimens of COVID-19 patients (cohort 1). A) Total AUCs of SARS-
CoV-2 target peptide fragment ion chromatograms (upper panels show the spiked-in AQUA peptide
signals; if no AQUA peptide counterpart was available upper panels are left empty). The color
shading of the bars indicate the relative AUCs of the different fragment ions. B) Fragment ion
chromatograms for various SARS-CoV-2 target peptides in one representative clinical specimen. C)
Comparison of AUCs versus PCR Ct values for clinical specimens. Data points in grey represent
samples in which no target peptides were detected by PRM.

FIGURE 5 | PRM data of clinical specimens of COVID-19 patients (cohort 2). A) Total AUCs of SARS-
CoV-2 target peptide fragment ion chromatograms (upper panels show the spiked-in AQUA peptide
signals; if no AQUA peptide counterpart was available upper panels are left empty). The color
shading of the bars indicate the relative AUCs of the different fragment ions. B) Selection of PRM
results for several target peptides in samples 2, 4 and 7. See main text for explanation. Retention
times for the identical peptides in different samples may slightly differ as a result of small variations
in LC gradients and chromatography setup. C) Comparison of AUCs versus PCR Ct values for clinical
specimens. Data points in grey represent samples in which no target peptides were detected by
PRM.

FIGURE 6 | A) Comparison of one-shot versus high pH fractionation LC-MS PRM for several target
peptides. For peptide GFYQTSNFR in Sample #7 the normalized peak area would correspond to the
low attomolar range. B) Example of a positive target peptide identification in a 20 min gradient LC-
MS run of a sample of high Ct value.

TABLE 1 | MaxQuant output of LFQ analysis of SARS-CoV-2 infected Vero E6 cell lysates. Intensity
values were taken directly from the MaxQuant ProteinGroups.txt output file. The indicated
percentage is relative to the global viral proteome.

SUPPLEMENTARY FIGURE 1 | MS/MS spectra of tryptic peptides A) GFYAEGSR, B) ADETQALPQR and
C) EITVATSR. Data visualization in PDV proteomics viewer (pdv.zhang-lab.org).
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SUPPLEMENTARY FIGURE 2 | Tryptic peptide coverage in light green of A) Nucleocapsid
(NCAP_SARS2) and B) Membrane protein (VME1_SARS2). Data visualization in PD2.3.

SUPPLEMENTARY FIGURE 3 | PRM results from the SARS-CoV-2 infected Vero E6 cell lysates.
Fragment ion chromatograms for each of the Top5 or Top6 fragment ions are shown in different
colors in a dilution series for tryptic peptides A) ADETQALPQR (NCAP_SARS2) and B) EITVATSR
(VME1_SARS2). C) Library peptide fragmentation spectra for the indicated peptides. D) Calibration
bar graphs for three target peptides.

SUPPLEMENTARY FIGURE 4 | A) PRM chromatograms of SARS-CoV-2 Nucleocapsid and VME1 tryptic
peptides AYNVTQAFGR and VAGDSFAAYSR in four additional COVID-19 patient sputum specimens
(#s 3-6) and one specimen from a patient infected with influenza B serving as a negative control (#
3). Chromatograms for each of the Top6 fragment ions are shown in different colors. The upper
panels show the fragment ion chromatograms of the corresponding synthetic AQUA peptide
AYNVTQAFG[R] (m/z 568.79) and VAGDSFAAYS[R] (m/z 605.79). Supplementary Table 3 contains the
output in table format, including Skyline library dot product and total area fragment values. B) The
corresponding Ct values for the sputum and throat swab samples from PCR assays.

SUPPLEMENTARY FIGURE 5 | PRM fragment ion chromatograms for various SARS-CoV-2 target
peptides in one representative clinical specimen from patient cohort 1.

SUPPLEMENTARY FIGURE 6 | PRM fragment ion chromatograms for various SARS-CoV-2 target
peptides in one representative clinical specimen from patient cohort 2.

SUPPLEMENTARY TABLE 1 | Mascot/PD2.3 results of fractionated SARS-CoV-2 infected VeroE®6 cell
lysate.

SUPPLEMENTARY TABLE 2 | PRM isolation m/z list.

SUPPLEMENTARY TABLE 3 | Skyline export files for calibration curve.

SUPPLEMENTARY TABLE 4 | Skyline export files for COVID-19 patient sputum specimens.
SUPPLEMENTARY TABLE 5 | Skyline export files for COVID-19 patient cohort 1.
SUPPLEMENTARY TABLE 6 | Skyline export files for COVID-19 patient cohort 2.

SUPPLEMENTARY INFORMATION 1 | Complete set of fragment ion chromatograms for all cohort 1
specimens.

SUPPLEMENTARY INFORMATION 2 | Complete set of fragment ion chromatograms for all cohort 2
specimens.
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FIGURE 1 | Numbers of identified proteins in SARS-CoV-2 infected Vero cells (PD2.3/Mascot
search engine, offline high pH RP fractionation into four fractions, total input material 0.6 pg, 90
min LC gradients on an Orbitrap Lumos).

# identified peptides

Source # identified proteins

Total 6,512 61,394
SARS2 9 279
Chlorocebus 6,503 61,115

y
Accession - Protein name -~ O ~ Description -T Coverag [%]\ - \# Peptides ~ \# PSMs \ - \
PODTC9 NCAP SARS2 Nucleoprotein OS=Severe acute respiratory syndrome coronavirus 2 0X=2697049 GN=N PE=3 SV=1 91 61 676
PODTD1 R1AB SARS2 Replicase polyprotein 1ab OS=Severe acute respiratory syndrome coronavirus 2 0X=2697049 GN=rep PE=1 SV=1 22 128 237
PODTC2 SPIKE SARS2 Spike glycoprotein OS=Severe acute respiratory syndrome coronavirus 2 0X=2697049 GN=S PE=1 SV=1 39 53 172
PODTD2 ORF9B SARS2 Protein 9b OS=Severe acute respiratory syndrome coronavirus 2 0X=2697049 PE=3 SV=1 96 12 49
PODTCS VME1 SARS2 Membrane protein OS=Severe acute respiratory syndrome coronavirus 2 OX=2697049 PE=3 SV=1 36 13 89
PODTC3 AP3A SARS2 Protein 3a OS=Severe acute respiratory syndrome coronavirus 2 0X=2697049 GN=3a PE=3 SV=1 28 8 30
PODTC7 NS7A SARS2 Protein 7a OS=Severe acute respiratory syndrome coronavirus 2 0X=2697049 GN=7a PE=3 SV=1 23 1 2
PODTC6 NS6 SARS2 Non-structural protein 6 OS=Severe acute respiratory syndrome coronavirus 2 0X=2697049 GN=6 PE=3 SV=1 31 2 2
PODTC4 VEMP SARS2 Envelope small membrane protein OS=Severe acute respiratory syndrome coronavirus 2 OX=2697049 GN=E PE=3 SV=1 16 1 2
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A)

FIGURE 2 | A) PRM results from the SARS-CoV-2 infected Vero E6 cells. Chromatograms for each
of the Top6 fragment ions are shown in different colors in a dilution series for tryptic peptide
GFYAEGSR (NCAP_SARS2). The amount of total protein input from the cell lysates is indicated in
each panel. For additional tryptic peptides see Supplementary Figure 3. B) Library peptide
fragmentation spectrum for the indicated peptide. C) Calibration curves for the indicated target
peptides. The summed AUC values for the Top6 fragment ions were taken for relative
guantitation. Inserts are zoom-ins of the input range 0-300 pg.
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FIGURE 2 | continued
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A)

Fragment ions

Fragment ions

FIGURE 3 | PRM fragment ion chromatograms of SARS-CoV-2 Nucleocapsid and VME1 tryptic peptides
VAGDSFAAYSR and AYNVTQAFGR in representative A) sputum specimens and B) throat swab specimens
of COVID-19 patients. Chromatograms for each of the Top6 fragment ions are shown in different colors.
The upper panels show the fragment ion chromatograms of the corresponding synthetic AQUA peptides
VAGDSFAAYS[R] (m/z 605.79) and AYNVTQAFGI[R] (m/z 568.79). See Supplementary Figure 4 for data of
additional clinical specimens.
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FIGURE 4 | PRM data of clinical specimens of COVID-19 patients (cohort 1). A) Total AUCs of SARS-CoV-2
target peptide fragment ion chromatograms (upper panels show the spiked-in AQUA peptide signals; if no
AQUA peptide counterpart was available upper panels are left empty). The color shading of the bars
indicate the relative AUCs of the different fragment ions. B) Selection of fragment ion chromatograms for
various SARS-CoV-2 target peptides in one representative clinical specimen. For full collection see
Supplementary Figure 5. C) Comparison of AUCs versus PCR Ct values for clinical specimens. Data pointsin
grey represent samples in which no target peptides were detected by PRM.
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FIGURE 4 | continued

B)

Q)

Fragment ions

Fragmentions

Fragment ions

b4+

ye+
y3+

yi+
b3+
y5+
ba+

Y12+
vo+
y10+
y11+
b3+
y8+

yo+

22

14.9

Sample 5: AYNVTQAFGR Sample 5: EITVATSR

15.25

Sample 5: DGIMVATEGALNTPK

Sample 5: IQDSLSSTASALGK

1550 1575

Trar ye+ stw *

spidad yndoy
spnded vy

Fragment ions
Fragment ions

Taxot Izmﬁ

apidad z-A03-SHVS
<
5
?

spided Z-A0D-SHVS

16.00 1625 86 8.8 a0 92 94 986

Retention time (min) Retention time (min)

24

Sample 5: NPANNAAIVLQLPQGTTLPK

Y8+
b+
bo+
Yo+
b7+
yo+
bg++
y10+

spidad vnoy
spndad YNy

Fragment ions
Fragmentions

y8+

bg+

b+
e Taxc®
b7+

y9+
bg++

y10+
26 215 220 225

Isﬂﬁ

appded Z-A00-SHVS
spuded z-A00-S¥VS

Retention time (min) Retention time (min)

15.1 153
Retention time (min) Retention time (min)

Summed AUC for fragment ions (a.u.)

3E+08

2E+08

2E+08

1E+08

S5E+07

0E+00

Sample 5: ITFGGPSDSTGSNQNGER++

y10+
y13+
y15+

Y8+

spidad ynov
sppded vy

y13++

Fragment ions
Fragment ions

Y10+
y13+
Ji5e Is ot
y8+

yo+

y13++
155 157 123 12.6 12.9

Tount

appdad ZA03-SHVS
sppded ZA0D-SuVS

1E+07

BE+06

2PN
20

E-Gen Ct value (PCR)

30 25

yTe+
yB++

ba+

yT++
Yo+

b+

yT++
yE+E

yo+
a4+
y3+
b4+
b3+
yT++
yE++

yar
Yo+
Y11+
Y10+
y12+

< <
=
T

Y16+

<
by
©

o+
Y11+
Y10+
Y12+

ya+
Y6+

Sample 5: GFYAEGSR

»
)
c
b3
Taurs
3
=
g
&
1
*
2
@
(<]
5
Tran
S
5
3
2
a
5
9.5 100 10.5
Retention time (min)
Sample 5: GFYAEGSR
»
2
c
>
Taurg
4
3
a
g
o
3
b
1
&
S
Trant =
®
°
4
=@
g
°
9.5 100 10.5
Retention time (min)
Sample 5: GQGVPINTNSSPDDQIGYYR
b3
2
c
»
]
4
=
o
s
w
b3
A
o
o
5
Lot 3
©
5
=
a
5

17.00 17.25 17.50
Retention time (min)

Figure continued on next page


https://doi.org/10.1101/2020.04.23.057810

Fragment ion AUCs (a.u.) Fragment ion AUCs {a.u.) Fragment ion AUCs (a.u.)

Fragment ion AUCs (a.u.)

FIGURE 5 | PRM data of clinical specimens of COVID-19 patients (cohort 2). A) Total AUCs of SARS-CoV-2
target peptide fragment ion chromatograms (upper panels show the spiked-in AQUA peptide signals; if no
AQUA peptide counterpart was available upper panels are left empty). The color shading of the bars
indicate the relative AUCs of the different fragment ions. B) Selection of PRM results for several target
peptides in samples 2, 4 and 7. See main text for explanation. C) Comparison of AUCs versus PCR Ct values
for clinical specimens. Data points in grey represent samples in which no target peptides were detected
by PRM.
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Summed AUC for fragment ions (a.u.)

FIGURE5 | continued
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Fragment ions
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FIGURE 6 | A) Comparison of one-shot versus high pH fractionation LC-MS PRM for several target
peptides. For peptide GFYQTSNFR in Sample #7 the normalized peak area would correspond to the low
attomolar range B) Example of a positive target peptide identification in a 20 min gradient LC-MS run of a
sample of high Ct value.
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TABLE 1 | MaxQuant output of LFQ analysis of SARS-CoV-2 infected Vero E6 cell lysates. Intensity
values were taken directly from the MaxQuant ProteinGroups.txt output file. The indicated
percentage is relative to the global viral proteome.

Protein
PODTC9|NCAP_SARS2
PODTC2 |SPIKE_SARS2
PODTC5|VME1_SARS2
PODTD1|R1AB_SARS2
PODTD2 |ORF9B_SARS2
PODTC3|AP3A_SARS2
PODTC6|NS6_SARS2
PODTC4|VEMP_SARS2

Intensity
3.1998E+11
17745000000
13582000000
4608000000
2910500000
1941200000
307510000
49604000

Percentage

88.6
4.9
3.8
13
0.8
0.5
0.1
0.0

MW (kDa)

46
141
25
794
11
31
7
8
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SUPPLEMENTARY FIGURE 1 | MS/MS spectra of tryptic peptides A) GFYAEGSR, B) ADETQALPQR and C)
EITVATSR. Data visualization in PDV proteomics viewer (pdv.zhang-lab.org).
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SUPPLEMENTARY FIGURE 2 | Tryptic peptide coverage in light green of A) Nucleocapsid (NCAP_SARS2)

and B) Membrane protein (VME1_SARS2). Data visualization in PD2.3.
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SUPPLEMENTARY FIGURE 3 | PRM results from the SARS-CoV-2 infected Vero E6 cell lysates.
Fragment ion chromatograms for each of the Top5 or Top6 fragment ions are shown in different
colors in a dilution series for tryptic peptides A) ADETQALPQR (NCAP_SARS2) and B) EITVATSR
(VME1_SARS2). C) Library peptide fragmentation spectra for the indicated peptides. D)
Calibration bar graphs for three target peptides.
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SUPPLEMENTARY FIGURE 3 | continued
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SUPPLEMENTARY FIGURE 3 | continued
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SUPPLEMENTARY FIGURE 4 | A) PRM chromatograms of SARS-CoV-2 Nucleocapsid and VME1 tryptic
peptides AYNVTQAFGR and VAGDSFAAYSR in four additional COVID-19 patient sputum specimens (#s
3-6) and one specimen from a patient infected with influenza B serving as a negative control (# 3).
Chromatograms for each of the Top6 fragment ions are shown in different colors. The upper panels
show the fragment ion chromatograms of the corresponding synthetic AQUA peptide AYNVTQAFGIR]
(m/z 568.79) and VAGDSFAAYS|[R] (m/z 605.79). Supplementary Table 3 contains the output in table
format, including Skyline library dot product and total area fragment values. B) The corresponding Ct

values for the sputum and throat swab samples from PCR assays.
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SUPPLEMENTARY FIGURE 5 | Fragment ion chromatograms for various SARS-CoV-2 target peptides in
one representative clinical specimen from patient cohort 1. The upper panels show the spiked-in AQUA
peptide signals; if no AQUA peptide counterpart was available upper panels are left empty.
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SUPPLEMENTARY FIGURE 6 | PRM data of a representative clinical specimen of COVID-19 patient cohort
2. Fragment ion chromatograms for various SARS-CoV-2 target peptides in one representative clinical
specimen. The upper panels show the spiked-in AQUA peptide signals; if no AQUA peptide counterpart
was available upper panels are left empty.
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