
DRAFT

Computation in the human cerebral cortex uses
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Darwinian evolution tends to produce energy-efficient outcomes.
On the other hand, energy limits computation, be it neural and
probabilistic or digital and logical. After establishing an energy-
efficient viewpoint, we define computation and construct an energy-
constrained, computational function that can be optimized. This
function implies a specific distinction between ATP-consuming pro-
cesses, especially computation per se vs action potentials and
other costs of communication. As a result, the partitioning of ATP-
consumption here differs from earlier work. A bits/J optimization of
computation requires an energy audit of the human brain. Instead of
using the oft-quoted 20 watts of glucose available to the brain (1, 2),
the partitioning and audit reveals that cortical computation con-
sumes 0.2 watts of ATP while long-distance communication costs
are over 20-fold greater. The bits/joule computational optimization
implies a transient information rate of more than 7 bits/sec/neuron.
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This paper examines neural computation from the perspec-1

tive that Nature favors efficiency. To do so requires first2

quantifying a defined form of information generation that is3

common to evolved cortical computation. Second, we quan-4

tify cortical costs. Given the context of Darwinian fitness, a5

bits/joule optimization justifies our definition of computation6

as Nature’s perspective, as opposed to an ad hoc definition by7

engineers. Nevertheless, some effort is expended on aligning8

our definition with a particular first-principles derivation of9

energy-optimized computation arising from statistical mechan-10

ics.11

Key functions in our investigation are ATP production12

and usage, processes which are dependent on glucose and13

oxygen. Thus, our energy optimized function can be expressed14

in terms of joules (J) per cycle, watts (W≡J/sec), moles of15

ATP, oxygen, or glucose per operation or per sec. Often,16

computer scientists, e.g. REFS, make a generic comparison17

between the power expenditure of computers vs the ≈20 watts18

of glucose consumed by the human brain. To further facilitate19

comparisons between the brain and engineered computers, we20

offer a partitioning of the human brain energy budget in a21

form homologous to traditional computing. The finding is that22

neural computation consumes 0.17 watts of ATP and cortical23

communication consumes 4.6 watts of ATP.24

To measure computational costs requires a definition of25

computation. However taking the perspective of analog com-26

putation, any transformation qualifies as a computation. Like-27

wise, any such transformation can be quantified using a variety28

of measures, arguably the most popular being Shannon’s mu-29

tual information (3). Without denying the acceptability of this30

most general perspective, we addend an additional property in 31

our identification of neural computation: neural computation 32

must be interpretable as some type of inference, e.g., the logi- 33

cal inference of digital computation or a Bayesian, statistical 34

inference with evolution providing an implicit prior. In fact 35

we identify commonalities between these two forms of compu- 36

tation: energy expenditures and the applicabilty of Shannon’s 37

measurement. 38

Compared to the minimalist perspective of physics e.g.,(4), 39

neural computation appears tremendously expensive. Because 40

we assume Nature always gets it about right microscopically, 41

the theory section concludes that the energy-optimized com- 42

putation of physics is overly reductionist, and it must give way 43

to a different, broader viewpoint. The suggested viewpoint 44

is that Nature requires each neural system to deliver its com- 45

putational information in a time-sensitive manner. To say it 46

another way, a bits/J optimization of computation must heed 47

a separate, minimal bits/sec requirement for regional brain 48

computation. Thus, some scaled version of this bits/sec re- 49

gional requirement will hold for individual neurons themselves. 50

This additional constraint forces certain compromises on en- 51

ergy efficiency because energy-efficiency decreases as bits/sec 52

increase, e.g. (5–7). As a result, the ultimate optimization 53

must heed an unknown but requisite bits/sec. Rather than 54

evaluate the organism’s information needs based on its fitness 55

and niche, we take a bottom-up approach and consider how 56

energy is used. 57

The approach uses empirical neuroscience to quantify var- 58

ious energy consuming processes. This forces us to combine 59
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various neuroanatomical, neurophysiological, and biophysical60

observations. With a well-defined form of computation, it is61

then possible to create a bits/J optimization even without62

knowing the required bits/sec. That is, because energy limits63

bits/sec of computation and communication, using the energy64

available for the bits/J optimization instructs the parameteri-65

zation of the bits/sec calculation. Thus the bits/sec calculation66

is a prediction. The bridge between the bits/J optimization67

and the bits/sec calculation is N – the number of excitatory68

synaptic events required, on average, to reach threshold – and69

an important part of the Results proves this fact with precisely70

specified assumptions. One can also view the optimization71

result as a consistency check on the energy-audit since an72

empirically based, inferred value for N is part of the audit’s73

development. Before developing these results, we consider the74

best possible bits/J that physics offers and map this result75

into the context of a simple neural computation.76

Results77

Relating neural computing to the maximum efficiency of ir-78

reversible computing. Our approach to quantifying and in-79

terpreting the energetic cost of neural computation, and its80

optimization, is inspired by the physical limits on irreversible81

computation. Still we do not stray too far from what theoreti-82

cal neuroscience has had to say about measuring information,83

now in the context of computation. For the sake of our initial84

comparison, suppose a neuron’s computation is just its trans-85

formation of inputs to outputs. Then, quantifying the infor-86

mation passed through this transformation (bits per sec) and87

dividing this information rate by the power (W = joules/sec)88

needed for such a transformation yields bits/J. This ratio will89

be our efficiency measure. In neuroscience, it is generally90

agreed that Shannon’s mutual information (MI) can be used91

to measure something about the bit-rate of neural information92

processing, neural transformations, or neural communication,93

e.g., (8–15). Specifically, we use mutual information and an94

associated rate of postsynaptic energy-use, which will allow a95

comparison with the optimal bits/J for computation as devel-96

oped through physical principles. To understand this analogy97

with the result of statistical mechanics, assume the only noise98

is wideband thermal noise, kT ≈ 4.3 · 10−21 J (Boltzmann’s99

constant times absolute temperature, T = 310 K). The bits/J100

ratio can be optimized to find the best possible energetic cost101

of information, which is (kT ln 2)−1.102

To give this derivation a neural-like flavor, suppose a perfect103

integrator with the total synaptic input building up on the104

neuron’s capacitance. Every so often the neuron signals this105

voltage and resets to its resting potential. Call the signal Vsig,106

and rather unlike a neuron, let it have mean value (resting107

potential) of zero. That is, let it be normally distributed108

N (0, σ2
sig = E[V 2

sig]). The thermal noise voltage-fluctuation109

is also a zero-centered normal distribution, N (0, σ2
noise). Ex-110

pressing this noise as energy on the membrane capacitance,111

Cmσ
2
noise
2 = kT

2 ⇒ σ2
noise = kT

Cm
(16–18). Then using Shan-112

non’s result, e.g., theorem 10.1.1 as in (19), the nats per trans-113

mission are 1
2 ln(1+

σ2
sig

σ2
noise

) = 1
2 ln(1+

CmE[V 2
sig ]

kT ) (with natural114

logarithms being used since we are performing a maximization).115

Converting this to bits, and calling this result the mutual infor-116

mation channel capacity, CMI = (2 ln 2)−1 ln(1 +
CmE[V 2

sig ]
kT ).117

Next we need the energy cost, the average signal joules-118

per-transmission developed on the fixed Cm by the synaptic 119

activation, E :=
CmE[V 2

sig ]
2 . Dividing the bits/sec CMI by 120

the J/sec E yields the bits-per-joule form of interest; CMIE = 121

(CmE[V 2
sig] ln 2)−1 ln(1 +

CmE[V 2
sig ]

kT ). This ratio is recognized 122

as the monotonically decreasing function ln(1+x)
cx

with x, c > 0. 123

Therefore maximizing over E[V 2
sig] but with the restriction 124

E[V 2
sig] > 0 is a limit to the left result, an approach to zero 125

bits/sec. That is, 126

lim
E[V 2

sig
]→0

CMI
E = (CmE[V 2

sig] ln 2)−1 CmE[V 2
sig ]

kT 127

= (kT ln 2)−1 ≈ 1.6 · 1020 bits/J. 128

Two comments seem germane. First, physicists arrived 129

at this value decades ago in their vanquishing of Maxwell’s 130

demon and its unsettling ability to create usable energy from 131

randomness (4). In their problem, the device (the demon) is 132

not obviously computational in the neural sense; the demon 133

just repeatedly (i) senses, (ii) stores, and (iii) operates a door 134

based on the stored information, and then (iv) erases its stored 135

information as it continues to separate fast molecules from the 136

slower ones (20, 21): see Fig 1. Moreover, even after simplify- 137

ing this cycle to steps (i), (ii) and (iv), physicists do see the 138

demon’s relevance to digital computation. Such a cycle is at the 139

heart of modern computers where computation occurs through 140

repetitive uses, or pairwise uses, of the read/write/erase cycles. 141

For example, bit-shifting as it underlies multiplication and 142

the pairwise sensing and bit-setting (then resetting) of binary, 143

Boolean logical operations reflect such cycles. Thus, as is well 144

known from other arguments e.g., (4), (22), the limit-result of 145

physics sets the energy-constraining bound on non-reversible 146

digital computation. Regarding (iii) it would seem that if 147

the demon communicates and controls the door as slowly as 148

possible (i.e, the limit of time going to infinity), there is no 149

need to assign an energy-cost to these functions. 150

Secondly, compared to the estimates here of a neuron cy- 151

cling from reset to firing to reset, this physics result is unimag- 152

inably more efficient. Suppose that the computational portion 153

of a human cortical neuron has capacitance Cm ≈ 750 pF 154

(obtained by assuming the human neuron’s surface area is 155

a about three times a rat’s pyramidal value of 260 pF (23)) 156

and suppose this neuron resets to Vrst = −0.066 V while 157

firing threshold is Vθ = −0.050 V. Then in the absence of 158

inhibition, the excitatory synaptic energy needed to bring a 159

neuron from reset to threshold is 1
2Cm(V 2

rst−V 2
θ ) ≈ 1.4 ·10−12

160

J/spike. Assuming 4 bits/spike, the bits/joule are 2.9 · 1012. 161

Compared to the optimal limit set by physics, this efficiency 162

value is 108 times less energy-efficient, a seemingly horrendous 163

energy-efficiency for a supposedly optimized system. 164

The disagreement reorients our thinking. In the context of under- 165

standing neural computation via optimized energy-use, this 166

huge discrepancy might discourage any further comparison 167

with thermal physics or the use of mutual information. It could 168

even discourage the assumption that Nature microscopically 169

optimizes bits/J. But let us not give up so quickly. Note that 170

the analogy between the four-step demon versus an abstract 171

description of neural computation for one interpulse interval 172

(IPI) is reasonable (see Fig 1). That is, (i) excitatory synaptic 173

events are the analog of sensing, these successive events are (ii) 174

stored as charge on the plasma membrane capacitance until 175

threshold is reached, at which point (iii) a pulse-out occurs, 176
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Fig. 1. Maxwell’s demon cycle is analogous to the neuron’s computational cycle. The initial state in the demon cycle is equivalent to the neuron at rest. The demon sensing a
fast molecules is analogous to the synaptic activations received by the neuron. Whereas the demon uses energy to set the memory and then opens the door for the molecule,
the neuron stores charge on the membrane capacitance (Cm) and then pulses out once this voltage reaches threshold. Simultaneous with such outputs, both cycles then reset
to their initial states and begin again. Both cycles involve energy being stored and then released into the environment. The act of the demon opening the door is ignored as an
energy cost; likewise, the neuron’s computation does not include the cost of communication. Each qi is a sample and represents the charge accumulated on the plasma
membrane when synapse i is activated.

and then (iv) the "memory" on this capacitor is reset and the177

cycle begins anew. Nevertheless, the analogy has its weak178

spots.179

The disharmony between the physical and biological per-180

spectives arises from the physical simplifications that time is181

irrelevant and that step (iii) is cost-free. While the physical182

simplifications ignore costs associated with step (iii), biology183

must pay for communication at this stage. That is, physics only184

looks at each computational element as a solitary individual,185

performing but a single operation. There is no consideration186

that each neuron participates in a large network or even that187

a logical gate must communicate its inference in a digital com-188

puter in a timely manner. Unlike idealized physics, Nature189

cannot afford to ignore the energy requirements arising from190

communication and time constraints that are fundamental191

network considerations (24) and fundamental to survival itself192

(especially time).193

According to the energy audit, the costs of communication194

between neurons outweighs computational costs. Moreover,195

this relatively large communication expense further motivates196

the assumption of energy-efficient IPI-codes (i.e., making a197

large cost as small as possible is a sensible evolutionary priori-198

tization). Thus the output variable of computation is assumed199

to be the IPI, or equivalently, the spike generation that is the200

time-mark of the IPIs endpoint.201

Furthermore, any large energy cost of communication sensi-202

bly constrains the energy allocated to computation. Recalling203

our optimal limit to the left (i.e., the asymptotic zero bits/sec204

to achieve the (kT ln 2)−1 bits/J), it would be unsustainable205

for a neuron to communicate minuscule fractions of a bit with206

each pulse out. To communicate the maximal bits/spike at207

low bits/sec leads to extreme communication costs because208

every halving of bits/sec requires at least a doubling of the209

number of neurons. Such an increasing number of neurons210

eventually requiring longer and wider axons; thus intuition211

says using more neurons at smaller bit-rate leads to a space212

problem. Such a space problem is generally recognized as213

severely constraining brain evolution and development as well214

as impacting energy-use (25–30). It is better for overall en-215

ergy consumption and efficiency to compute at some larger, 216

computationally inefficient bits/IPI that will feed the axons 217

at some requisite bits/sec, keeping neuron number and neuron 218

density at some optimal level. To say it another way, a myopic 219

bits/J optimization can lead to a nonsense result, such as zero 220

bits/sec. 221

Nevertheless, assuming efficient communication rates that 222

go hand-in-hand with the observed communication costs, there 223

is still reason to expect that neuronal computation is as energy- 224

efficient as possible in supplying the required bits/sec of infor- 225

mation to the axons. The problem then is to identify such a 226

computation together with its bits/J and bits/sec dependence. 227

Information rate estimates and optimizing computation under 228

energy constraints. We assume a neuron is constructed to es- 229

timate the value of a particular scalar latent random variable 230

based on the rate of its net synaptic excitation. The computa- 231

tion is an implicit probabilistic inference via Lindley-Shannon- 232

Bayes (see below and (31)). Specifically, the IPI, a sufficient 233

statistic, is the time it takes for net synaptic excitation to 234

move the membrane potential from reset to threshold. In other 235

words, a neuron’s computation is the process where it adds 236

together synaptic inputs over time, and this time is implicitly 237

an estimate of the value of the neuron’s latent variable. 238

The components and the assumptions. This section derives an 239

energy-optimization result for neuronal computation that ac- 240

knowledges a specific subset of energy-uses. By incorporating 241

all the appropriate energy costs into the bits/J function, there 242

is an implicit enforcement of a positive bits/sec. That is, the 243

limit result implying zero bits/sec is avoided. To reach this new 244

optimization requires the introduction of some definitions, a 245

few assumptions, and then the function that quantifies energy 246

efficiency (31). 247

Assume a neuron is built to estimate, in an unbiased fashion, 248

a scalar random variable (RV) Λ. This estimate is the RV Λ̂ 249

and is based upon the intensity of the neuron’s excitatory input 250

activations. Although a neuron never calculates its information 251

rate, we must. Thus, assume Nature has an implicit prior 252
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distribution, and assume that this prior is a probability density,253

p(λ), that is continuous and possess a finite mean, E[Λ]. By254

virtue of energy-efficiency, IPI coding is used; such coding255

implies that the output of a neuron is a time-interval, the RV256

T . That is, an IPI code is assumed because of its high energy-257

efficiency (we know of none better that uses {0, 1} coding) and258

because constant amplitude pulses imply that all information259

is in the IPIs. Assume the excitatory synaptic activations260

consume energy in a linear fashion. Thus the average synaptic261

energy consumption is proportional to E[Λ · T ], the expected262

value of the product of the random input intensity to the263

neuron times the random duration of the first IPI. We are264

now most of the way toward specifying the sense in which the265

energy devoted to computation is optimal.266

Assume that the uncertainty of a neuron’s estimation, as267

coded by the time of action potential (AP) generation at the268

initial segment, far exceeds any uncertainty caused by axonal269

jitter. Then a bits/J function (much like in (5)) will be con-270

structed. However, instead of optimizing the axon’s spike-rate271

as a function of the components of axonal energy-use, here the272

number (N) of synaptic excitations per IPI is optimized as a273

function of specified energy consumers including the energy-274

use associated with APs and the events they trigger. The275

function to be maximized is I(Λ;T )
E(Λ,T ) where the numerator is276

the information generated by the neuron’s computation for277

its first IPI with no axonal information loss. The energy-use278

per IPI, E(Λ, T ) takes into account the energy devoted to279

(i) communication, (ii) computation, and (iii) Other, which280

encompasses the combined energy for AP-triggered mainte-281

nance and synaptic modifications (this last includes, inter282

alia, receptor-modification, metabotropic synaptic activations,283

synaptogenesis, and all the cell biology needed to support these284

processes). This ratio of expectations is concave in synaptic285

activations per IPI, and thus the bits/J can be maximized. As286

the corollaries of the next subsection make clear, the energy287

devoted to computation restricts the precision of a neuron’s288

estimation and restricts the information a neuron generates.289

The value of N that optimizes I(Λ;T )
E(Λ,T ) is a consistency check290

for the energy-audit values. In particular, this optimization291

might agree or disagree with the 2500 estimate (a function292

of the number of input lines, synaptic failure rates, and the293

assumption that the average firing rate of each input to a294

neuron equals the average firing rate of the neuron).295

Valuing Lindley’s information gain for the first IPI. Using max-296

imum entropy and its ability to produce optimal probability297

distributions (e.g., minimax mean squared error (MSE), (32)),298

(31) infers an optimal form of the likelihood, p(t|λ). Here t299

is the IPI whose inverse is directly proportional to λ̂. Also,300

(31) proves the sufficiency of a specific form of the marginal301

p(λ) while conjecturing necessity. These results hinge on the302

constraints of energy-use and unbiased estimation. Upon in-303

spection, the resulting distributions can be used in Lindley’s304

information-gain formulation. That is, (33) demonstrates that305

Shannon’s mutual information measures the information gain306

of a Bayesian who uses experimental measurements to update307

his prior to a posterior distribution.308

From equations 12 and 6 of (31), the optimization results309

are I(Λ, T ) = EΛ,T log( p(t|λ)p(λ)
p(t) ), with p(t|λ) =310

θ√
πλt3E[V 2

syn|λ]
exp(2 θE[Vsyn|λ]

E[V 2
syn|λ] −

λtE[Vsyn|λ]2

E[V 2
syn|λ] − θ2

λtE[V 2
syn|λ] ).311

While the only consistent marginal distribution we have yet312

to discover is, p(λ) = (λ log( λmx
λmn

))−1 with 0 < λmn < λ < 313

λmx <∞. 314

Random variation of synaptic activations dominate the estimation 315

error. It is worth pausing at this point to note that the variance 316

is directly proportional to the mean rate of arrival of synaptic 317

excitations. This variance λtE[V 2
syn|λ] ≈ 2500 · (6.4µV )2 is 318

a denominator term in the exponential part of p(t|λ), and 319

it arises from the signal itself. When N is 2500, this signal 320

variance is the dominant randomization, overshadowing other 321

forms of noise. Specifically using the earlier thermal noise- 322

level result, V 2
noise = kT

Cm
≈ 4.3·10−21

2·10−9 = 2.1 · 10−12 V 2, (or 323

as a neurophysiologist might better appreciate, the standard 324

deviation of this noise is 1.45 µV). The squared value, as 325

energy on the membrane capacitor, is small compared to the 326

energy needed to reach threshold. 327

Shot-noise is small but might reasonably be included in an 328

information calculation (34). As developed in Methods and 329

based on biophysical simulations (23), the initial-segment NaV 330

1.6 shot-noise is less than 10% of the synaptic randomization, 331

≈ 250 events under slow depolarization where the event am- 332

plitudes are about the same size as E[Vsyn] = 16mV
2500 = 6.4µV. 333

To account for this initial segment noise around threshold, 334

one can increase the variance term of the drifted diffusion 335

(see Methods). However, the effect is small (0.12 bits) and is 336

ignored in what follows. In sum, the dominant source of infor- 337

mation degradation for IPI-coding is the imprecise clocking of 338

neural networks and the random arrival of synaptic excitations 339

to a neuron. 340

Simplifying the distributional forms, calculating error, and determin- 341

ing information rates. Closing in on the bits/J optimization, we 342

simplify the conditional probability density. Assume an em- 343

pirical distribution of synaptic weights such that the second 344

non-central moment is equal to twice the mean squared (e.g., 345

an exponential distribution). Note also that θ can be writ- 346

ten as the product N , the average number of synaptic incre- 347

ments, multiplied by the average synaptic incrementing event 348

E[Vsyn|λ] (with inhibition and capacitance taken into account, 349

(31)). That is, θ = N · E[Vsyn|λ]. Putting this assumption to 350

work, a simplification obtains, and there are two new corollar- 351

ies related to the above optimal probability distributions. 352

Lemma 1. p(t|λ) = N(2πλt3)−1/2 exp(−λt2 −
N2

2λt +N). 353

Proof: Start with p(t|λ) given earlier, substitute using θ = 354

N · E[Vsyn|λ], and then note that E[Vsyn|λ]2

E[V 2
syn|λ] = 1

2 . 355

At this point there is an instructive and eventually simpli- 356

fying transform from p(t|λ) to the distribution of the estimate 357

that the neuron is implicitly creating, p(λ̂|λ). The transform 358

is defined by the unbiased requirement that is one of the con- 359

straints producing the earlier optimization results (31). Given 360

that the relationship between θ and N is now λ̂ = N2

(N+1)t or 361

equivalently t = N2

(N+1)λ̂ , 362

Lemma 2a: p(λ̂|λ) = 363√
N + 1(2πλλ̂)−1/2 exp(− λN2

2(N+1)λ̂ −
λ̂(N+1)

2λ +N). 364

Lemma 2b: E[Λ̂|λ] = λ = N2

N+1 · E[T−1|λ]; 365

Corollary 1 : E[(Λ̂− Λ)2|λ] = λ2(N+2)
(N+1)2 . 366

Proofs. See Methods. 367

As Lemma 2b shows, the estimate is indeed unbiased, and as 368

the corollary shows, devoting more energy to computation by 369

increasing N reduces the error of the estimation. Equivalently, 370
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as N grows, the standard deviation decreases at the rate371

of 1/
√
N . Of course, computational costs increase in direct372

proportion to N .373

This corollary adds additional perspective to our definition374

of a neuron’s computation as an estimation. Furthermore, the375

new likelihood, p(λ̂|λ), is particularly convenient for calculat-376

ing information rates, a calculation which requires one more377

result. That result is the marginal distribution of Λ̂. Because378

the only known sufficient density (and arguably the simplest)379

is p(λ) = (λ log( λmx
λmn

))−1, the estimate’s marginal density is380

simply approximated via381

Lemma 3. p(λ̂) =
∫ λmx
λmn

p(λ)p(λ̂|λ)dλ ≈ (λ̂ ln( λmx
λmn

))−1,382

where the approximation arises by the near identity of the383

integral to p(λ) assuming the range of λ and λ̂ is the same.384

Moreover, the lack of λ̂ bias for all conditioning values of λ385

hints that the approximation should be good. In fact, a naive386

numerical evaluation of
∫ λmx
λmn

p(λ)p(λ̂|λ)dλ indicates zero dif-387

ference between this integral and (λ̂ ln( λmx
λmn

))−1; however, see388

SI for a more precise analysis of this approximation.389

The information rate per first-IPI can now be evaluated.390

Corollary 2. ET,Λ[log2
p(T |Λ)
p(T ) ] = EΛ̂,Λ[log2

p(Λ̂|Λ)
p(Λ̂)

]391

= log2(ln( λ̂mx
λ̂mn

)) + 1
2 log2( (N+1)2

2πeN ) + 1
2EΛ̂,Λ[log2( Λ̂

Λ )]392

≈ log2(ln( λmx
λmn

)) + 1
2 log2( (N+1)2

2πeN ).393

Proof: EΛ̂,Λ[log2
p(Λ̂|Λ)
p(Λ̂)

] = h(Λ̂)− h(Λ̂|Λ) ≈ h(Λ)− h(Λ̂|Λ).394

This is a good approximation because of the near equiva-395

lence of any marginal expectations of the two marginal den-396

sities compared above. This approximation produces a value397

of ca. 6.94 bits when N = 2500 and λmx
λmn

≈ 42643, a ratio398

consistent with a spontaneous synaptic transmission of 1 Hz399

over 104 synapses and with an average firing rate of 1.6 Hz400

(see Methods ans SI). Therefore by this result, the bit-rate401

increases with the number of synaptic activations per IPI es-402

sentially at the anticipated rate of 1
2 log2(N). However, this403

nearly seven bits per IPI is an upper bound, and at this stage404

of the development of Lindley’s measure, we downgrade the405

bits/IPI estimate to 4.6 bits/IPI (see Methods for details), i.e.,406

almost 7.4 bits/sec. The principle cause of this downgrading407

is the small bit rate of IPIs succeeding the first IPI and the408

naive, fixed threshold model currently being used.409

The bits/J optimization confirms the assumed value of N in the ener-410

gy-audit. Finally there is enough to perform an optimization411

of the computational bits/J. Doing so asks if the values and412

assumptions of the energy audit are consistent. In particular,413

the following confirms that the above use of N = 2500 is very414

close to an appropriate value. Taking N as an optimizable415

variable and dividing the information rate per IPI by energy-416

use per IPI yields the following ratio with units of bits/J for417

one neuron: I(Λ;T )
E(Λ,T ) = I(Λ;Λ̂)

E(Λ,T ) =418

log2(ln( λ̂mx
λ̂mn

)) + 1
2 log2( (N + 1)2

N
)− 1

2 log2(2πe)

((EGMAP + EWMAP + EPreAP + EOtherAP) +N ECOMP
2500 ) · E[T ]÷ n

419

with E[T ]÷ n = 4 · 1011 rescaling the cortical energy to one420

neuron and one IPI.421

The energy-consumption function is notably different from422

the usual form as it specifically does not include energy con-423

sumption that grows linearly with time, e.g., axonal resting424

potential costs (see (31) where such costs are assumed to be425

borne by the system decision-maker). Because its denomina-426

tor is scaled to J/IPI/neuron, this energy function includes 427

the cost of just the one output AP at the end of the IPI. 428

The AP cost, as estimated in the energy audit, consists of 429

four components, the GM axons, the WM axons, the rele- 430

vant presynaptic functions, and a fraction of Other ; i.e., resp. 431

(EGMAP+EWMAP+EPreAP+EOtherAP) = (0.75+0.54+0.19+0.07) = 1.54 432

W. The derivation of these values is detailed in the next section 433

and Methods, including ECOMP = 0.17 W.. 434
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Fig. 2. Near exact consistency between the energy-audit’s N = 2500 and the
optimization implied value N = 2428. The plotted curves indicate the sensitivity of
the optimization result to energy allocations. Perfect consistency (N = 2500) requires
either (A) increasing non-computational AP energy-use from 6.46 to 6.67 · 10−11

J/neuron/IPI, (B) decreasing the computational energy budget from 7.08 to 6.86 ·
10−12 J/neuron/IPI, or (C) some even smaller alterations of both energy consumers.
Because N is so large, the curvature in A is imperceptible.

For these joule-costs, the bits/J optimization calculation 435

yields N≈2428, missing the assumed value of 2500 by 3%. In 436

fact, increasing AP-costs by ca. 3% or decreasing computa- 437

tional costs by ca. 3% yields the desired value of the 2500. 438

Even we must believe such nearly perfect agreement is, to 439

some extent, fortuitous. To be clear, the energy-audit was 440

performed before this optimization calculation, and there was 441

no recursive tuning of the audit to get such a close agreement 442

between values. In fact, we have been using 2500 for N for 443

quite some time, well before doing this optimization; moreover, 444

2500 can arise many ways, e.g., 12,500 synapses per neuron and 445

a failure rate of 80%. Fig 2 illustrates the differing sensitivities 446

of this result to the two distinct energy dependencies of the 447

optimization; Fig 2A is computational energy vs Fig 2B, which 448

is AP-associated non-computational energy. Moreover, the 449

consistency result has some flexibility. Increasing or decreasing 450

AP costs while decreasing or increasing computational costs by 451

the same percentage, respectively, leaves the inferred N value 452

unchanged. Finally, this optimization does not incorporate the 453

ratio of the constant, time-proportional costs which include 454
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Fig. 3. Computation costs little compared to communication. GM communication alone accounts for more than half of the cortical energy use (big pie chart). Computation,
the smallest consumer, is subpartitioned into the two ionotropic glutamate receptors (bargraph). Other includes synaptic modification and maintenance. The small pie chart
sub-paritions GM communication after re-scaling (2.75 W =100%). See Results, Table 1, and Methods for details. †WM communication includes its Other in addition to resting
and action potentials.

the largest ATP-consumer, axonal resting potentials.455

Energy audit.456

ATP use for computation and communication. The values of this457

section preceded the calculations of the previous section. Here,458

data from empirical neuroscience are employed to estimate459

the joules per second devoted to the microscopic processes460

used by the previous section. To accomplish this goal, divide461

cortical processes into computational costs (i.e., postsynaptic462

costs) and communication costs (axonal and presynaptic costs).463

Since ATP is the molecule used by energy-consuming processes464

in brain, the energy consumption of each process is based on465

ATP consumption as in (35), thus the term ATP-watts.466

As derived below, computation consumes less than 0.2 ATP-467

watts or less than one one-hundredth of the nominal and oft468

quoted 20 watts that would be produced by complete oxidation469

of the glucose taken up by the brain (1). Fig 3 compares470

cortical communication costs to computational costs. For some,471

the rather large cost of communication might be surprising.472

The lion’s share of these ATP-watts goes to communication473

where it contributes to signal velocity and information rates474

(36, 37). Combining gray matter (GM) communication costs475

with the total white matter (WM) costs accounts for 93%476

of the total ATP-watts compared to 3.4% for computation.477

Supposing, rather generously, that WM Other consumes 0.65478

W, then GM plus WM communication accounts for 87% of479

the ATP-W, thus giving a ratio of 25:1 for communication vs480

computation. Because so little energy goes to computation481

and because so much goes to the axonal resting potential, the482

ratio just calculated is particularly sensitive to average firing-483

rate. Specifically, computational costs increase much more484

quickly with firing rate than the total cost of communication.485

In what follows the reader will find progressively more de-486

tails explaining the values in Table 1 and Fig 3, including the487

sensitivity of computational costs to firing rate, the derivation488

of computational costs, and finally the derivation of communi-489

cation costs. Even more details can be found in the Methods490

Table 1. Rudimentary partitioning, glucose to ATP

Brain/Region Watts Unoxidized Heat ATP-
(weight) (complete (equivalent watts watts

oxidation) watts)

whole brain (1495 g) 17.0 1.86 8.89 6.19

cerebellum (154 g) 1.77 0.19 0.93 0.65
other regions (118 g) 1.65 0.18 0.87 0.60

forebrain cortex (1223 g): 4.94
white (590 g) 5.07 0.56 2.66 1.85
gray (633 g) 8.45 0.93 4.43 3.09

See Methods and SI Tables for details and citations

section. These details include the underlying calculations and 491

accompanying assumptions. 492

An energy-use partitioning based on glucose oxidation. Two ap- 493

proaches are used to evaluate the energy consumed by the 494

brain: a top-down partitioning of glucose-watts converted to 495

ATP-W and a bottom-up series of biophysical calculations 496

based on ATP-use by partitioned aspects of a functioning 497

neuron. Table 1 and Fig 3 summarize the results of both 498

approaches. The 17 W of glucose potential energy from recent 499

PET scan research (see Table S1 (38)) replaces Sokoloff’s 20+ 500

W from the 1950s. The PET scan research presents regional 501

per-gm values, and these values are scaled by the brain mass 502

partitioning of (39). Of this total glucose uptake, ca. 11% is 503

not oxidized (40) although quantitative conclusions from scan- 504

ning studies are challenged by arteriovenous blood differences 505

that obtain a smaller non-oxidized fraction (see Supplement). 506

After removing the 8.89 W that go to heating, there are only 507

6.19 ATP-W available to the whole brain. Regional partition- 508

ing whittles this down to 3.09 ATP-W for the categories of 509

computation, communication, and Other of the cerebral gray 510

matter. By a posteriori design, the 1.6 Hz average firing rate 511

is chosen to match the 3.09 available ATP-watts when Other 512
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(synaptic modification and maintenance) is valued the same as513

computational costs. When 2.5 Hz is used and Other energy-514

use is again matched to computational costs, the total of 3.79515

W exceeds the 3.09 by ca. 17% of this nominally available516

value.517

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1.5

2.0

2.5

3.0

3.5

4.0

4.5

Ave. Firing Rate, Hz

W
at
ts

Cortical Power Consumption vs. Firing Rate

4.6W @ 1.6 Hz

WM (Comm+Other) +GMComm

GM Other+GMComm + Comp

3.09W@ 1.6 Hz

GM
Com

m + C
omp

GMC
omm

Fig. 4. Energy-use increases linearly with average firing-rate, but for reasonable
rates, computation (Comp) costs much less than communication (Comm). Compar-
ing the bottom (blue) curve (GM communication costs) to the top (red) curve (GM
communication cost plus computational costs), illustrates how little computational
costs increase relative to communication costs. The large y-intercept value is 1.8
W for resting potential plus 0.1 W for a constant consumption by Other. The small
point labeled GMAPOther+GMComm+Comp adds 0.07 W of AP-dependent Other
to the GMComm+Comp curve, 0.17 W + 2.75 W @ 1.6 Hz. The large point, labeled
WM(Comm + Other) + GMComm, shows the value of the combined communication
cost, i.e., cortical GM at 1.6 Hz plus the total cortical white matter (WM) cost. See
Table 1, and Methods for further details.

Firing Rate. In regard to average firing rate, one might initially518

guess a value of one pulse per neuron per decision-making519

interval (DMI); that is, one pulse per visual fixation, which is520

the time it takes to decide where to aim the next saccade. This521

would be about one pulse per 400 msec in humans, implying522

2.5 Hz for an average firing rate.523

Although (41) prefers a human average firing rate closer524

to 0.1 Hz than 1 Hz, our preferred estimate is 1.6 Hz, arising525

from the book-balancing argument just above. Then using our526

bottom up calculation for the excitatory postsynaptic ion-flux527

per AP per neuron, 1.6 Hz combined with the number of528

neurons exactly accounts for the 0.17 W available. The linear529

relationship between firing rate and energy consumption (Fig530

4) has a substantial baseline energy consumption of 1.81 W (y-531

axis intercept). This intercept includes 0.01 W of Other. More532

important is the 1.8 W arising from resting axon conductance533

required for resting potential and stable behavior (42). In534

the case of the dendrite, computational costs are zero at zero535

firing rate, a theoretical limit result which, as argued earlier,536

is a nonsense practical situation. Dendritic leak is assumed to537

be essentially zero since we assume, perhaps controversially538

(cf. (35)), that a cortical neuron is under constant synaptic539

bombardment and that all dendrosomatic conductances are540

due to synaptic activation and voltage-activated channels.541

That is, a neuron resets after it fires and immediately starts542

depolarizing until hitting threshold.543

Computational costs are very sensitive to failure rates,544

which for this figure are fixed at 75%, whereas communication545

is only slightly sensitive to the synaptic failure rate (see below546

for more details). 547

Computation costs in the human brain. The energy needed to re- 548

cover ion-gradients from the total excitatory synaptic current- 549

flows/IPI determines the cost of computation for that IPI. 550

Various quantitative assumptions feeding into subsequent cal- 551

culations are required (see Methods and Supplement), but 552

none are more important than the generic assumption that 553

the average firing-rate of each input to a neuron is the same 554

as the average firing-rate out of that neuron. Via this as- 555

sumption, and assuming 104 synapses per neuron and a 75% 556

failure rate, the aggregate effects of inhibition, capacitance, 557

and postsynaptic K+ conductances are implicitly taken into 558

account. This aggregation is possible since increases of any of 559

these parameters merely lead to smaller depolarizations per 560

synaptic activation but cause little change in synaptic current 561

flow per excitatory synaptic event. Indeed, such attenuating 562

effects are needed to make sense of several other variables. A 563

quick calculation helps illustrate this claim. 564

After taking quantal synaptic failures into account, sub- 565

stantial inhibition is required if there are to be 2500 excitatory 566

events propelling the 16 mV journey from reset to threshold. 567

That is, with 104 inputs and the 75% failure rate, 2500 synapses 568

are activated per IPI, on average. Activation of AMPARs and 569

NMDARs provides an influx of three Na+’s for every two K+
570

that flow out. With an average total AMPAR conductance of 571

200 pS, there are 114.5 pS of Na+ per synaptic activation (SA). 572

Multiplying this conductance by the 110 mV driving force on 573

Na+ and by the 1.2 msec SA duration yields 15.1 fC per SA. 574

Dividing this total Na+ influx by 3 compensates for the 2 K+
575

that flow out for every 3 Na+ that enter; thus, the net charge 576

influx is 5.04 fC/SA. We assume that the voltage-activated, 577

glutamate-primed NMDARs increases this net flux by a factor 578

of 1.5, yielding 7.56 fC/SA (see Methods and SI Tables 3, 4, 579

and 5 for more details and the ATP costs). Taking into ac- 580

count the 2500 synaptic activations per IPI yields 18.9 pC/IPI. 581

Using a 750 pF value for a neuron’s capacitance, this amount 582

of charge would depolarize the membrane potential 25.2 mV 583

rather than the desired 16 mV. Clearly, the excitatory charge 584

influx must be opposed by inhibition and K+ conductances to 585

offset the total 7.56 fC net positive influx. Most simply, just 586

assume a divisive inhibitory factor of 1.5. Then the numbers 587

are all consistent, and the average depolarization is 6.4 µV per 588

synaptic activation. Because each net, accumulated charge re- 589

quires one ATP to return the three Na+’s and 2 K+’; thus, the 590

computational cost of this 16 mV depolarization is 7.1 · 10−12
591

J/neuron/spike, upholding the earlier approximation. In other 592

words, the computational power required per cortex per spike 593

is 0.17 W using 1.5 ·1010 neurons firing at a rate of 1.6 Hz. See 594

Discussion and Methods for more remarks and explications. 595

Communication costs. As quantified in Methods and summa- 596

rized in SI Tables 3 and 5, the GM long-distance communica- 597

tion cost of 2.75 W includes the partitioned costs of axonal 598

resting potential, APs, and presynaptic transmission (neuro- 599

transmitter recycling and packaging, vesicle recycling, and 600

calcium extrusion). The neurotransmission costs assume a 601

1.6 Hz firing rate and a 75% failure rate. From there, we use 602

the (43) calculation that assumes one vesicle is released per 603

non-failed AP. Differing from (43) while closer to earlier work 604

(35), we assume that there is the same Ca-influx with every 605

AP (44). Furthermore, we also use a more recent measure- 606
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ment of Na+-K+ overlapping current flows of the axonal AP607

(45). Of all the difficult but influential estimates here, none608

is more challenging and important than axonal surface area.609

See Methods for more details.610

Discussion611

The Results contribute to our understanding of computation612

in the brain from the perspective of Nature. Essentially, the613

Results present a defined form of neural computation that is614

(i) based on postsynaptic activation and that is (ii) a prob-615

abilistic inference. From this defined perspective, the corre-616

sponding optimal bits/J is calculated. In a meaningful sense,617

this calculation confirms the consistency of our numbers. The618

optimizing N , the average number of synaptic excitations un-619

derlying a neuron firing, is the value of N that results from620

our biophysical approximations and energy evaluations.621

Another quantitative accomplishment is explaining the 108
622

seeming discrepancy between the Demon’s optimal computa-623

tion and a neuron’s optimal computation. This explanation624

hinges on (i) the assumption that there is a bits/sec require-625

ment arising from communication constraints, (ii) a previously626

derived bits/joule/spike optimization that is based on the627

unclocked, asynchronous, approximately Poissonian arrival of628

pulses onto a neuron, and (iii) on the energy-audit provided629

here. The bits/sec requirement is juxtaposed with the zero630

bits/sec limit result of physics and further compounded by631

the slow information growth, 2−1 ln(N), compared to cost632

increases that are directly proportional to N itself. That633

this ratio is so unfavorable is not new, at least for sensing634

(14), but the huge, quantified and explicated discrepancy for635

computation seems novel.636

Additional novel results of our approach include:637

(1) A precise definition of computation that has meaning both638

inside and outside of neuroscience, including an explicit role639

for energy and an explicit Bayesian inference, estimation;640

(2) An energy audit of the human brain with the relevant641

partitioning of function;642

The resulting audit reveals643

(3) Computational costs are less than 0.2 watts total; in other644

words, for the average neuron, computation consumes 1.1·10−11
645

W whereas GM communication consumes 1.8 · 10−10 W (a646

16-fold change).647

(4) Contrary to a reoccurring assumption in discussions of648

sparse coding, doubling the average firing rate does not double649

the total signaling costs. Resting potential costs are unaffected650

by such a doubling, and they account for nearly two-thirds of651

the gray matter costs at 1.6 Hz.652

The primary motivations for this energy-audit are calculations653

of the optimal bits/J which implies the bits/sec. The general,654

earlier optimization result of (31) is specialized to the current655

analysis to produce the optimal N , the average number of656

synaptic activations needed to reach threshold.657

(5) Using the bits/J formulation, the value of N ≈ 2500658

inferred in the audit is also the value needed to optimize the659

bits/J.660

(6) Using these results and an additional corollary produces661

the MSE of a neuron’s estimate of its latent variable, and662

this error decreases in proportion to the energy devoted to663

computation, MSE ∝ N+2
(N+1)2 .664

(7) Using the Lindley-Shannon-Bayes valued computations,665

the values derived in the audit and using the optimal N , the666

computational efficiency is 6.5 · 1011 bits/joule per neuron. 667

This optimization also implies the unknown but implicitly 668

constraining communication bit/rate, ca. 4.6 bits/IPI/neuron 669

(7.4 bits/sec/neuron at 1.6 Hz). 670

(8). As part of the information calculation, noise sources 671

are quantitatively compared. The dominating noise-source is 672

inherent in the signal itself; thermal noise is easily ignored 673

while shot-noise is at the threshold level of ignorable. 674

A common question is, how do we know that the informa- 675

tion measure and the definition of computation being used 676

are the right ones? The answer is in two parts: (i) there is 677

not now, nor will there ever be, a provably correct measure 678

or definition. However, (ii) if a chosen measure and definition 679

lead to the optimization of a sensible function in the context of 680

Darwinian evolution, then these definitions are (a) useful, and 681

(b), this utility is justification enough. Thus the claim here 682

is that the measure and the definition being employed show 683

their utility in the Darwinian context of optimized energy use. 684

The human brain energy audit compared to the rodent. The 685

per neuron values here are relatively close to those obtained by 686

Herculano-Houzel (39). Her value for the gray matter energy- 687

use of human cortex is 1.32 · 10−8 µmol of glucose per neuron 688

per minute, which converts to 2.26 · 10−10 W/neuron in terms 689

of ATP. Our value is 1.94 ·10−10 W/neuron (Table S3). This 690

small, 16% difference is not surprising since she uses the older 691

glucose values of slightly more than 20 W per brain, and we 692

use her regional brain weight values and cell counts. 693

The top-down part of the audit can do no more than limit 694

the total ATP available among the defined uses of ATP. Except 695

for this contribution, the top-down calculations are of no use 696

in calculating computational energy use. This is due to the 697

variance of such a top-down calculation since, for the average 698

cortical neuron of the average human, the variance will always 699

exceed the average energy expended for computation. Thus 700

one must rely on bottom-up calculations, and here we look to 701

the landmark work of Attwell and Laughlin (35). 702

Staying as close to (35) as sensible, newer research is used 703

(e.g., for conversion of glucose to ATP (46) and for the overlap- 704

ping Na-K conductances of the AP (45)). Species differences 705

also create unavoidable discrepancies, including average fir- 706

ing rate, the fraction of the time that the glutamate-primed 707

NMDARs are voltage-activated, and, more importantly, the 708

surface area of rat axons vs human axons. 709

Most fundamental for us is the difference in partitioning. 710

Our partitioning begins with the definition of computation 711

and then is further refined by the tripartite distinctions of en- 712

ergy costs: time-proportional, AP-dependent, and failure-rate 713

modified. We acknowledge that this partitioning of energy 714

consumption is at variance with that used in Levy and Bax- 715

ter’s axon calculations in addition to Attwell and Laughlin’s 716

work. Estimating the cost of Other is problematic. The 717

distinctions here require a subpartitioning of Other between 718

communication, computation, and the pair synaptic modifi- 719

cation and maintanence. But these categories too must be 720

tripartite partitioned. Because computation takes so little 721

of the total energy, only a negligible fraction of Other adds 722

to the computational term. More importantly, there is the 723

cost of synaptic modification, including metabotropic receptor 724

activation and postsynaptically activated kinases, which do 725

not fall within the present definition of computation but are 726

activity dependent costs. 727
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General relevance of Results.728

Outside of neuroscience. Because there is some interest e.g.,729

(47, 48) outside of neuroscience to reproduce neurally mediated730

cognition on a limited energy budget, the energy-audit here731

brings an increased specificity to a comparison between the732

evolved biological vs the human engineered. In particular, en-733

gineers often tout brain function as consuming energy at what734

they consider a modest 20 W given the difficulty they have in735

reproducing human cognition. Here we provide a more precise736

set of comparisons. Our computation can be compared to the737

job performed by the central processing unit. Communication738

has it’s two major forms defined here, axonal costs and presy-739

naptic functions, which must be compared to communication740

into and out of memories plus the communication of clock741

pulses. Perhaps maintenance can be compared to memory742

refresh costs. However, comparing power conversion loss by a743

computer to the heat generation of intermediary metabolism744

is challengeable since heating is fundamental to mammalian745

performance. A better comparison might be between the cost746

of cooling a computer and the biological heating cost.747

Inside neuroscience. Although the primary goal of the energy748

audit is an estimate of the cost of computation per se, the749

audit also illuminates the relative energetic costs of various750

neural functions. Notably for humans, the audit reveals that751

axonal resting potential costs, also called leak, are greater752

than the firing-rate costs, which seems somewhat surprising.753

This axonal resting expense is directly proportional to the754

leak conductance and axonal surface area. Thus, of all the755

parameters, these two might benefit the most from better756

empirical data. Regarding these large, leak-associated costs,757

two additional points seem relevant.758

First, regarding fMRI studies that measure regional brain759

use, the small increases of oxygen consumption over baseline760

consumption (49) is consistent with the high, continuous cost761

of axonal leak.762

Second, arguing from her data and data of other studies763

(39), Herculano-Houzel presents the intriguing hypothesis that764

average glucose consumption per cortical neuron per minute765

is constant across mammalian species. Qualitatively, this idea766

is consistent with the increase in neuron numbers along with767

the decrease of firing rates found in humans vs rats. How-768

ever, it seems that the hypothesis can only be quantitatively769

correct if axonal leak-conductance in humans is much lower770

than in animals with smaller brains and presumably shorter771

axons of smaller diameters. This topic deserves more detailed772

exploration.773

Hopefully the work here motivates further empirical work,774

especially using primates, to improve the energy-audit and775

the calculations that ensue. Such empirical work includes776

better surface area measurements and a better idea about the777

NMDAR off-rate time constant. Finally, going beyond the778

average neuron, perhaps someday there will be energy-audits779

matched with the neurophysiology of identified cell types.780

Materials and Methods781

782

Proofs. The proof of lemma 2a is just a textbook change of variable783

from one density to another (50) where dt = N2

(N+1)λ̂2 dλ̂; to prove784

corollary 1 and the first equality of lemma 2b, use 2a to calculate785

the appropriate conditional moments, which Mathematica obliges; 786

to prove the second equality of 2b, use lemma 1 to calculate the 787

indicated conditional moment. 788

Parameterizing the marginal prior p(λ). As derived from first princi- 789

ples in Levy, Berger, and Sungkar (31), the only known, consistent 790

marginal prior of the latent RV is p(λ) = (λ ln( λmx
λmn

))−1 where the 791

bounds of the range of this RV, and thus its normalizing constant, 792

are the subject of empirical observations and the required definition 793

λ ∈ (0 < λmn < λmx <∞). Recall that λ is the rate of activations 794

of 104 input lines undergoing a 25% success rate when activated. 795

From the energy-audit, use the 1.6 Hz average firing rate. Then 796

E[Λ], the mean marginal input firing rate scaled by a 3/4 failure 797

rate is 4000 events/sec (104 · 1.6 · 0.25). Then supposing that the 798

rate of spontaneous release is 1 Hz over these 104 synapes, λmn = 1. 799

With one unknown in one equation, E[Λ] = λmx−λmn
ln(λmx1 )

= 4000, 800

Mathematica produces λmx ≈ 42643, and the prior is fully parame- 801

terized. 802

Adjusting the bit-rate calculation for multiple IPIs per decision-mak- 803

ing interval (DMI). The nearly 7 bits per IPI only applies to a neuron’s 804

first IPI. Later spikes are worth considerably less using the current 805

simplistic model of a fixed threshold. Using the prior distribution, a 806

neuron does not fire 37% of the time within the 625 msec DMI while 807

63% of the time, a neuron fires one or more times in the DMI. As a 808

crude approximation, suppose 26% of the time a neuron fires two 809

or more times, 8% of the time a third spike is produced in an DMI, 810

and 3% of the time a fourth spike is produced. Thus the average 811

number of spikes per DMI is appropriately one. Using a simplistic 812

model with a fixed threshold of N, the bit values of the later spikes 813

are quite small. The value of the second through fourth spikes are 814

{ 1
2 log2( 2N

N
), 1

2 log2( 3N
2N ), 1

2 log2( 4N
3N )} = {0.5, 0.29, 0.21} bits, 815

respectively. The weighted value accounting for all spikes is then 816

ca. 4.6 bits/DMI rather than the almost 7 bits of the first IPI. 817

Shot-noise has a nearly negligible effect on bit-rate. As measured in 818

the biophysical simulations (23), the most deleterious degradation of 819

a neuron’s computation arises, not from thermal noise or shot-noise 820

(24), but from the neuron’s input signal itself. Here is a calculation 821

consistent with this biophysical observation. 822

Using stochastic NaV 1.2 and NaV 1.6 channels in a biophysical 823

model of a rat pyramidal neuron, it is possible to observe shot-noise 824

and to estimate the number of such channels that are activated 825

at threshold. With relatively slow depolarization, there are less 826

than 250 channels on when threshold is reached, and this number 827

of channels seems to contribute less than 1.6 mV (see Fig 5 in (23)). 828

Thus modeling channel activation as a Poisson process with rate 829

250 and individual amplitudes of 6.4 µV, Campbell’s theorem (51) 830

produces the variance; this variance is less than 250 · (6.4 · 10−6)2 = 831

1.6 · 10−9. The same calculation for the input excitation yields a 832

variance of 2500 · (6.4 · 10−6)2 = 1.6 · 10−8. Then, the net variance 833

is represented by multiplying the drift variance by something that 834

increases it less than 10%, say 1.09. This nine percent greater 835

variance reduces the information gain by log(1.09) ≈ 0.12 bits. 836

Numerically-based optimization calculations. Optimizing the 837

bits/joule equation uses Mathematica. As threshold and the 838

average synaptic event are continuous variables, the calculated N , 839

the average number of events per IPI, is also a continuous variable. 840

Then to optimize, we take the derivative, dN , of the single neuron, 841

single IPI bit/J formulation. Then setting the numerator of this 842

derivative equal to zero, we solve for N using Mathematica’s NSolve. 843

We also examine the optimal N for different values of energy-use. 844

Although the N-optimization requires solving a transcendental 845

equation, the optimal N is nearly a linear function of the ratio 846

of AP-communication costs vs computational costs. Specifically, 847

CostAP
CostComp

= (−N + (1 + N) log N+1+Log2(42643)
πe

) ÷ 2500, an 848

expression that makes as plain as possible the required relationship 849

between the relevant energy consumption terms and the assumption 850

that N = 2500. 851

Partitioning glucose by region and by metabolic fate. This section 852

explains the top-down calculations of Table 1. The glucose-uptake 853

values combine the regional uptakes, reported in terms of per 100 854
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gm of tissue from Graham et al. (38) as copied into our Table S1855

along with the reported regional masses from Azevedo et al. (52).856

We choose this uptake study because of its use of the [11C]glucose857

tracer and its straightforward application to obtain regional net858

glucose uptakes. Multiplying regional masses by uptake values,859

and converting to appropriate units as in Table S1, yields the first860

"Watts" column of Table 1. These glucose-watts are calculated using861

2.8 MJ/mol (53). The regional uptakes are combined to produce862

the brain total as illustrated in Fig S1.863

Following the flow diagram of Fig S1, next we remove the non-864

oxidized glucose from regional and total uptakes. We use an oxygen-865

glucose index (OGI) value of 5.3 (out of 6 possible oxygen molecules866

per one glucose molecule). We assume the OGI is constant across867

regions and that we can ignore other, non-CO2 carbons that enter868

and leave the brain. Thus, these simple glucose-watts are split into869

oxidized and non-oxidized as produced in Table 1 and illustrated in870

Fig S1.871

As the energy source, the oxidized glucose is then partitioned into872

two different metabolic fates: heating and ATP. Again we assume873

this process is constant across regions and that the brain does not874

differ too much from other regions which have been studied in875

greater depth. The biological conversion is calculated using Nath’s876

torsional mechanism, which yields 37 ATP molecules per molecule877

of glucose and 36,000 J/mol of ATP at 37◦ C.878

The definition of computation and its distinction from communi-879

cation produces the partitioning here that differs from earlier work.880

As opposed to the earlier neuroscientifically oriented thinking (35),881

the motivating perspective here is computational function. That is,882

computation and its cost are specifically identified with the charging883

and discharging of the dendrosomatic plasma membrane. For this884

reason, we emphasize the reset and charging as opposed to resting885

potential for the dendrosomatic membrane. A second distinction886

is ”synaptic” energy-use. The purely neuroscientific perspective887

follows traditional morphogical distinctions by considering synaptic888

costs as a whole, pre- plus postsynaptic parts. This perspective889

differs from the distinction made here where pre- and postsynaptic890

costs are separated. Thus, once computation is defined, it is clear891

that presynaptic function is, inclusively, just the endpoint of long-892

distance communication. To put it another way, each portion of893

a neuron needs to be accounted for, but each portion can only be894

counted once.895

More details concerning the partitioning here versus earlier work896

are found in the Supplement.897

Computation Costs. Our "on average" neuron begins at its reset898

voltage and then is driven to a threshold of -50 mV and then once899

again resets to its nominal resting potential of -66 mV. Between900

reset and threshold, the neuron is presumed to be under constant901

synaptic bombardment with its membrane potential, Vm, constantly902

changing. To simplify calculations, we work with an approximated903

average Vm, Vave of -55 mV; this approximation assumes Vm spends904

more time near threshold than reset. (Arguably the membrane905

potential near a synapse which is distant from the soma is a couple906

of mVs more depolarized than the somatic membrane voltage, but907

this is ignored.) To determine the cost of AMPAR computation, we908

use the ion preference ratios calculated from the reversal potential909

and use the total conductance to obtain a Na+ conductance of910

114.5 pS per 200pS AMPAR synapse as seen in Table S4. (The ion-911

preference ratios used for the calculations in Table S4 are calculated912

from the reported reversal potential value of -7 mV (54) and the913

individual driving forces at this potential, −90−(−7) = −83mV for914

K+ and 55− (−7) = 62mV for Na+.) Multiplying the conductance915

by the difference between the Na+ Nernst potential and the average916

membrane potential (VNa,Nern − Vave) yields a current of 12.5 pA917

per synapse. Multiplying this current by the SA duration, converts918

the current to coulombs per synaptic activation, and dividing this by919

Faraday’s constant gives us the moles of Na+ that have entered per920

synaptic activation. Since 1 ATP molecule is required to pump out 3921

Na+ molecules, dividing by 3 and multiplying by the average firing922

rate yields 8.35 · 10−20 mols-ATP/synapse/sec. Multiplying by the923

total number of synapses adjusted by the success rate (0.25·1.5·1014924

synapses) implies the rate of energy consumption is 0.113 W for925

AMPAR computation. When NMDARs are taken into account,926

the total computational cost is 0.17 W (assuming that NMDARs927

average conductance is half as much as AMPAR’s).928

Table S4 lists the excitatory ion-fluxes mediated by AMPARs 929

and NMDARs. The cost of the AMPAR ion fluxes is straightforward. 930

The cost of NMDARs ion fluxes depends on the off-rate time constant 931

as well as the average firing rate. That is, if this off-rate time 932

constant is as fast as 100 msec and the IPI between firings of the 933

postsynaptic neuron is 400 msec or more (such as the 625 msec 934

interval that comes from the 1.6 Hz frequency used in the following 935

calculations), then most glutamate-primed NMDARs will not be 936

voltage activated. Thus, in contrast to the rat where the AMPAR 937

and NMDAR fluxes are assumed to be equal, here we assume the 938

ion-fluxes mediated by NMDARs are half that of the AMPARs and 939

multiply the AMPAR cost by 1.5 to obtain the final values in Table 940

S4. 941

The spike-generator contributes both to computation and to 942

communication; fortunately, its energetic cost is so small that it can 943

be ignored. 944

Communication Costs. Table S5 provides an overview of the commu- 945

nication calculations, which are broken down into Resting Potential 946

Costs, Action Potential Costs, and Presynaptic Costs. The following 947

sections explain these calculations, working towards greater and 948

greater detail. 949

In general, the results for communication costs are built on less 950

than ideal measurements requiring large extrapolations; here are 951

some examples. There does not seem to be any usable primate, much 952

less human data. The proper way to determine surface area is with 953

line-intersection counts, not point counts, and such counts require 954

identification of almost all structures. As the reader will note in 955

the supplement, use of mouse axon diameters produces much larger 956

surface areas, thus raising communication costs and decreasing the 957

energy available for computation and Other. Likewise, copying 958

recent values used in the biophysical literature for axon resting 959

resistance (a rather difficult parameter to measure, especially for 960

the small axons of interest here) also greatly increases the cost of 961

communication compared to the values that we used (45, 55). 962

Resting Potential Costs. The cost of the resting potential itself is 963

simply viewed as the result of unequal but opposing Na+ and K+ 964

conductances. If other ions contribute, we just assume that their 965

energetic costs eventually translate into Na+ and K+ gradients. The 966

axonal resting conductance uses a value from biophysical simulations 967

of rat pyramidal neurons, although higher values are not uncommon 968

(e.g., (45, 56)). Resting potential costs of axons (including axonal 969

boutons) assume a resting, passive resistance of 30 kΩ cm2 and a 970

membrane surface area of 21.8 · 106 cm2 (see Table S6), producing 971

a total conductance of 727 S. The driving voltage for each ion is 972

determined by subtracting the appropriate Nernst potential from 973

the assumed resting membrane potential of -66 mV. Using Nernst 974

potentials of +55 mV and -90 mV for Na+ and K+ resp., we 975

just assume currents are equal and opposite at equilibrium. Thus, 976

conductance ratios are calculated from the equilibrium condition: 977

−24 mV ·gK = −121 mV ·gNa; implying gK = 5.04 gNa; and 978

further implying gNa
gNa+gK

= 1
6.04 . The Na+-conductance times the 979

driving voltage yields the Na+-current, 0.121 V · 1
6.04 · 727 S = 14.6 980

A. Divide this result by Faraday’s constant to find the total Na+ 981

influx, and then divide by 3 to obtain the number of ATPs required 982

to pump out this influx, 5.03 · 10−5 molATP/s. Multiplying this 983

number by 36,000 J/molATP yields 1.81 W, the resting potential 984

cost. 985

Plasma membrane leak is a major energy expenditure in both 986

the calculations here (66% of gray matter communication costs) 987

and in the Attwell and Laughlin calculations (13% of signaling- 988

related ATP consumption). The differences in these percentages 989

arise from rather different interpretations of a functioning neuron 990

and of the meaning of certain measurements. Here there is an 991

important distinction between the cost of reset vs the cost of rest- 992

ing potentials: the resting potential cost is entirely axonal and 993

essentially continuous across time. On the other hand, the cost of 994

resetting synaptic depolarization applies only to the dendrosomatic 995

portion of a neuron, and this portion of a neuron is under constant 996

synaptic bombardment. Thus resting potential in this portion of a 997

neuron is quite transient. In contrast to the calculations here, the 998

rat calculation uses the somatic measurement, which we contend is 999

primarily evaluating dendritic conductance to ground. 1000
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Action Potential Costs. Action potential costs are calculated from1001

Na+ pumping costs as delineated in Table S5. The coulombs to1002

charge a 110 mV action potential over the entire non-bouton axon1003

starts with the product of the total GM axonal capacitance, 14.6 F,1004

the peak voltage, and the firing rate, 1.6 Hz; i.e., 14.6 · 0.11 · 1.6 =1005

2.57 amps. To account for the neutralized currents observed by1006

Hallerman et al. (45), multiply the previous result by 2.28, yielding1007

5.86 A.1008

Bouton costs, although clearly part of an axon, are calculated sep-1009

arate from the axon. As will be detailed later, our approximation of1010

surface areas treats all presynaptic structures as bouton terminaux,1011

and rather than assume tapering for impedance matching purposes,1012

presume an abrupt transition of diameters. Importantly, we assume1013

that a bouton mediates a calcium spike and that this spike only1014

requires a 0.02 V depolarization to be activated. Altogether, the1015

rate of Na+ coulomb charging for boutons is 6.34 F ·0.02 V ·1.6 Hz1016

= 0.20 A.1017

The sum of axonal spike costs and bouton chargings is used to1018

determine the Na+ that needs pumping. Thus, dividing the total1019

current by Faraday’s constant converts coulombs per sec to mols of1020

charge per sec, and this calculation yields a Na+ flux of 6.3 · 10−51021

molNa+per sec. Dividing by three converts to ATP mol/sec, and1022

multiplying this value by Nath’s 36,000 J/molATP yields the total1023

action potential cost of 0.75 W.1024

As noted earlier, the WMAP costs are required. To approxi-1025

mate this value, assume that the ratio of GMAP cost to total GM1026

axonal cost equals the ratio of WMAP cost to the total WM cost.1027

Thus, GMAP
GMAP+GMRP

= 0.75
2.55 = WMAP

WM Total
= 29.4%; then with1028

WMTotal = 1.85 W, WMAP = 0.54 W.1029

Since some portion of Other is likely AP-dependent, we scale1030

the 0.17 W cost of Other in the same proportion as the GM com-1031

munication costs scale for APs vs APs plus rest potential (where1032

APs include presynaptic AP costs): 0.75+0.19
0.75+0.19+1.81 · 0.17 = 0.0581033

W.1034

Presynaptic AP Costs. The presynaptic transmitter-associated costs1035

are mostly based on the values of Attwell and Laughlin (35) and1036

of Howarth et al. (43). The assumptions include an assumed 25%1037

success rate of vesicular release for each cortical spike (2.4 · 10141038

spikes/sec under the 1.6 Hz and 1.5 · 1014 synapses assumptions).1039

However, in contrast to Howarth et al. (43), which uses a number1040

supported by observations in calyx of Held (57) and in cell cultures1041

(58), the observations of Stevens and Wang (44) in CA1 hippocampal1042

pyramidal neurons indicate that the same calcium influx occurs for1043

both synaptic successes and failures. Because adult hippocampal1044

synapses seem a better model of cerebral cortical synapses then calyx1045

or tissue culture synapses, we use the hippocampal observations.1046

Therefore, the 1.6 Hz firing rate produces a Ca2+ cost that is1047

more than 8-fold greater than the cost of vesicle release events (VR1048

events, Table S5). The Ca2+ influx per action potential is 1.2 · 1041049

Ca2+/vesicle, and assuming 1 ATP is required to pump out each1050

Ca2+, the Ca2+ cost is 1.2 · 104 ATPs/vesicle. Multiplying this by1051

2.4 · 1014 APs/sec for the gray matter yields a total presynaptic1052

Ca2+ cost of 0.17 W.1053

The cost per vesicle release is determined by adding the pack-1054

aging and processing costs and then multiplying by the number of1055

glutamate molecules per vesicle as in (35) and (43). Adding the1056

cost of membrane fusion and endocytosis yields a total of 5,7401057

ATPs/vesicle (43). This value is multiplied by the VR events per1058

second and divided by Avogadro’s number to obtain 5.7 · 10−71059

ATPmol/sec. Converting to watts yields a presynaptic transmitter1060

release cost of 0.02 W and a total presynaptic cost of 0.19 W for1061

the GM.1062

Axonal and presynaptic surface area. Surface areas of axons and1063

their associated presynaptic structures are critical to the estimation1064

of gray matter communication costs. Alas, the lack of human data1065

forces several bold extrapolations. Fortunately, some EM volume-1066

fraction observations in other species and one well-quantified light1067

microscopic (LM) study in cats help to constrain or serve as a check1068

on our assumptions.1069

Synapse counts. Both computation and communication costs de-1070

pend on the number of cortical synapses. For the approach taken1071

here, computational costs scale in a one-to-one ratio to synaptic1072

counts while communication costs scale proportionally, but with a 1073

smaller proportionality constant. 1074

The calculations use the Danish group’s synapse counts of 1.5 · 1075

1014 (59). The alternative to the numbers used here report an 1076

80% larger value (60); however, their human tissue comes from 1077

nominally non-epileptic tissue from severely epileptic patients. Since 1078

the incredibly epileptic tissue is likely to stimulate the nearby non- 1079

epileptic tissue at abnormally high firing rates, we find the data’s 1080

import questionable. 1081

Estimation of Surface Areas from Mouse and Rabbit Data. Here 1082

volume-fraction data are used to estimate axon and presynaptic 1083

surface areas. As far as we know, there are two journal-published, 1084

quantitative EM studies of cerebral cortex that are suitable for our 1085

purposes: one in rabbit (61) and one in mouse (62). (Although 1086

structural identifications do not neatly conform to our simplifying 1087

cylindrical assumptions, we can still use their data to direct and to 1088

check our estimates.) 1089

Chklovski et al. (62) report a 36% volume-fraction for small 1090

axons, 15% for boutons, 11% for glia, 12% for other, and 27% for 1091

dendrites and spines as read from their graph in their Figure 3. 1092

They purposefully conducted their evaluations in tissue that lacked 1093

cell bodies and capillaries. Because cortical tissue does contain cell 1094

bodies and capillaries, this will produce a small error for the average 1095

cortical tissue. More worrisome is the size of "other," half of which 1096

could be very small axons. 1097

The quantification by Schmolke and Schleicher (61) examines 1098

the rabbit visual cortex. Their evaluation partitions cortex into two 1099

types of tissue: that with vertical dendritic bundling and that which 1100

lacks dendritic bundling (they do not seem to report the relative 1101

fraction of the two types of cortex, but we assume the tissue without 1102

bundling dominates over most of cortex). For boutons and axons 1103

respectively, they report volume fraction values within bundles of 1104

17% and 20% and values between bundles of 26% and 29%. 1105

The 30% axonal volume fraction used in Table S6 is a compromise 1106

between the (62) value of 36% and the two values from (61). The 1107

average of the within bundle and between bundle volume-fractions 1108

from (61) is used for boutons. Specifically, the approximated hu- 1109

man volume fractions are (i) 22% boutons, (ii) 30% small axons, 1110

(iii) 11% glia, (iv) 5% neuronal somata, (v) 3% vasculature, (vi) 1111

29% dendrites, spineheads, and spine-stems, totaling 100%. (It is 1112

assumed that standard fixation removes almost all of the physiolog- 1113

ical extracellular space and, naively, shrinkage/swelling has little 1114

relative effect on these values.) The calculations are essentially 1115

unaffected by the two conflicting bouton volume fractions since the 1116

difference between the two possible calculations is negligible. 1117

Table S6 lists the critical values, the intermediate values for the 1118

cylindrical model to fit the data, and finally the implications for 1119

the relevant membrane capacitance. 1120

Cylindrical model approximations for axons and boutons. Axons: By 1121

making a cylindrical assumption and assuming the average small 1122

axon’s diameter is 0.50 µm (radius = 0.25 · 10−4 cm), we can 1123

estimate the total surface area of these unmyelinated axons using 1124

the 30% volume-fraction to calculate the length of an average 1125

axon, Lax. The total volume (cm 3) occupied by all such axons is 1126

Lax · 1.5 · 1010 ·π(0.25 · 10−4)2. Dividing this volume by the volume 1127

of the GM (632 cm3) must equal the volume fraction, 0.3. Solving 1128

yields Lax = 6.44 cm. Then net surface area is calculated using 1129

this length, the same diameter and number of neurons, 6.44 · 1.5 · 1130

1010 · π · 0.5 · 10−4 = 1.52 · 107 cm2. For an independent calculation 1131

of axon length based on LM data, see Supplement. 1132

Boutons: The surface area estimates also treat boutons (Btn) 1133

as uniform cylinders of a different diameter. Assume that cortical 1134

presynaptic structures in humans are no bigger than in any other 1135

mammalian species. To determine bouton surface area, assume a 1136

bouton diameter (dpb) 1.1 µm and height (hpb) 1.0 µm. Denote the 1137

total number of synapses in the gray matter as ngm (1.5·1014). (Note 1138

that the cylinder area of interest has only one base.) Then, with 1139

the formulation Apb = ngmπ(dpbhpb+ ( 1
2dpb)

2), the bouton surface 1140

area works out to Apb = 1.5 ·1014π(1.1 µm ·1.0 µm+(0.55 µm)2) = 1141

6.61 · 106 cm2. See Tables S6 and S7. 1142

We assume a bouton only accounts for one synapse. However, 1143

larger boutons can contact multiple, distinct postsynaptic neurons. 1144

Thus the small cylinders, as individual synapses, are an attempt 1145
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to approximate such presynaptic configurations. See Table S8 for1146

more details and for the effect of overestimating areas.1147

Oxidized vs. non-oxidized glucose. Arteriovenous blood differences1148

indicate that insufficient oxygen is consumed to oxidize all the1149

glucose that is taken up by the brain. Supposing glucose is the1150

only energy-source, it takes six O2’s for complete oxidation. The1151

calculations use an OGI value of 5.3 (63). Other values from1152

arteriovenous differences are found in the literature (64–66). Even1153

before these blood differences where observed, Raichle’s lab proposed1154

as much as 20% of the glucose is not oxidized (40).1155

Glucose to ATP based on Nath’s theory. Table S2 offers the reader a1156

choice between Nath’s torsional conversion mechanism of glucose1157

to ATP (46, 67, 68) versus the conventional conversion to ATP1158

based on Mitchell’s chemiosmotic theory (69). According to Nath,1159

the minimum number of ATP molecules produced per molecule of1160

glucose oxidized is 32, and this includes mitochondrial leak and slip1161

(46). Nath’s calculations are based on free-energy values under phys-1162

iological conditions. However, his calculations are recent while the1163

standard model has been taught for decades, although not without1164

controversy (70). The standard textbook number for this conversion1165

is 33 ATPs per molecule of glucose before accounting for mitochon-1166

drial proton leak and slip. Since leak is often assumed to consume1167

20% of the energy that might have gone to ATP production in1168

oxidative phosphorylation (35, 71), the Mitchell conversion number1169

is reduced from 33 to 27 molecules of ATP (2 ATPs are produced1170

by glycolysis and 2 by the Krebs cycle, so this 20% reduction only1171

applies to the ATP produced in the electron transport chain).1172

The other choice given to the reader in Table S2 is the choice1173

between two different firing rates. When the higher firing-rate or1174

the Mitchell mechanism is used, there is no energy available for1175

Other. Thus in these cases, the accounting cannot be balanced.1176

In this regard, an energy-allocation for maintenance and synaptic1177

modification (Other in Table 1 and 2) is a bare minimum and is just1178

estimated via the guess that its value is equal to the computational1179

cost.1180

Other. Here Other is not directly calculated. Rather it is matched1181

to computational energy consumption. As noted in Discussion,1182

this category must itself be partitioned into three types of energy1183

consumption. We assume that Other partitions in direct proportion1184

to energy-use elsewhere. Fortunately, our information calculations1185

will hold if energy is exchanged between categories with similar1186

dependencies. For example, Other needs to be partitioned between1187

the two types of communication costs (APs vs resting potential),1188

costs arising from postsynaptic depolarization, and the costs arising1189

from metabotropic activations and synaptic plasticity. See Supple-1190

ment for further explications of Other regarding partitioning and1191

firing rate dependency.1192
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Figure Legends1346

Fig 1. Maxwell’s demon cycle is analogous to the neuron’s computa-1347

tional cycle. The initial state in the demon cycle is equivalent to1348

the neuron at rest. The demon sensing a fast molecules is analogous1349

to the synaptic activations received by the neuron. Whereas the1350

demon uses energy to set the memory and then opens the door for1351

the molecule, the neuron stores charge on the membrane capaci-1352

tance (Cm) and then pulses out once this voltage reaches threshold.1353

Simultaneous with such outputs, both cycles then reset to their1354

initial states and begin again. Both cycles involve energy being1355

stored and then released into the environment. The act of the1356

demon opening the door is ignored as an energy cost; likewise, the1357

neuron’s computation does not include the cost of communication.1358

Each qi is a sample and represents the charge accumulated on the1359

plasma membrane when synapse i is activated.1360

Fig 2. Near exact consistency between the energy-audit’s N = 25001361

and the optimization implied value N = 2428. The plotted curves1362

indicate the sensitivity of the optimization result to energy alloca-1363

tions. Perfect consistency (N = 2500) requires either (A) increas-1364

ing non-computational AP energy-use from 6.46 to 6.67 · 10−111365

J/neuron/IPI, (B) decreasing the computational energy budget1366

from 7.08 to 6.86 · 10−12 J/neuron/IPI, or (C) some even smaller1367

alterations of both energy consumers. Because N is so large, the1368

curvature in A is imperceptible.1369

Fig 3. Computation costs little compared to communication. GM1370

communication alone accounts for more than half of the cortical1371

energy use (big pie chart). Computation, the smallest consumer,1372

is subpartitioned into the two ionotropic glutamate receptors (bar-1373

graph). Other includes synaptic modification and maintenance. The1374

small pie chart sub-paritions GM communication after re-scaling1375

(2.75 W =100%). See Results, Table 1, and Methods for details.1376

†WM communication includes its Other in addition to resting and 1377

action potentials. 1378

Fig 4. Energy-use increases linearly with average firing-rate, but for 1379

reasonable rates, computation (Comp) costs much less than commu- 1380

nication (Comm). Comparing the bottom (blue) curve (GM commu- 1381

nication costs) to the top (red) curve (GM communication cost plus 1382

computational costs), illustrates how little computational costs in- 1383

crease relative to communication costs. The large y-intercept value 1384

is 1.8 W for resting potential plus 0.1 W for a constant consumption 1385

by Other. The small point labeled GMAPOther+GMComm+Comp 1386

adds 0.07 W of AP-dependent Other to the GMComm+Comp curve, 1387

0.17 W + 2.75 W @ 1.6 Hz. The large point, labeled WM(Comm + 1388

Other) + GMComm, shows the value of the combined communica- 1389

tion cost, i.e., cortical GM at 1.6 Hz plus the total cortical white 1390

matter (WM) cost. See Table 1, and Methods for further details. 1391
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