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Abstract: 

To enable large-scale analyses of regulatory logic in model species, we developed DeepArk 

(https://DeepArk.princeton.edu), a set of deep learning models of the cis-regulatory codes of four widely-

studied species: Caenorhabditis elegans, Danio rerio, Drosophila melanogaster, and Mus musculus. 

DeepArk accurately predicts the presence of thousands of different context-specific regulatory features, 

including chromatin states, histone marks, and transcription factors. In vivo studies show that DeepArk 

can predict the regulatory impact of any genomic variant (including rare or not previously observed), and 

enables the regulatory annotation of understudied model species. 

 

Main: 

Deciphering the regulatory function of the non-coding genome remains a grand challenge of 

modern biology. Model species have long been at the forefront of biological discovery and biomedical 

innovation1, but our knowledge of the cis-regulatory logic remains incomplete.  Many important 

questions remain: how should we mutate a fly enhancer to change its activity in a tissue-specific manner? 

Which regulatory variants for mouse disease genes are functional? How can we predictively edit the 

genome to efficiently guide experimentation? Answering these questions requires interpreting specific 

effects of any genomic variant, including changes to chromatin states, histone modifications, and binding 

of transcription factors. Addressing this challenge across the entire spectrum of genomic variation 

requires generalizing from the experimental studies (e.g. ChIP-Seq data) to learn the regulatory code and 

thus enable the prediction of effects of any genomic variant. These effects must be predicted in specific 

contexts including developmental stage, cell and tissue type, and drug treatments - an experimentally 

intractable set of combinations. 

Existing approaches for model organisms fall short of this goal. A common approach is to scan 

for highly conserved binding sites with position weight matrices. However, such motifs have limited 

context information and fail to consider the multiple interacting factors that frequently delineate histone 

marks or chromatin accessibility2,3. In contrast, sequence-based deep learning models are capable of 

learning this context-specific cis-regulatory code, and while they have proven to be powerful for the 

complex task of predicting regulatory activity from genomic sequences3–5, their applicability to model 

organisms remains largely undemonstrated aside from a few limited exceptions6,7. 

We developed a set of sequence-based deep convolutional neural networks (CNNs), which we 

collectively named “DeepArk”, modeling the cis-regulatory codes of four of the most widely-studied 

model organisms: Caenorhabditis elegans, Danio rerio, Drosophila melanogaster, and Mus musculus 

(Fig. 1a). To the best of our knowledge, DeepArk is the first such resource for these model organisms. 
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Intuitively, DeepArk provides an in silico ChIP-seq capability: given a genomic sequence as input, 

DeepArk’s CNNs predict the activity of a total of 6,562 regulatory features, including histone marks, 

different transcription factors (TFs), RNA polymerases, and chromatin accessibility (Supplementary 

Table 1). Notably, DeepArk leverages a wide sequence context of 4,095 bp to provide accurate 

predictions for broad regulatory features with complex regulatory origins (e.g. chromatin accessibility). 

DeepArk’s multitask approach to modeling also allows it to make such predictions efficiently. Many 

predictions are made in specific contexts - larval or adult stages, specific tissues or cell types, and under 

particular treatments (e.g. lipopolysaccharide stimulation). Importantly, for most of the organisms and 

regulatory features considered, DeepArk is the first method capable of accurately predicting regulatory 

activity from genomic sequence and the regulatory effects of genomic variants6,7. 

We trained each DeepArk model on publicly-available genome-wide measurements of regulatory 

activity (i.e. ChIP-seq of TFs and histone marks, DNase-seq, and ATAC-seq) from its respective species, 

and tested its performance on chromosomes that were not used during training (Online Methods and 

Supplementary Table 2). Consistent with the accurate inference of cis-regulatory logic, we found that 

each DeepArk model correctly predicted the regulatory activity of the test sequences (Fig. 1b and 

Supplementary Table 1). 
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Figure 1: Overview of DeepArk models and their predictive accuracy. (a) The DeepArk architecture

(Supplementary Fig. 1) uses convolutional layers to scan an input sequence for regulatory motifs, and

maximum pooling layers to perform dimensionality reduction. By utilizing many successive layers,

DeepArk is able to extract complex motifs, interactions between motifs, and consider a wide sequence

context of 4,095 bp. Key applications enabled by DeepArk include prioritizing observed genomic variants

by their putative regulatory effects (top right), exposing the predictive sequence features for regulatory

events through in silico saturated mutagenesis (middle right), and predicting the regulatory effects of

novel variants for prospective experiments (bottom right). (b) Performance on test chromosomes from

each organism, as quantified by the area under the curve (AUC) of the receiver operating characteristic

(ROC) curve. Only regulatory features with at least 50 positive test examples are included. For each box

plot, the center line marks the median, and the top and bottom edges of the box mark the first and third

quartiles respectively. The top and bottom whiskers extend to 1.5× the interquartile range (IQR), with

data points outside of this range considered outliers and plotted individually.  
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At its core, DeepArk provides a mapping from DNA sequences to regulatory activities. By 

comparing DeepArk’s predictions for separate sequences, we can identify how sequence differences lead 

to regulatory differences. As a consequence, we can predict whether a variant might increase or decrease 

regulatory activity for any of DeepArk’s 6,562 regulatory features. This ability to predict the cis-

regulatory effects of genomic variants is an important step forward for model species genomics, as there 

is a paucity of such methods available.  

To assess DeepArk’s ability to guide the interpretation of regulatory variants, we compared its 

predictions for the regulatory effects of variants in an enhancer of ALDOB with actual effects as measured 

by Patwardhan et al. in a massively parallel in vivo reporter assay (MPRA) in murine livers8. By 

barcoding each variant and quantifying enhancer activity with RNA-sequencing, the MPRA can test the 

expression-modulating effects of all possible single nucleotide polymorphisms (SNPs) in a given 

enhancer. DeepArk’s mouse model’s variant effect predictions were significantly correlated with the 

expression effects of the SNPs measured in the ALDOB enhancer MPRA (Pearson’s r=0.714, 

P=3.58×10-122 and Spearman’s ρ=0.587, P=2.91×10-73, n=777) (Supplementary Fig. 2 and 

Supplementary Table 3), further demonstrating that DeepArk’s predictions accurately reflect in vivo 

observations. 

DeepArk can also be deployed to investigate regulatory loci at the genome- or chromosome-wide 

scale. For example, a researcher interested in identifying loci guiding the spreading of the dosage 

compensation complex (DCC) of C. elegans, a complex that both binds and spreads along the inactivated 

X chromosome9. They could use DeepArk to investigate the DCC computationally and identify sites 

involved in the DCC’s initial recruitment. First, the researcher identifies a region as a highly-probable site 

of DCC binding by scanning all of chromosome X for binding of several protein components of the DCC 

(e.g. dpy-27) in vivo (Supplementary Table 4 and Supplementary Fig. 3). Conducting an in silico 

saturated mutagenesis of the putative DCC-bound region for DCC members reveals a single highly 

constrained sequence (GCGCAGGGA) that is necessary for DCC binding in vivo (Supplementary Fig. 

4) and consistent with existing literature10. Thus, DeepArk may be used to interpret the binding patterns 

of even relatively complicated protein complexes. 
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Figure 2: DeepArk’s predicted effects for the different T48 mesodermal enhancer variants correlate

with in vivo results. (a) Plot of DeepArk predictions for Zelda binding during nuclear cycle 14 (accession

no. SRX858993) for each of the four enhancer alleles. The CAGGTAG allele has the highest predicted

probability of binding, with the reference allele CAGGAAG exhibiting the lowest. (b) The total

transcriptional output for each of the four alleles, as quantified with in vivo MS2 tagging during nuclear

cycle 14. Note that CAGGTAG and CAGGAAG have the lowest and highest transcriptional outputs

respectively, which is consistent with DeepArk’s predictions. Bonferroni-corrected two-sided t-test with

unequal variances, **P = 4.139 × 10-3; all others, P >5 × 10-2. (c) False colored nuclei with active

transcription in Drosophila embryos during minute 20 of nuclear cycle 14 illustrate the distinct levels of

transcriptional activation induced by each allele. 
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As another application, DeepArk can directly assist in studying regulatory genomics. We used the 

DeepArk model for D. melanogaster to investigate the regulatory effects of mutations in the mesodermal 

enhancer of the T48 gene11 whose timely expression regulates gastrulation in flies11,12 (Supplementary 

Fig. 5 and Supplementary Tables 5 and 6) and relies on binding of zelda, a pioneer factor13,14. DeepArk 

predicted that the original suboptimal zelda binding site would have the lowest probability for zelda 

binding, whilst the variants CTT>CTA and CTT>GTA would have moderate probability and the 

CTT>CTG variant, the largest positive effect on zelda binding. To test the predictive capabilities of 

DeepArk, we examined the in vivo expression in live embryos of these three variants. Experimental 

quantification of the total transcriptional output of the T48 enhancer variants clearly shows that 

DeepArk’s predictions were accurate, and that, as expected, an increase in zelda binding at probability 

correlates with an increase in gene activation in vivo (Fig. 2). This both experimentally confirmed 

DeepArk’s predictions and demonstrated its utility in designing genome editing experiments. 

DeepArk may also be particularly useful for researchers of understudied model organisms 

without available regulatory data. Presently, pairwise alignments of regulatory regions allow the detection 

of constrained non-coding sequences in the absence of regulatory assays, but they are only a proxy for 

regulatory function and their interpretation can be confounded. For instance, some regulatory elements 

are enriched for recent evolution15, while other highly conserved non-coding regions have no known 

function16. By directly predicting regulatory activity from sequence, DeepArk alleviates this challenge. To 

that end, we used the DeepArk model for the model organism D. rerio to predict chromatin accessibility 

and H3K4me3 marks during development in the genome of Oryzias latipes, or Medaka, a fish that 

diverged from D. rerio an estimated 314 to 332 million years ago17. Even after filtering conserved loci, 

we find that DeepArk accurately predicts ChIP-seq and ATAC-seq peaks for developing O. latipes 

(average ROC AUC of 0.927) using only their genomic sequence as model input (Supplementary Table 

7). Thus DeepArk may also be used to help annotate the genomes of understudied organisms when 

whole-genome assays of regulatory features do not already exist (Supplementary Fig. 6). 

As we have shown, DeepArk excels at a number of diverse tasks such as accurately predicting the 

regulatory landscape of model species and predictive genome editing. Here we have shown a few 

examples of DeepArk’s utility, which we have made publicly available (https://DeepArk.princeton.edu) to 

enable new and more efficient approaches for experimental studies. Since we developed DeepArk in a 

transparent and open-source manner, we anticipate that it may be extended and repurposed for other tasks 

via transfer learning. Furthermore, DeepArk could be used as a scoring function in a sequence 

optimization and design pipeline18, as covariates for models of more complicated regulatory events such 

as enhancer-promoter looping19, and in high-resolution association mapping of animal models as it 

becomes widespread20. Thus, DeepArk will contribute to a number of diverse experimental and 
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computational analyses, both directly through its predictions or as part of larger computational pipelines.  

 

Online Methods 

DeepArk model architecture. 

DeepArk is a collection of four deep convolutional neural networks, each modeling the activity of 

different regulatory features in a separate model organism. In total, DeepArk is capable of making 

predictions for 6,562 context-specific regulatory features. In what follows, we detail the design and 

structure of the DeepArk model. 

Each DeepArk model takes a 4095 bp genomic sequence as input, and predicts the probability 

that the centermost base of this sequence is covered by a peak for each regulatory feature of interest. This 

input sequence is encoded as a 4095×4 one-hot matrix with columns corresponding to each base in the 

sequence, and rows corresponding to adenine, cytosine, guanine, and thymine respectively. The output of 

each DeepArk model is a vector of length N, where N is the number of features for that model’s given 

organism (Supplementary Table 1). DeepArk is a multitask model, which means it jointly learns the 

sequence-specific activities of multiple regulatory features simultaneously. The DeepArk architecture was 

fixed across organisms (Supplementary Fig. 1), but we learned distinct model parameters and 

hyperparameters for each organism (Supplementary Table 8). 

The DeepArk architecture (Supplementary Fig. 1) consists of a deep convolutional neural 

network, wherein the network’s output is the functional composition of many linear and non-linear 

transformations, called “layers”. The specific parameters of these transformations are selected during 

training to optimize the objective function. We consider four types of transformations in our network: 

convolutional layers, maximum pooling layers, batch normalization layers, and the rectified linear unit 

(ReLU) and sigmoid activation functions. The basic unit of our model is a multi-layer “convolutional 

unit”, which contains, in order, a batch normalization layer, a ReLU layer, and a convolution layer. We 

further organize our model into five multi-layered convolutional blocks. We used maximum pooling at 

the start of each convolutional block, as we found that spatial invariance and reduced training time 

allowed us to improve our model. The output of the final convolutional block is fed into a length-1 

convolution with output channels equal to the number output features of the model, and fed into the 

sigmoid activation function. 

We designed the DeepArk architecture to regularize it and avoid overfitting. First, we averaged 

predictions made for the forward and reverse complement of sequences . Second, we leveraged spatial 

dropout21, which randomly zeros out channels in the input to a convolutional layer. Typically, dropout22 

randomly zeros sets input values to zero with probability P, which has the effect of forcing the model to 

overcome perturbations in internal values (i.e. without altering the sequence input) to make correct 
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predictions. However, highly correlated sequence positions in convolutional neural network inputs may 

diminish the effectiveness of dropout and slow training. Conversely, spatial dropout mitigates this by 

zeroing out entire channels of the convolutional layer’s input. 

 

Training examples. 

Training examples are 2-tuples of a 4095 bp genomic sequence and a label vector. For each 

example, a given feature’s entry in the label vector is positive if the center base of the 4095 bp sequence 

is overlapped by a peak from the feature’s corresponding ChIP-seq, DNase-seq, or ATAC-seq 

experiment. With the exception of ENCODE blacklisted regions23, all positions in the genome were 

considered valid examples. 

Non-intersecting training, validation, and testing sets were generated by whole-chromosome 

holdout (Supplementary Table 2). Validation data were generated by randomly drawing 64,000 

examples from a given species’s set of validation chromosomes. Training and validation examples are 

drawn uniformly and with replacement. Each species’ test set consisted of 1 million examples drawn 

uniformly and without replacement from the held-out test chromosomes for said species. Only features 

with at least 50 positive examples in the held-out test data were considered when calculating performance 

metrics. 

 

Training DeepArk. 

We used stochastic gradient descent with momentum and mini-batches of 128 examples to select 

network weights that optimized the model objective function during training. Specifically, our objective 

function was the sum of the binary cross-entropy (BCE) loss and an L2 regularization term, 

� � ��� � ��	�
�
� 

��� � 
 1
���

�

���

�����̂ � �1 
 �������1 
 ��̂� 

where ��  is the vector of target labels for example i, ��̂ is DeepArk’s prediction for example i, λ is the 

weight decay hyperparameter, W is the weight matrix, and N is the mini-batch size. Model validation 

performance was evaluated every 5000 training steps with a validation set drawn randomly from a set of 

held-out validation chromosomes (see “Training examples” section in Online Methods). When minimum 

validation loss failed to decrease for five consecutive epochs, we decrease the learning rate by 20% of its 

current value. We terminated training when validation loss stopped decreasing for a sustained period of 

time. Hyperparameters for SGD and model training (Supplementary Table 8) were selected based on 

each model’s performance on its respective validation set. DeepArk was implemented and trained with 

Selene24. 
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Training data preparation. 

Labels for training,  validation, and testing data were constructed using publicly-available ChIP-

seq, DNase-seq, and ATAC-seq for C. elegans, D. rerio, D. melanogaster, and M. musculus. For C. 

elegans, D. melanogaster, and M. musculus, we used peak intervals from ChIP-atlas25 - a large 

compendium of uniformly processed high-throughput sequencing experiments sourced from the Sequence 

Read Archive (SRA), the European Nucleotide Archive (ENA), and the DNA Data Bank of Japan 

(DDBJ). Specifically, we used peaks called with a maximum Q-value cutoff of 1×10-5. 

To keep our methodology consistent, we called our own peaks for D. rerio. Specifically, we 

downloaded aligned BAMs for ChIP-seq and ATAC-seq experiments from the DANIO-CODE website26. 

Peaks were called for these BAMs using MACS227 with a maximum Q-value cutoff of 1×10-5 and an 

effective genome size of 8.1×108. This approximate effective genome size was calculated by counting the 

number of unambiguous bases in the Genome Reference Consortium Zebrafish Build 11 (GRCz11), 

without including repeats28. The repeat-masked genome was downloaded from UCSC  genome browser 

annotation database29. 

To ensure that we only considered high-quality experiments, we removed those with too few 

peaks, an insufficient number of mapped reads, or average read length shorter than 32 bases pairs 

(Supplementary Table 9). We also removed experiments that did not list a specific antibody target. We 

manually curated sample metadata regarding strains, cell lines, genetic modifications, and sample 

treatment. Since there exists a wide range of mouse cell lines and strains with extensive genetic and 

phenotypic diversity among them, we removed mouse experiments that did not reference a specific strain 

or cell line. 

Finally, we removed experiments where there was duplication or redundancy between SRA, ENA 

and DDBJ. We considered experiments to be duplicates if they were from the same species, differed by 

fewer than 100 peaks, and had the same number of unmapped, mapped, and duplicate-free reads. We 

manually inspected the FASTQ files to ensure true duplication. In cases where both accessions had the 

same metadata, we discarded one of the duplicate accessions at random. If the duplicates did not have the 

same antibody or biological source (e.g. cell type) listed, we discarded all of them. 

 

Analysis of massively parallel reporter assay. 

 To demonstrate DeepArk’s accuracy, we used it to predict the regulatory effects of all possible 

variants in the ALDOB enhancer8. We downloaded variant effects for the massively parallel in vivo 

reporter assay of the ALDOB from MaveDB30. The predicted functional effect of variants was calculated 

with in silico saturated mutagenesis. Specifically, the change in chromatin accessibility (accession no. 
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SRX3201109) at the center of the 259 bp ALDOB enhancer (hg19:chr9:104195570-104195828) was 

predicted for all possible variants within the 4,095 bp window, and those reported in the MPRA were 

retained for analysis. 

 

Predicting the binding of the DCC in C. elegans. 

 To identify a high-confidence binding site for the DCC, we scanned the entire X chromosome and 

made predictions every 200 bp with DeepArk. We took the mean probability across all  features 

corresponding to DCC components (Supplementary Table 4) as a proxy of DCC binding probability. 

The site with the maximum mean probability across DCC components was then analyzed with in silico 

saturated mutagenesis (Supplementary Table 10). 

 

Cloning of T48 enhancer MS2 reporter alleles. 

 To clone the four different T48 enhancer MS2 reporters the T48 enhancer was first cut with NotI 

from the T48>MS2>yellow plasmid11 and subcloned into a pGEM-T Easy vector. Site-directed 

mutagenesis was then performed by amplifying the pGEM-T Easy T48 enhancer vector (Supplementary 

Table 11). The different PCR reactions were digested with Dpn  and transformed into e.coli in order to 

obtain clones of the four different T48 alleles. These plasmids were then individually subcloned into the 

pbphi-evePr-MS2-yellow vector31 using NotI. 

 

Live imaging of T48 enhancer alleles. 

 To visualize live transcription of the T48 MS2 reporters, female fly virgins carrying the 

nanos>MCP-GFP and His2Av-mRFP fusion proteins32 were crossed to males carrying the MS2 reporter 

genes inserted on a landing site of the third chromosome (strain 9450, Bloomington stock center). The 

resulting embryos were dechorionated and mounted between a semipermeable membrane and a coverslip 

with Halocarbon oil 27 (Sigma). Embryos were imaged from the beginning of nuclear cycle 14 up to the 

onset of gastrulation using a Zeiss LSM 880 confocal microscope and a Plan-Apochromat 40x/1.3 NA 

oil-immersion objective. For each time point a stack of 21 images separated by 0.5 μm with a final time 

resolution of 14 seconds was acquired at 16 bit. Two laser lines at 488nm and 561nm were used to excite 

the green and red fluorophores, respectively. The same imaging conditions were used across the three 

replicates and the four different reporter lines. 

 

Image analysis and transcription quantification. 

To quantify the fluorescent signal resulting from the embryos live transcription, the 21 images 

corresponding to each time point were converted into maximum projections. The subsequent analysis was 
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processed by segmenting the nuclei using the His2Av-mRFP channel and tracking the segmented 

individual nuclei during nuclear cycle 14. To record the MS2-GFP fluorescent signal corresponding to the 

transcription foci, an average of the signal for the three brightest pixels within each nucleus was 

determined after subtracting the background GFP signal. Total transcriptional output was calculated by 

adding the transcription foci signal for each active nuclei for the first 200 time frames of each embryo 

after the onset of nuclear cycle 14. Please refer to Fukaya et al.31 for a more detailed description of the 

image analysis methods. 

 

Interspecies regulatory prediction. 

To illustrate DeepArk’s ability to make accurate predictions in novel species (i.e. not C. elegans, 

D. rerio, D. melanogaster, or M. musculus), we used the DeepArk model for D. rerio to predict 

regulatory activity of sequences from the genome of O. latipes, which diverged from D. rerio between 

314 and 332 million years ago17. In specific, we used  leveraged extant ATAC-seq and H3K4me1 ChIP-

seq data from O. latipes. 

 To generate testing examples for O. latipes, we randomly drew 1 million locations from the O. 

latipes reference genome without replacement. We ignored regions that contained an excess (i.e. >50) of 

ambiguous bases. To ensure the model was truly generalizing to the O. latipes genome, we removed 

sequences that were conserved between D. rerio and O. latipes. To identify conserved bases, we used a 

multiple whole-genome alignment of eight vertebrates - including O. latipes - to the D. rerio reference 

genome. To enable comparisons between the two fish, morphological stages of O. latipes development 

were matched to their corresponding stages in D. rerio33. 

Labels for the testing examples were assigned using existing ATAC-seq and ChIP-seq data from 

O. latipes. We downloaded unprocessed FASTQ files from SRA using the SRA toolkit34. We filtered and 

clipped reads using TrimGalore35. We used BWA-MEM36 to align reads to the O. latipes reference 

genome17. Following alignment, we used SAMtools37 to index and sort the BAM files, and the 

`MarkDuplicates` command from Picard Tools38 to identify and remove duplicate reads in each BAM file. 

Finally, we used MACS227 to call peaks with a Q-value cutoff 1×10-5 and an effective genome size of 

8.18×108. 

Lastly, RNA-seq data for D. rerio and O. latipes were used to visualize changes in expression and 

compare to changes in histone modifications at promoters (Supplementary Fig. 6). We downloaded the 

unprocessed FASTQ files for these data from SRA using the SRA toolkit34. Using HISAT239, the 

processed reads for O. latipes were aligned to its reference genome17, and the reads for D. rerio were 

aligned to GRCz1128. Coverage was quantified as counts per million mapped reads (CPM) using the 

`bamCoverage` command from deepTools40. 
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Code availability 

DeepArk is freely accessible through our user-friendly web server 

(https://DeepArk.princeton.edu). The code to run DeepArk locally is also available on GitHub 

(https://github.com/FunctionLab/DeepArk). 

 

Data availability 

 All ChIP-atlas data used for training DeepArk models are from the ChIP-atlas website 

(https://chip-atlas.org/). Training data for C. elegans, D. melanogaster, and M. musculus were 

downloaded from the following URLs: 

� http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/allPeaks_light/allPeaks_light.ce10.05.bed.gz 

� http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/allPeaks_light/allPeaks_light.dm3.05.bed.gz 

� http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/allPeaks_light/allPeaks_light.mm9.05.bed.gz 

All training data for D. rerio are from the DANIO-CODE website (https://danio-code.zfin.org). Their 

URLs are listed in Supplementary Table 12. All data for Oryzias latipes are from SRA. Their accessions 

are listed in Supplementary Table 7. Murine MPRA data are from MaveDB 

(https://www.mavedb.org/scoreset/urn:mavedb:00000006-a-1/). The 8-way multiple genome alignment 

used to compare the genomes of D. rerio and O. latipes is from the UCSC Genome Browser website 

(https://hgdownload.soe.ucsc.edu/goldenPath/danRer7/multiz8way/multiz8way.maf.gz). Developmental 

RNA-seq data for D. rerio (accession no. SRX3353221) and O. latipes (accession no. SRX3353227) used 

in Supplementary Figure 6 were downloaded from SRA. Raw videos from imaging are available on 

Zenodo (https://doi.org/10.5281/zenodo.3759736). Predictions for DCC component binding along the C. 

elegans X chromosome are also available on Zenodo (https://doi.org/10.5281/zenodo.3759699). 
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