Big trees drive forest structure patterns across a lowland Amazon regrowth gradient

Tassiana Maylla Fontoura Caron¹, Victor Juan Ulises Rodriguez Chuma², Alexander Arévalo Sandi³, Darren Norris^{1, 3, 4} *

¹ Programa de Pós-Graduação em Biodiversidade Tropical, Universidade Federal do Amapá (UNIFAP), Rod. Juscelino Kubitscheck, Km 02, 68902-280, Macapá, AP, Brazil.

² Facultad de Ciencias Forestales, Universidad Nacional de la Amazonia Peruana (UNAP), Pevas 5ta cuadra, Iquitos, Perú.

³ Programa de Pós-graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia (INPA), Av. André Araújo 2936, Petrópolis 69067-375 Manaus, AM, Brazil.

⁴ Coordenação de Ciências Ambientais, Universidade Federal do Amapá (UNIFAP), Rod. Juscelino Kubitschek Km 02, 68902-280 Macapá, AP, Brazil

** Corresponding author at: Coordenação de Ciências Ambientais, Universidade Federal do Amapá

(UNIFAP), Rod. Juscelino Kubitschek Km 02, 68902-280 Macapá, AP, Brazil. Email address:

dnorris75@gmail.com (D. Norris).

1 Abstract

Degraded Amazonian forests can take decades to recover and the ecological results of natural 2 3 regeneration are still uncertain. Here we use field data collected across 15 lowland Amazon smallholder properties to examine the relationships between forest structure, mammal diversity, 4 5 regrowth type, regrowth age, topography and hydrography. Forest structure was quantified together 6 with mammal diversity in 30 paired regrowth-control plots. Forest regrowth stage was classified into 7 three groups: late second-regrowth, early second-regrowth and abandoned pasture. Basal area in 8 regrowth plots remained less than half that recorded in control plots even after 20-25 years. Although 9 basal area did increase in sequence from pasture, early to late-regrowth plots, there was a significant decline in basal area of late-regrowth control plots associated with a decline in the proportion of 10 large trees. There was also contrasting support for different non-mutually exclusive hypotheses, with 11 proportion of small trees (DBH <20cm) most strongly supported by topography (altitude and slope) 12 whereas the proportion of large trees (DBH >60cm) supported by plot type and regrowth class. These 13 14 findings support calls for increased efforts to actively conserve large trees to avoid retrogressive succession around edges of degraded Amazon forests. 15

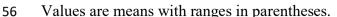
17 Introduction

Healthy tropical forests provide goods and services to human populations. Yet tropical forests show worrying rates of forest loss with an elevated loss / gain ratio and a statistically significant trend in annual forest loss of 2101 km²/year ¹. One option to revert tropical forest loss is the restoration of degraded forests and deforested landscapes ^{2,3}. Although the post-disturbance restoration of forest ecosystems often involves passive restoration strategies (i.e. natural regeneration), the ecological results of this type of restoration are still uncertain ²⁻⁴.

Continuing widespread forest losses across Amazonia compromises vital ecosystem services 24 such as carbon storage, regulation of hydrological cycles and climate patterns ⁵⁻⁷. Riverside forests 25 are particularly threatened and suffer losses due to the conversion of forest cover to pastures, 26 compromising the maintenance of water flows⁸. The recovery of degraded areas is necessary to 27 recuperate the standing forest value and the Amazon offers an excellent recovery opportunity due to 28 its natural potential for regeneration 9,10 . Yet, the regrowth rate of degraded Amazon forests can be 29 slow, as abandoned areas are typically on compacted poor quality soils ^{11,12} and due to the high 30 structural and biological diversity of the original forests¹³. 31

32 Separating the complex interactions driving recruitment and recovery patterns of highly diverse Amazon forests is challenging ^{2,3,14,15}, yet we know that different faunal groups can modulate and 33 generate key impacts¹⁶⁻¹⁹. Indeed, the successional trajectory of natural regeneration in degraded 34 35 forests can depend strongly on the concomitant recovery of faunal diversity and associated ecosystem services (e.g. seed dispersal)²⁰⁻²². For example, seed predation by both vertebrates and 36 invertebrates ^{23,24} can limit germination and subsequent recruitment²². Long-term experiments have 37 demonstrated the impact of vertebrates on recruitment, showing how this group contributes to the 38 maintenance of tropical forest species and structural diversity ²⁵⁻²⁸. 39

40	Amazon mammals are important component of forest diversity ^{25,29} including carbon ²⁸ and
41	biomass cycles ¹⁸ . Mammals can also play an important role in the successional trajectory and
42	recovery of degraded areas as dispersers and predators of both seeds and seedlings ²³ . Mid- and
43	large-bodied mammals (weight> 1 kg) can disperse a large numbers of seeds over long distances
44	^{23,30} . For example, lowland tapirs can travel over 4 kilometers in a day ³¹ and disperse seeds of more
45	than 70 tree species ³² . The loss of mid- to large-bodied mammals may release some plant species
46	from herbivory and increase their dominance, which subsequently decreases tropical forest
47	biodiversity ^{33,34} .


Given the need to understand the patterns of forest structure in Amazonian forests, here we aim
to identify how biotic and abiotic factors (Table 1) can explain patterns in forest structure across a
successional gradient.

52 Table 1. Explanatory variables.

Working	Variables	Sauraa	Description / Eaclasical relevance	Supporting
Hypothesis/Model	variables	Source	Description/Ecological relevance	references
	Plot type	In situ.	Categorical factor with two levels: control and regrowth. Included in all	
	r lot type	III Situ.	models.	
			Altitude is a driver and modulator of species distribution patterns from	
Topography	Altitude	SRTM-DEM	microhabitat to biogeographic scales. Altitude not only affects soil, water	10,13,35,36
			availability, climate and a myriad of other abiotic and biotic variables	
	Slope	SRTM-DEM	Slope affects soil, water availability and tree mortality rates.	
Hydrography	TWI	SRTM-DEM	Topographic wetness index accounts for the topographic control of water	37
пустодгарну	1 W 1		movement in sloped landscapes and the associated control on soil moisture.	
			Combination of water gravitational potential (Height above the nearest	
	Drainage proximity	SRTM-DEM	drainage (HAND)) and soil drainage (Horizontal distance from nearest	38-40
			drainage (HDND)).	
			Land-use history has a strong influence on rates of forest recovery. Categorical	
Regrowth class	Regrowth class	In situ: interview	factor with three levels of regrowth class derived from the land-use history:	
			late second-regrowth forest, early second-regrowth and pasture.	10,16,41,42
Time	Years since last use	In situ: interview		
	Years since initial	T	Time is a major determinant of forest succession.	
	clearing	In situ: interview		
	~ · · ·	In situ: camera-		
Mammals	Species richness	trap images		17,18,28,43
	Functional	In situ: camera-	Mammal diversity is positively related to tree biomass.	1,,10,20,10
	diversity	trap images		

Regrowth	Sites/	Size	Dist	ance	Forest co	over (%)	Tree BA (m ² /ha)			tree BA ² /ha)
class	Plots	(ha)	River (m)	Town (km)	1 km	5 km	Reg.	Cont.	Reg.	Cont.
		5.8	288.15	40.4	91.5	97.4	17.6	35.8	1.5	11.4
Late	5/10	(2.0–	(110–	(35.0–	(87.4–	(96.4–	(11.5–	(21.7–	(0.0-	(0.0-
		12.0)	554)	45.0	95.4)	98.5)	25.3)	47.4)	7.7)	22.3)
		2.4	348.5	38.2	90.7	97.2	11.1	49.3	0.0	20.8
Early	5/10	(1.0–	(150–	(30.0–	(87.1–	(96.4–	(4.7–	(34.6–	(0.0-	(0.0-
		4.5)	554)	43.7)	96.0)	98.4)	19.2)	76.5)	0.0)	44.2)
		8.7	266.8	32.8	88.8	96.9	5.8	47.1	0.0	24.0
Pasture	5/10	(6.8–	(170–	(26.8–	(85.7–	(95.5–	(0.0-	(32.6–	(0.0-	(12.0–
		9.9)	461)	40.8)	91.1)	98.5)	15.9)	64.8)	0.0)	41.2)
		5.6	301.1	37.1	90.4	97.2	11.5	44.1	0.5	18.8
Totals	15/30	(1.0-	(110–	(26.8–	(85.7–	(95.5–	(0.0-	(21.7–	(0.0-	(0.0-
		12.0)	554)	45.0)	96.0)	98.5)	25.3)	76.4)	7.7)	44.2)

55 Table 2. Summary of survey locations. Characteristics of 15 sites used to study forest structure.

57

63

58 **Results**

59 Variation in stand structure variables

60 There were clear differences in forest structure between control and regrowth plots (Figure 1). On

61 average control plots had increased basal area and increased proportion of large trees (Figure 1). In

62 contrast regrowth plots tended to have increased proportion of small trees (<20 cm DBH).

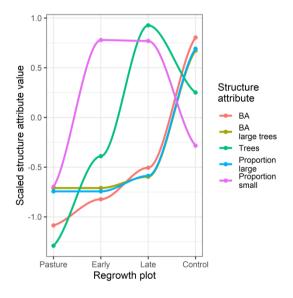
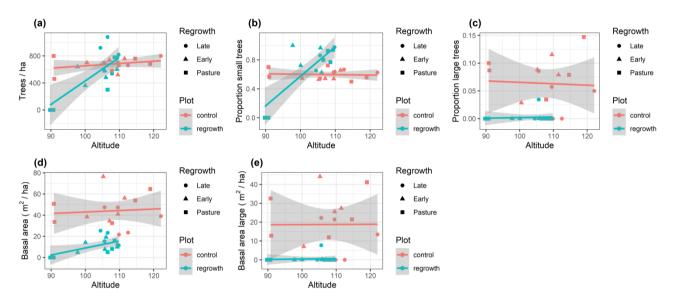



Figure 1: Forest structure changes across a lowland forest regrowth gradient. Showing mean values of five
forest structure attributes recorded in 30 plots (15 control and 15 regrowth). Regrowth plot shows differences
between control, late second-regrowth, early second-regrowth and pasture plots. Values are scaled (centered

and scaled by the standard deviation) to enable simultaneous visual comparison of the different attributes. Thelines are from LOESS smoothing as guides to aid visual interpretation.

- 69 70
- 71 The number and basal area of living trees tended to increase with altitude and this relationship was
- regrowth areas (Figure 2). The relationship with altitude was strongly affected by low
- 73 lying (90 masl) pasture plots with no trees that generated significant leverage on the linear

relationship (Figure 2).

75

Figure 2: Forest structure along a lowland Amazon regrowth gradient. Showing trends in (a) number of trees
(> 10 cm DBH) per ha, (b) proportion of small trees (10 – 20 cm DBH), (c) proportion of large (> 60 cm
DBH) trees, (d) basal area and (e) basal area of large (>60 cm DBH) tree in 30 plots (15 control and 15
regrowth). Lines and shaded areas are mean values and 95% confidence intervals from linear models
illustrating trends in basal area with increasing altitude (masl). Points with different shapes represent different
regrowth classes.

82

Basal area ranged from 0 to 76.4 m²/ha across the 30 survey plots (Table 2), with control plots showing an average fourfold increase in basal area compared with regrowth plots (mean basal area 44.1 and 11.5 m²/ha, control and regrowth respectively, Figure 2). The patterns in plot basal area also differed between regrowth classes (Figure 3, Supplementary Table S1). There was a significant interaction between plot type (control/regrowth) and regrowth stage, with basal area increasing across pasture, early and late regrowth plots but control plots showing the opposite trend, with basal area decreasing significantly in late-regrowth control plots (Figure 3).

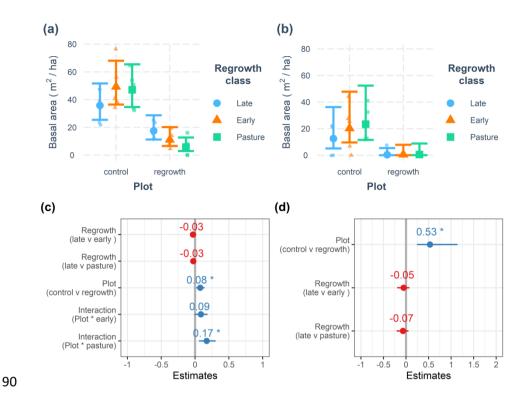


Figure 3: Basal area changes across a lowland forest regrowth gradient. The basal area of all (a and c) and
large (b and d) living trees were recorded in 30 plots (15 control and 15 regrowth). Regrowth class shows
differences between late second-regrowth, early second-regrowth and pasture plots contrasted with control
forest plots. Top row shows Generalized Linear Model (GLM) predictions (mean and 95% confidence
intervals) for basal area of (a) all and (b) large trees. Bottom row is the associated Forest-plot of the most
parsimonious GLMs testing for interactions between regrowth class, plot type and years since last use in the
basal area of (c) all and (d) large trees. Forest-plots show coefficient estimates and standard errors.

98

There was a highly significant positive linear relationship between overall basal area and large 99 tree basal area ($F_{1,28} = 127.5$, $R^2 = 0.82$, P < 0.0001). The basal area of large trees decreased 100 significantly in regrowth compared with control plots (Figure 3). On average large trees accounted 101 for 42% of the basal area in control plots compared with only 4% in regrowth plots (Table 2). Indeed 102 a single large tree (>60 cm DBH) was recorded only once in a late-regrowth plot. This relationship 103 was also reflected in the decline in basal area of late-regrowth control plots (Figure 3), which was 104 associated with a decline on the proportion of large trees that accounted for a reduced 31% of the 105 basal area in late-regrowth control plots (Table 2). 106

107 Relationships between forest structure, mammal diversity and environmental variables

Mammal diversity varied considerably across the survey plots (Figure 4). There appeared to be a tendency for basal area to increase with mammal diversity in Late-regrowth plots, yet basal area was only weakly associated with mammal diversity within the different regrowth classes (Figure 4). Indeed, the diversity of mammals was found to be only weakly informative for explaining the basal area of trees across the 30 sample plots (Table 3).

113

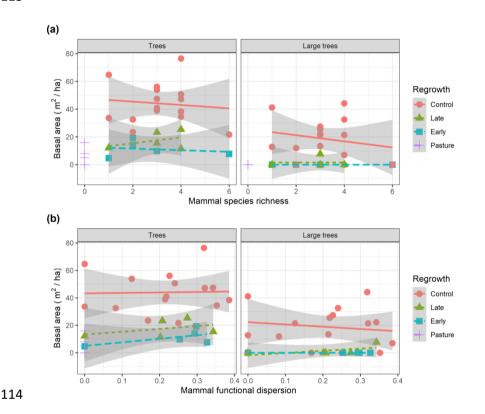


Figure 4. Mammal diversity and basal area across a lowland forest regrowth gradient. The basal area of (a) all and (b) large living trees were recorded together with the diversity (species richness and functional dispersion) of terrestrial mammals in 30 plots (15 control and 15 regrowth). Lines and shaded areas are mean values and 95% confidence intervals from linear models illustrating trends in basal area with increasing mammal diversity. Points with different shapes represent different regrowth plot types.

120

121 Comparison of the models representing the alternative hypothesizes showed that plot type 122 (control v regrowth) and topography were the most important first ranked variables for the five forest 123 structure attributes (Table 3). The most simple model including only plot type explained more than 124 50% of model deviance for all forest structure attributes except for the number of trees (DBH>10 125 cm). Plot type and regrowth class were both included in the 95% confidence set of models for the

- basal area of large trees (Table 3). In contrast Topography was the most important (first ranked)
- model for the number of trees, proportion of small trees and tree basal area (Table 3). Mammal
- diversity, Time and Hydrography models were not well supported and were not included in the 95%
- 129 confidence set of models for any of the forest structure attributes (Table 3).

131 Table 3. Summary of the Generalized Linear Models created to explain forest structure in 30 plots

132 (15 control and 15 regrowth). Models ordered by decreasing AIC (Akaike Information Criterion)

133 values.

Forest structure	Model ^a	Dev. Exp	Loglik	BIC	AIC	ΔAIC	$W_i AIC^b$
Trees							
Topograp	-	60.5	-100.6	231.9	219.3	0.0	0.91
Regrowth		49.8	-105.1	234.1	224.3	5.0	0.07
Mammals		51.3	-104.7	240.0	227.3	8.1	0.02
Hydrogra	phy	45.8	-106.3	243.1	230.5	11.3	0.00
Time		42.9	-107.0	244.7	232.1	12.8	0.00
Plot		6.5	-114.4	239.1	234.9	15.6	0.00
Proportion small t	rees						
Topograp	hy	75.2	-64.3	155.7	144.5	0.0	0.96
Hydrogra	phy	70.4	-67.5	162.2	151.0	6.5	0.04
Mammals	5	66.4	-70.2	167.6	156.4	11.9	0.00
Time		65.1	-71.0	169.3	158.1	13.6	0.00
Plot		53.7	-78.7	164.3	161.5	17.0	0.00
Regrowth	class	55.4	-77.6	175.6	167.2	22.7	0.00
Proportion large to	rees						
Plot		54.9	-30.5	67.8	65.0	0.0	0.88
Regrowth	class	60.6	-28.9	78.2	69.8	4.8	0.08
Mammals		62.9	-28.3	83.7	72.5	2.8	0.02
Time		62.8	-28.3	83.8	72.5	2.8	0.02
Topograp	hy	54.7	-30.6	88.5	77.3	7.5	0.00
Hydrogra	•	52.8	-31.1	89.5	78.3	8.5	0.00
BA all trees							
Topograp	hy	80.7	-100.9	232.3	220.4	0.0	0.89
Regrowth	•	72.9	-105.8	235.4	225.6	5.2	0.06
Plot		62.9	-110.4	231.0	226.8	6.4	0.04
Mammals	5	71.7	-106.4	243.4	230.8	10.4	0.01
Time		69.3	-107.6	245.8	233.2	12.8	0.00
Hydrogra	phy	66.0	-109.1	248.8	236.2	15.9	0.00
BA large trees							
Plot		58.3	-61.5	133.1	128.9	0.0	0.87
Regrowth	class	67.1	-59.9	143.5	133.7	4.8	0.08
Hydrogra		70.9	-59.0	148.7	136.1	7.1	0.02
Mammals		70.4	-59.2	148.9	136.3	7.4	0.02
Time	-	65.7	-60.1	150.9	138.3	9.4	0.01
Topograp	hv	60.8	-61.0	152.7	140.1	11.2	0.00
repegiup	5	00.0	01.0	102.1	1 1011		

^a Models used to explain forest structure. All models contained plot type (control/regrowth) as categorical

factor. Variables and associated estimates in the different models can be found as Supplementary InformationTable S2 online.

137 ^b Akaike weights (W_i) from largest to smallest.

138 Discussion

We integrate field and remotely sensed data to establish support for multiple non-mutually exclusive 139 hypotheses explaining patterns in forest structure across a lowland Amazon regrowth gradient. We 140 establish that different hypotheses are supported for different structure attributes. Here we discuss 141 these findings in terms of prospects for the passive restoration of degraded Amazon forests. 142 The mean basal area value from our 15 control plots (44.1 m^2/ha) was close to the mean from 143 42 Guyana Shield forest plots (43.4 m²/ha, range 10 - 65 m²/ha) in French Guiana ³⁵. The results 144 from Molto, et al. 35 were obtained from an extensive survey of 0.5 - 1 ha plots. Although our plot 145 size was smaller compared to Molto, et al.³⁵, the similarity in mean values suggests that our plots do 146 provide a representative sample of forest structure in the regrowth areas. The basal areas obtained 147 from our regrowth plots followed a similar trajectory to those reported from abandoned pasture in 148 Costa Rica 10 , where the most recently abandoned pasture plots (<14 year) had mean basal area of 149 13.5 m²/ha, with basal area increasing to 26.1 m²/ha after 21 - 30 year ¹⁰.compared with 11.1 and 150 17.6 m²/ha respectively in our Early (1-5 year) and Late (20 - 25 year) regrowth plots. This also 151 follows a similar pattern to values reported from 370 successional forest plots in the Brazilian 152 Amazon, with basal area values typically $< 10 \text{ m}^2/\text{ha}$ in early stages (< 5 year) and reaching 25 m²/ha 153 after 15 years 44. 154

Although results from lowland forest sites in Costa Rica suggest rapid recovery of pasture 155 areas ¹⁰ this could be related to the substantially lower basal area in the seven old growth reference 156 plots (26.1 m²/ha, range 19.3 - 32.2 m²/ha) compared with those in our study area. Our results are 157 similar to those reported from the central Amazon, where 25 y of regrowth restored half of the 158 mature-forest biomass⁴¹. A recent analysis of 45 Neotropical secondary forest study sites found that 159 secondary forests in the lowland tropics reach 90 percent of old growth biomass in a median time of 160 66 yr ¹³. Our findings do suggest nuanced difference in successional trajectories. Basal area increased 161 162 rapidly in early regrowth stages and this could be explained by the less intensive land use (i.e. lack of pasture) and the proximity to large areas of intact forest. In contrast basal area of late-regrowth areas
was less than those reported from other areas ^{10,44}. This could be related to soil productivity, as
previous studies show that highly diverse Guyana Shield wet forests can take longer to establish ¹³.
With basal area of control plots dominated by large trees it seems likely that many decades will be
necessary for forest structure (total basal area, proportion of large trees) to return to pre-disturbance
values.

The success of active and passive restoration can depend on ecological conditions ⁴⁵. We found 169 topography was the most informative model for explaining patterns in number of tress, tree basal 170 171 area and proportion of small trees (Table 3, Figure 2). Differences in altitude and slope have been shown to affect floristic structure of tropical forests from local to regional scales ^{16,35,42,46-48}. Indeed, 172 even relatively small variations in topography can generate changes in local-scale soil chemistry, 173 hydrology and microclimate ^{46,49}. The effects of topography do not operate in isolation from 174 hydrology and the increased numbers of small trees and tree biomass with increasing altitude (Figure 175 3) agree with previous studies that show trees grow more slowly in more low lying (and often more 176 waterlogged) terrain 42 . 177

We found a weak association between mammal diversity and regrowth forest structure. 178 Previous studies in a nearby protected area show that this group of mammals (mid- to large-bodied 179 Artiodactyla, Perissodactyla and Rodentia) are more strongly associated with factors such as access 180 to water ⁵⁰ and altitude ^{50,51}. A recent study also showed that mammal abundances were more 181 strongly associated with phenology (fruit fall) than basal area along 10 km of forest in the western 182 Guvana Shied ⁵². Additionally, regrowth class was found to be the primary driver of mammal species 183 encountered independent of forest cover ⁵³. For example the number of species detected in control 184 and regrowth plots (all with forest cover >87%) varied between 1 and 6 (Figure 4). Mid- to large-185 bodied seed dispersers are a critical component of Amazon forests ^{18,19,25} and are also widespread 186 and ubiquitous across myriad Amazonian forest types ⁵⁴⁻⁵⁶. The eight species are therefore not 187

strictly dependent on the quality of forest habitat compared with other more specialist groups such as
primates ⁵⁷. The lack of a strong relationship between diversity of these eight mammal seed
dispersers and forest structure attributes (i.e. overall basal area and proportion of small trees) is
therefore to be expected.

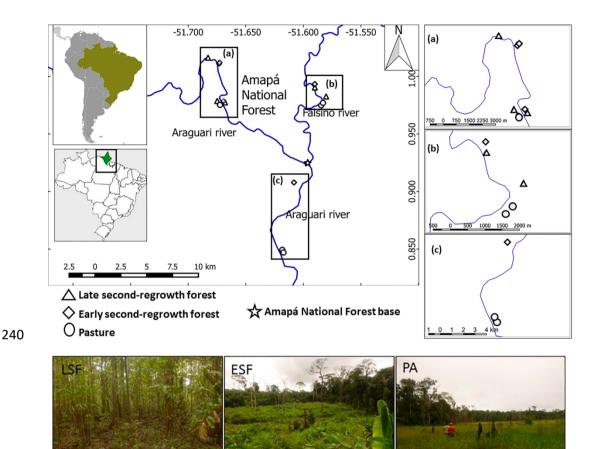
Decades of research show that myriad edge effects can extend up to 150 m in fragmented 192 Amazon forests ^{58,59}. Considering the range of expect edge-effects it is highly probable that the 193 natural regeneration and/or restoration of regrowth habitats in Amazon small-holdings (typically < 194 100 ha) will strongly depend on species ecological responses to habitat edges ⁶⁰. Previous studies 195 196 show that edge effects increase mortality of large trees, which in turn has major impacts on forest ecosystems ⁶¹. In highly fragmented areas edge-effects can drive tree communities through a process 197 of "retrogressive succession"⁶² and toward an early successional state that may persist indefinitely. 198 This early successional state can be characterized by functional and structural differences in that 199 larger slower-growing tree species with high wood density tend to decline whereas faster-growing 200 tree and liana species with lower wood density increase^{62,63}. The decline in the number and basal 201 202 area of large trees from our control plots along 20-25 year old edges suggest that retrogressive succession may establish even in relatively un-fragmented areas surrounded by extensive forest 203 cover. 204

Our findings provide an early warning that even under a best case scenario there is potential for "retrogressive succession". We found not only a lack of large trees in regrowth plots but also that large tree basal declined in older late-regrowth control plots. We suggest that this decline in large tress may be the primary driver of differences between regrowth and old growth forest and as such represent an unquantified component of resilience and time to recovery of Neotropical secondary forests. We also suggest that the continued presence of mid- and large bodied mammal seed dispersers in the study area are likely to be vital in order to avoid such "retrogressive succession".

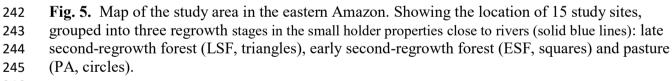
212 Methods

213 Ethics Statement

All methods were carried out in accordance with relevant guidelines and regulations. Fieldwork and


- data collection was conducted under research permit numbers SISBIO 40355–1, 47859-1 and 47859-
- 216 2 to DN, issued by the Brazilian Ministério do Meio Ambiente ("MMA"). Data collection used non-
- 217 invasive, remotely activated camera traps and did not involve direct contact or interaction with
- animals, thus no ethical approval was required. Interviews with local residents were approved by
- 219 Brazilian Ministério do Meio Ambiente (SISBIO permits 45034-1, 45034-2, 45034-3) and the Ethics
- 220 Committee in Research from the Federal University of Amapá (UNIFAP) (CAAE
- 42064815.5.0000.0003, Permit number 1.013.843). Interviews were conducted with residents that
- were both (1) willing to be interviewed (written informed consent was obtained from all interviewees) and (2)aware of the site history.

224


225 Study area

Our study took place in 15 areas of regrowth on small holder properties^{53,64} in the center of the State 226 227 of Amapá (Figure 5). The regional climate is classified by Koppen-Geiger as Am (Equatorial monsoon)⁶⁵, with annual rainfall greater than 2500 mm⁶⁶. The driest months are September to 228 229 November (total monthly rainfall < 150 mm) and the wettest months from February to April (total monthly rainfall > 300 mm)⁶⁶. The State of Amapá has the lowest deforestation rate in Brazil and >230 70% of the Amapá receives some form of legal protection. There is no large scale agricultural 231 developments or monocultures along the waterways and properties retain typically small (< 1000 ha) 232 areas of opened land, which are cleared for small scale family agriculture, which focuses on acai, 233 234 small scale production of fruits and vegetables for sustenance and limited commercial sale of regional produce (e.g. manioc flour) in local markets. There are some 54 properties upstream of the 235 nearest town (Porto Grande ⁶⁷). There has never been any expansive clearcutting in the region and 236

- there are no monocultures (e.g. soy) or cattle production. All sites were at least 26 km from the
- 238 nearest town by river, and all sites are surrounded by matrix of continuous closed canopy forest
- cover (Table 2). Pesticides and/or herbicides had never been used at any of the sites.

241

246

A described previously^{53,64} the 15 small-holder properties were selected based on differences in land-use histories and forest succession/regrowth stage. All sites were close (110 - 554m, Table 2) to 100 - 200 m wide rivers that are navigable by motorized boats, but due to riverbank formation the sites are never flooded. These 15 sites were grouped into three regrowth classes based on the landuse history: late second-regrowth forest (N = 5, most recent human disturbance between 20 and 25 years), early second-regrowth (N = 5, most recent human disturbance between 1 and 5 years), and

253	pasture ($N = 5$, recently cleared and abandoned pasture areas dominated by grasses/herbs but that had
254	never been used to raise livestock, with the most recent disturbance between 1 and 17 years). Each of
255	the 15 regrowth sites was paired with a nearby (60 to 150 m) control site i.e. $20 - 30$ m tall <i>terra</i> -
256	firme forest site without a history of mechanized timber extraction. To reduce the possible
257	confounding influence of edge effects that are known to strongly influence the distribution of trees in
258	Neotropical forests, all regrowth and control sites were established at a standardized distance
259	(approximately 30 m) from the nearest control-regrowth habitat edge.

261 Forest structure

Data were collected from May to August 2016. Forest structure data (i.e., number of trees and 262 basal area) were obtained from plots measuring 50 x 10 m (500 m²), at each of the 30 points, totaling 263 1.5 hectare. This plot size was selected as it has been widely used to examine structural changes in 264 tropical forests ^{19,41,42,68} and several of the regrowth areas were too small (Table 2) to enable the 265 establishment of larger spatially independent plots. We obtained five measures (responses) to 266 267 characterize the forest structure in each plot. These were selected based on previous studies that show their appropriateness to distinguish attributes of regrowth/successional stages related to 268 biodiversity of Amazon forests 13,44,69,70 . The number of all trees ≥ 10 cm DBH (diameter at breast 269 height at a standard 1.3 m above ground, or above tallest root buttress) was used to quantify the 270 number of trees per area in each plot (m^2) . This count included all trees which had at least half of 271 their basal trunk inside the plot. The proportion of small (10 - 20 cm DBH) trees was calculated to 272 represent the expected increase of younger trees in regrowth areas. The proportion of large (>60 cm 273 DBH) trees was calculated as this is known as an important characteristic of mature/late succession 274 areas ^{44,70}. We also calculated the basal area of all and large trees as this is known to be strongly 275 correlated with tree biomass 71 . For example basal area and biomass were > 99% correlated in 23 276 plots from lowland Costa Rica¹⁰. 277

278

279 Explanatory variables

We investigated predictions from multiple non-mutually exclusive hypotheses to explain 280 281 patterns in basal area (Table 1). A total of 10 variables were used to form models to represent 5 working hypotheses (topography, hydrography, regrowth class, time and mammal diversity) that 282 based on the findings from previous studies were likely to explain the observed patterns ^{10,13,28,40,41,72}. 283 We chose to work with mainstream, widely available environmental variables. Four of these (the 284 topographic and hydrographic model variables) were computed from remotely sensed digital terrain 285 model (SRTM-DTM): altitude (masl), slope, TWI (Topographic wetness index), DND (Distance to 286 Network Drainage) calculated from the interaction between HAND (Height above network drainage) 287 and HDND (Horizontal distance to network drainage). The time model included years since the 288 289 regrowth site was opened and years since last use, both of which were obtained from interviews with local landowners. 290

Mammal functional diversity was obtained from a camera-trap survey conducted at the same 291 time (May to September 2016) and in the same plots as forest structure was sampled ⁵³. Camera traps 292 equipped with infrared triggers (Bushnell Trophy Cam, 8MP, Overland Park, KS, USA) were 293 installed in each of the 30 plots following standardized protocols ^{50,51,73}. This camera trap survey [full 294 details provide in ⁵³] including a sampling effort of 827 camera-trap days (450 and 377 camera-trap 295 days, control and regrowth sites respectively) was used to estimate functional diversity of eight 296 297 terrestrial mammal seed dispersers (Cuniculus paca, Dasyprocta leporina, Myoprocta acouchy, Mazama americana, M. nemorivaga, Pecari tajacu, Tayassu pecari and Tapirus terrestris). 298

299

300 Data analysis

301 Tree Basal Area in each plot was obtained as the sum of the basal area value for each 302 individual tree derived from the DBH of each tree following the formula BA (basal area in m^2)=

303 $0.00007854 \text{ X DBH}^2$ (constant obtained by solving the following equation to obtain BA in m² from 304 the DBH measured in cm⁶⁹):

$$BA = \frac{\pi \times (DBH/2)^2}{10000}$$

We calculated basal area of all and large (>60cm DBH) living trees 69,70,72 . We also calculated the proportion of small stems (10 – 20 cm DBH trees) as this has been shown to be an important measure of stand structure in forest regrowth areas 35,69 .

308 To represent diversity of terrestrial mammal seed dispersers we calculated a richness and functional diversity (FD) value for each of the 30 plots ⁵³. Richness was calculated as the observed 309 number of species (hereafter "species richness") at each plot. Although there are many diversity 310 metrics, we chose species richness as it is widely used and clearly interpretable ^{74,75} and with 311 relatively few (eight) species and 30 plots there were strong correlations between species richness 312 313 values and alternative diversity metrics such as Shannon and Simpson diversity (Spearman rho > (0.89). We used Functional Dispersion (FDis)⁷⁶ as an index of functional diversity as it is not 314 strongly influenced by outliers, accounts for relative abundances, is unaffected by species richness 315 and can be calculated from any distance/dissimilarity measure ^{76,77}. Functional Dispersion was 316 estimated with the dbFD function ⁷⁷ using default settings. 317

To examine patterns in forest structure attributes we used Generalized Linear Models. We used an information theoretic model averaging framework ⁷⁸ to examine the support for five models representing the five non-mutually exclusive hypotheses – topography, hydrography, regrowth class, time and mammal diversity (see Table 1 for variable description and ecological relevance). We evaluated models based on their information content, as measured by AIC – Akaike Information Criterion. The relative importance of the models was measured by the models Akaike weights (Burnham & Anderson 2002 pp. 75-77, 167-172), which is a scaled measure of the likelihood ratio

- that ranges between 0 (least important) and 1 (most important). None of the unexplained variation
- 326 (model residuals) was related to the geographic distance among plots so we did not need to control
- 327 for spatial dependence. All analysis were conducted using the R language and environment for
- 328 statistical computing ⁷⁹, with base functions and functions available in the following packages: vegan
- 80 , ggplot2 81 , MuMIn 82 , and tweedie 83 .
- 330
- 331

332 Data Availability Statement

- 333 The raw forest structure and environmental data used in the analysis of this study have been
- deposited in the OSF Center for Open Science at DOI: 10.17605/OSF.IO/MC27U.

335

336 **References**

- Hansen, M. C. *et al.* High-Resolution Global Maps of 21st-Century Forest Cover Change. *Science* 342,
 850-853, doi:<u>https://10.1126/science.1244693</u> (2013).
- Chazdon, R. L. & Guariguata, M. R. Natural regeneration as a tool for large-scale forest restoration in
 the tropics: prospects and challenges. *Biotropica* 48, 716–730,
- 341 doi:<u>https://doi.org/10.1111/btp.12381</u> (2016).
- 342 3 Holl, K. D. Restoring tropical forests from the bottom up. *Science* 355, 455-456, doi:<u>https://10.1126/science.aam5432</u> (2017).
- Brancalion, P. H. S. *et al.* Balancing economic costs and ecological outcomes of passive and active
 restoration in agricultural landscapes: the case of Brazil. *Biotropica* 48, 856-867,
 doi:https://10.1111/btp.12383 (2016).
- Foley, J. A. *et al.* Amazonia revealed: forest degradation and loss of ecosystem goods and services in
 the Amazon Basin. *Frontiers in Ecology and the Environment* 5, 25-32, doi:<u>https://10.1890/1540-</u>
 9295(2007)5[25:ARFDAL]2.0.CO;2 (2007).
- Montibeller, B., Kmoch, A., Virro, H., Mander, Ü. & Uuemaa, E. Increasing fragmentation of forest
 cover in Brazil's Legal Amazon from 2001 to 2017. *Scientific Reports* 10, 5803,
 doi:<u>https://10.1038/s41598-020-62591-x</u> (2020).
- Csillik, O., Kumar, P., Mascaro, J., O'Shea, T. & Asner, G. P. Monitoring tropical forest carbon stocks
 and emissions using Planet satellite data. *Scientific Reports* 9, 17831, doi:<u>https://10.1038/s41598-</u>
 019-54386-6 (2019).
- Nunes, S. *et al.* Uncertainties in assessing the extent and legal compliance status of riparian forests
 in the eastern Brazilian Amazon. *Land Use Policy* 82, 37-47,
- doi:<u>https://doi.org/10.1016/j.landusepol.2018.11.051</u> (2019).
 Rocha, G. P. E., Vieira, D. L. M. & Simon, M. F. Fast natural regeneration in abandoned pastures in southern Amazonia. *Forest Ecology and Management* **370**, 93-101, doi:https://doi.org/10.1016/j.foreco.2016.03.057 (2016).
- Letcher, S. G. & Chazdon, R. L. Rapid Recovery of Biomass, Species Richness, and Species
 Composition in a Forest Chronosequence in Northeastern Costa Rica. *Biotropica* 41, 608-617,
 doi:<u>https://10.1111/j.1744-7429.2009.00517.x</u> (2009).
- Fearnside, P. M. Deforestation in Brazilian Amazonia: History, Rates, and Consequences.
 Conservation Biology 19, 680-688, doi:<u>https://10.1111/j.1523-1739.2005.00697.x</u> (2005).
- Laurance, W. F. *et al.* Rain forest fragmentation and the proliferation of sucessional trees. *Ecology* 87, 469-482, doi:<u>https://10.1890/05-0064</u> (2006).
- Poorter, L. *et al.* Biomass resilience of Neotropical secondary forests. *Nature* 530, 211-214, doi:<u>https://10.1038/nature16512</u> (2016).
- 14 Camargo, J. L. C., Ferraz, I. D. K. & Imakawa, A. M. Rehabilitation of degraded areas of central
 372 Amazonia using direct sowing of forest tree seeds. *Restoration Ecology* 10, 636-644,
 373 doi:<u>https://10.1046/j.1526-100X.2002.01044.x</u> (2002).
- 37415Guariguata, M. R. & Ostertag, R. Neotropical secondary forest succession: changes in structural and375functional characteristics. Forest ecology and management 148, 185-206,376hit has a functional characteristics of the second seco
- 376 doi:<u>https://doi.org/10.1016/S0378-1127(00)00535-1</u> (2001).

- Crouzeilles, R. *et al.* A global meta-analysis on the ecological drivers of forest restoration success.
 Nature Communications 7, 11666, doi:<u>https://10.1038/ncomms11666</u> (2016).
- Chazdon, R. L. *et al.* The Potential for Species Conservation in Tropical Secondary Forests.
 Conservation Biology 23, 1406-1417, doi:<u>https://10.1111/j.1523-1739.2009.01338.x</u> (2009).
- Peres, C. A., Emilio, T., Schietti, J., Desmouliere, S. J. & Levi, T. Dispersal limitation induces long-term
 biomass collapse in overhunted Amazonian forests. *Proceedings of the National Academy of Sciences* of the United States of America **113**, 892-897, doi:<u>https://10.1073/pnas.1516525113</u> (2016).
- Pessoa, M. S. *et al.* Deforestation drives functional diversity and fruit quality changes in a tropical
 tree assemblage. *Perspectives in Plant Ecology, Evolution and Systematics* 28, 78-86,
 doi:https://doi.org/10.1016/j.ppees.2017.09.001 (2017).
- Bowen, M. E., McAlpine, C. A., House, A. P. & Smith, G. C. Regrowth forests on abandoned
 agricultural land: a review of their habitat values for recovering forest fauna. *Biological Conservation* **140**, 273-296, doi:http://dx.doi.org/10.1016/j.biocon.2007.08.012 (2007).
- 39021Chazdon, R. L. & Uriarte, M. Natural regeneration in the context of large-scale forest and landscape391restoration in the tropics. *Biotropica* **48**, 709-715, doi:http://dx.doi.org/10.1111/btp.12409 (2016).
- Neuschulz, E. L., Mueller, T., Schleuning, M. & Böhning-Gaese, K. Pollination and seed dispersal are
 the most threatened processes of plant regeneration. *Scientific Reports* 6, 29839,
 doi:10.1038/srep29839 (2016).
- Stoner, K. E., Riba-Hernández, P., Vulinec, K. & Lambert, J. E. The role of mammals in creating and
 modifying seedshadows in tropical forests and some possible consequences of their elimination.
 Biotropica 39, 316-327, doi:<u>http://dx.doi.org/10.1111/j.1744-7429.2007.00292.x</u> (2007).
- Griffiths, H. M., Bardgett, R. D., Louzada, J. & Barlow, J. The value of trophic interactions for
 ecosystem function: dung beetle communities influence seed burial and seedling recruitment in
 tropical forests. *Proceedings of the Royal Society B* 283, 20161634,
 doi:http://dx.doi.org/10.1098/rspb.2016.1634 (2016).
- 402 25 Asquith, N. M. & Mejía-Chang, M. Mammals, edge effects, and the loss of tropical forest diversity. 403 *Ecology* **86**, 379-390, doi:<u>http://dx.doi.org/10.1890/03-0575</u> (2005).
- 40426Beck, H., Snodgrass, J. W. & Thebpanya, P. Long-term exclosure of large terrestrial vertebrates:405Implications of defaunation for seedling demographics in the Amazon rainforest. *Biological*406*Conservation* 163, 115-121, doi:http://dx.doi.org/10.1016/j.biocon.2013.03.012 (2013).
- 40727Paine, C. E., Beck, H. & Terborgh, J. How mammalian predation contributes to tropical tree408community structure. *Ecology* **97**, 3326-3336, doi:https://doi.org/10.1002/ecy.1586 (2016).
- 40928Sobral, M. *et al.* Mammal diversity influences the carbon cycle through trophic interactions in the410Amazon. Nature Ecology & Evolution 1, 1670-1676, doi:https://10.1038/s41559-017-0334-0 (2017).
- 411 29 Bascompte, J. & Jordano, P. Plant-animal mutualistic networks: the architecture of biodiversity.
 412 Annual Review of Ecology, Evolution, and Systematics 38, 567-593,
 413 Annual Review of Ecology, Evolution, and Systematics 38, 567-593,
- 413 doi:<u>http://dx.doi.org/10.1146/annurev.ecolsys.38.091206.095818</u> (2007).
- 41430Wunderle, J. M. The role of animal seed dispersal in accelerating native forest regeneration on415degraded tropical lands. Forest Ecology and Management **99**, 223-235,416doi:<u>http://dx.doi.org/10.1016/S0378-1127(97)00208-9</u> (1997).
- 41731Fragoso, J. M. V. Tapir-Generated Seed Shadows: Scale-Dependent Patchiness in the Amazon Rain418Forest. Journal of Ecology 85, 519-529, doi:http://dx.doi.org/10.2307/2960574 (1997).
- Hibert, F. *et al.* Unveiling the diet of elusive rainforest herbivores in next generation sequencing era?
 The tapir as a case study. *PLoS One* 8, e60799, doi:<u>http://dx.doi.org/10.1371/journal.pone.0060799</u>
 (2013).
- 422
 33
 Terborgh, J. *et al.* Tree recruitment in an empty forest. *Ecology* **89**, 1757-1768,

 423
 doi:<u>http://dx.doi.org/10.1890/07-0479.1</u> (2008).
- Wright, S. J. *et al.* The plight of large animals in tropical forests and the consequences for plant
 regeneration. *Biotropica* 39, 289-291, doi:<u>http://dx.doi.org/10.1111/j.1744-7429.2007.00293.x</u>
 (2007).

- 427 35 Molto, Q. *et al.* Predicting tree heights for biomass estimates in tropical forests; a test from French 428 Guiana. *Biogeosciences* **11**, 3121-3130, doi:<u>https://10.5194/bg-11-3121-2014</u> (2014).
- Körner, C. The use of 'altitude' in ecological research. *Trends in Ecology & Evolution* 22, 569-574, doi:<u>https://doi.org/10.1016/j.tree.2007.09.006</u> (2007).
- 431 37 Beven, K. & Kirkby, M. J. A physically based, variable contributing area model of basin hydrology.
 432 *Hydrological Sciences Journal* 24, 43-69, doi:<u>https://doi.org/10.1080/02626667909491834</u> (1979).
- 433 38 Campling, P., Gobin, A. & Feyen, J. Logistic Modeling to Spatially Predict the Probability of Soil
 434 Drainage Classes. Soil Science Society of America Journal 66, 1390-1401,
 435 doi:https://10.2136/sssaj2002.1390 (2002).
- 436 39 Nobre, A. D. *et al.* Height Above the Nearest Drainage a hydrologically relevant new terrain model.
 437 Journal of Hydrology 404, 13-29, doi:http://dx.doi.org/10.1016/j.jhydrol.2011.03.051 (2011).
- 438 40
 438 40
 439
 439
 439
 430
 430
 430
 431
 431
 432
 433
 434
 435
 435
 436
 436
 437
 438
 439
 439
 439
 430
 430
 430
 430
 431
 431
 432
 433
 434
 434
 435
 436
 437
 438
 439
 439
 439
 439
 430
 430
 430
 430
 430
 431
 431
 432
 432
 433
 434
 434
 435
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434
 434<
- 440 41 Gehring, C., Denich, M. & Vlek, P. L. G. Resilience of secondary forest regrowth after slash-and-burn agriculture in central Amazonia. *Journal of Tropical Ecology* 21, 519-527, doi:https://10.1017/S0266467405002543 (2005).
- 42 Feldpausch, T. R., Riha, S. J., Fernandes, E. C. M. & Wandelli, E. V. Development of Forest Structure
 and Leaf Area in Secondary Forests Regenerating on Abandoned Pastures in Central Amazônia. *Earth Interactions* 9, 1-22, doi:<u>https://10.1175/EI140.1</u> (2005).
- 43 Luskin, M. S., Ickes, K., Yao, T. L. & Davies, S. J. Wildlife differentially affect tree and liana
 447 regeneration in a tropical forest: An 18-year study of experimental terrestrial defaunation versus
 448 artificially abundant herbivores. *Journal of Applied Ecology* 56, 1379-1388,
 449 doi:https://10.1111/1365-2664.13378 (2019).
- 44 Lu, D., Mausel, P., Brondízio, E. & Moran, E. Classification of successional forest stages in the
 451 Brazilian Amazon basin. *Forest Ecology and Management* 181, 301-312,
 452 doi:https://doi.org/10.1016/S0378-1127(03)00003-3 (2003).
- 453 45 Crouzeilles, R. *et al.* Ecological restoration success is higher for natural regeneration than for active
 454 restoration in tropical forests. *Science Advances* **3**, e1701345, doi:<u>https://10.1126/sciadv.1701345</u>
 455 (2017).
- 46 de Castilho, C. V. *et al.* Variation in aboveground tree live biomass in a central Amazonian Forest:
 457 Effects of soil and topography. *Forest Ecology and Management* 234, 85-96,
 458 doi:<u>https://doi.org/10.1016/j.foreco.2006.06.024</u> (2006).
- 47 Jucker, T. *et al.* Topography shapes the structure, composition and function of tropical forest
 460 landscapes. *Ecology Letters* 21, 989-1000, doi:<u>https://10.1111/ele.12964</u> (2018).
- 46148Fortunel, C. *et al.* Topography and neighborhood crowding can interact to shape species growth and462distribution in a diverse Amazonian forest. *Ecology* **99**, 2272-2283, doi:https://10.1002/ecy.2441463(2018).
- 464 49 Tiessen, H., Chacon, P. & Cuevas, E. Phosphorus and nitrogen status in soils and vegetation along a
 465 toposequence of dystrophic rainforests on the upper Rio Negro. *Oecologia* 99, 145-150,
 466 doi:<u>https://10.1007/BF00317095</u> (1994).
- Paredes, O. S. L., Norris, D., Oliveira, T. G. d. & Michalski, F. Water availability not fruitfall modulates
 the dry season distribution of frugivorous terrestrial vertebrates in a lowland Amazon forest. *PLOS ONE* 12, e0174049, doi:<u>http://dx.doi.org/10.1371/journal.pone.0174049</u> (2017).
- 470 51 Michalski, L. J., Norris, D., de Oliveira, T. G. & Michalski, F. Ecological relationships of meso-scale
 471 distribution in 25 neotropical vertebrate species. *PLoS One* **10**, e0126114,
 472 doi:http://dx.doi.org/10.1371/journal.pone.0126114 (2015).
- 473 52 Mendes Pontes, A. R. Tree reproductive phenology determines the abundance of medium–sized and
 474 large mammalian assemblages in the Guyana shield of the Brazilian Amazonia. *Animal Biodiversity*475 *and Conservation* 43.1, 9-26, doi:<u>https://doi.org/10.32800/abc.2020.43.0009</u> (2020).

- 476 53 Arévalo-Sandi, A., Bobrowiec, P. E. D., Rodriguez Chuma, V. J. U. & Norris, D. Diversity of terrestrial
 477 mammal seed dispersers along a lowland Amazon forest regrowth gradient. *PLOS ONE* 13,
 478 e0193752, doi:<u>https://10.1371/journal.pone.0193752</u> (2018).
- Arita, H. T., Robinson, J. G. & H REDFORD, K. Rarity in Neotropical forest mammals and its ecological correlates. *Conservation Biology* 4, 181-192, doi:<u>http://dx.doi.org/10.1111/j.1523-</u>
 1739.1990.tb00107.x (1990).
- 482 55 Peres, C. A. & Palacios, E. Basin-wide effects of game harvest on vertebrate population densities in
 483 Amazonian forests: Implications for animal-mediated seed dispersal. *Biotropica* 39, 304-315,
 484 doi:http://dx.doi.org/10.1111/j.1744-7429.2007.00272.x (2007).
- 485 56 Emmons, L. H. & Feer, F. *Neotropical rainforest mammals: A field guide.*, (The University of Chicago 486 Press, 1997).
- 487 57 Michalski, F., Michalski, L. J. & Barnett, A. A. Environmental determinants and use of space by six
 488 Neotropical primates in the northern Brazilian Amazon. *Studies on Neotropical Fauna and*489 *Environment* 52, 187-197, doi:<u>https://10.1080/01650521.2017.1335276</u> (2017).
- 490 58 Laurance, W. F. *et al.* Ecosystem Decay of Amazonian Forest Fragments: a 22-Year Investigation.
 491 *Conservation Biology* 16, 605-618, doi:http://dx.doi.org/10.1046/j.1523-1739.2002.01025.x (2002).
- 492 59 Norris, D., Peres, C. A., Michalski, F. & Hinchsliffe, K. Terrestrial mammal responses to edges in
 493 Amazonian forest patches: a study based on track stations. *Mammalia* **72**, 15-23,
 494 doi:<u>https://10.1515/mamm.2008.002</u> (2008).
- 49560Martínez-Ramos, M. *et al.* Natural forest regeneration and ecological restoration in human-modified496tropical landscapes. *Biotropica* 48, 745-757, doi:http://dx.doi.org/10.1111/btp.12382 (2016).
- 49761Laurance, W. F., Delamônica, P., Laurance, S. G., Vasconcelos, H. L. & Lovejoy, T. E. Rainforest498fragmentation kills big trees. Nature 404, 836-836, doi:https://10.1038/35009032 (2000).
- Tabarelli, M., Lopes, A. V. & Peres, C. A. Edge-effects Drive Tropical Forest Fragments Towards an
 Early-Successional System. *Biotropica* 40, 657-661, doi:<u>https://10.1111/j.1744-7429.2008.00454.x</u>
 (2008).
- 502 63 Santos, B. A. *et al.* Drastic erosion in functional attributes of tree assemblages in Atlantic forest
 503 fragments of northeastern Brazil. *Biological Conservation* 141, 249-260,
 504 doi:https://doi.org/10.1016/j.biocon.2007.09.018 (2008).
- 50564Arévalo-Sandi, A. R. & Norris, D. Short term patterns of germination in response to litter clearing and506exclosure of large terrestrial vertebrates along an Amazon forest regrowth gradient. Global Ecology507and Conservation 13, e00371, doi:https://doi.org/10.1016/j.gecco.2017.e00371 (2018).
- 50865Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. World map of the Koppen-Geiger climate509classification updated. *Meteorologische Zeitschrift* **15**, 259-263, doi:http://dx.doi.org/10.1127/0941-2948/2006/0130 (2006).
- 51166ANA. Sistema de Monitoramento Hidrológico (Hydrological Monitoring System). Agência Nacional de512Águas[[nl]]National Water Agency, Available at http://www.hidroweb.ana.gov.br, 2017).
- 513 67 Norris, D. & Michalski, F. Socio-economic and spatial determinants of anthropogenic predation on
 514 Yellow-spotted River Turtle, Podocnemis unifilis (Testudines: Pelomedusidae), nests in the Brazilian
 515 Amazon: Implications for sustainable conservation and management. *Zoologia (Curitiba)* **30**, 482516 490, doi:<u>http://dx.doi.org/10.1590/S1984-46702013000500003</u> (2013).
- 517 68 Yirdaw, E., Monge Monge, A., Austin, D. & Toure, I. Recovery of floristic diversity, composition and
 518 structure of regrowth forests on fallow lands: implications for conservation and restoration of
 519 degraded forest lands in Laos. *New Forests* 50, 1007-1026, doi:<u>https://10.1007/s11056-019-09711-2</u>
 520 (2019).
- McElhinny, C., Gibbons, P., Brack, C. & Bauhus, J. Forest and woodland stand structural complexity:
 Its definition and measurement. *Forest Ecology and Management* 218, 1-24,
 doi:<u>https://doi.org/10.1016/j.foreco.2005.08.034</u> (2005).
- 524 70 Sist, P., Mazzei, L., Blanc, L. & Rutishauser, E. Large trees as key elements of carbon storage and
 525 dynamics after selective logging in the Eastern Amazon. *Forest Ecology and Management* **318**, 103526 109, doi:<u>https://doi.org/10.1016/j.foreco.2014.01.005</u> (2014).

- 52771Phillips, O. L. *et al.* Species Matter: Wood Density Influences Tropical Forest Biomass at Multiple528Scales. Surveys in Geophysics 40, 913-935, doi:https://10.1007/s10712-019-09540-0 (2019).
- 52972Bastin, J.-F. *et al.* Pan-tropical prediction of forest structure from the largest trees. *Global Ecology*530and Biogeography 27, 1366-1383, doi:<u>https://10.1111/geb.12803</u> (2018).
- TEAM Network. 69 (Tropical Ecology, Assessment and Monitoring Network, Center for Applied
 Biodiversity Science, Conservation International., Arlington, VA, USA., 2011).
- 533 74 Hortal, J., Borges, P. A. & Gaspar, C. Evaluating the performance of species richness estimators:
 534 sensitivity to sample grain size. *Journal of Animal Ecology* **75**, 274-287,
 535 doi:http://dx.doi.org/10.1111/j.1365-2656.2006.01048.x (2006).
- 53675Magurran, A. E. & McGill, B. J. in *Biological diversity: frontiers in measurement and assessment* (eds537A. E. Magurran & B. J. McGill) Ch. 1, 1-7 (Oxford University Press, 2011).
- 53876Laliberté, E. & Legendre, P. A distance-based framework for measuring functional diversity from539multiple traits. *Ecology* **91**, 299-305, doi:http://dx.doi.org/10.1890/08-2244.1 (2010).
- FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R
 package version 1.0-12. (2014).
- 54278Burnham, K. P. & Anderson, D. R. Model selection and multi-model inference: A practical543information-theoretic approach. (Springer, 2002).
- 54479R: A language and environment for statistical computing. 3.6.3 (R Foundation for Statistical545Computing, Vienna, Austria, 2020).
- 54680vegan: Community Ecology Package. R package version 2.4-0. https://CRAN.R-547project.org/package=vegan(2016).
- 548 81 Wickham, H. ggplot2: elegant graphics for data analysis. (Springer, 2009).
- 54982MuMIn: multi-model inference. R package version 1.15.6. https://CRAN.R-550project.org/package=MuMIn(2016).
- 55183Tweedie: Tweedie exponential family models. R package version 2.2.1. https://cran.r-552project.org/web/packages/tweedie(2014).

554 Acknowledgements

555	The Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) and the Amapá National
556	Forest staff (Érico Emed Kauano and Sueli Gomes Pontes dos Santos) and the Federal University of
557	Amapá (UNIFAP) provided logistical support. We thank the Brazilian Ministério do Meio Ambiente
558	("MMA") for authorizing data collection (SISBIO permits 40355–1, 47859-1 and 47859-2). We also
559	thank the local landowners who gave permission for data collection at their properties. We are deeply
560	indebted to Cremilson and Cledinaldo Alves Marques and family for their dedication, commitment
561	and assistance during the fieldwork.

562

563 Author Contributions

- 564 D.N. conceived of the project; V.J.U.CR and A.A.S collected data. V.J.U.CR, A.A.S and D.N.
- performed data analysis and interpretation. A.A.S prepared figure 1. D.N. prepared figures 2-5.
- 566 T.M.F.C and D.N. wrote the main manuscript text. All authors reviewed and revised the manuscript.

567

568 **Competing Interests Statement**

The authors declare that they have no competing interests as defined by Nature Research, or otherinterests that might be perceived to influence the results and/or discussion reported in this paper.

Supporting Information

Big trees drive forest structure patterns across a lowland Amazon regrowth gradient

Tassiana Maylla Fontoura Caron¹, Victor Juan Ulises Rodriguez Chuma^{1,2}, Alexander Arévalo-Sandi^{3,4}, Darren Norris^{1, 3, 5} *

¹ Programa de Pós-Graduação em Biodiversidade Tropical, Universidade Federal do Amapá (UNIFAP), Rod. Juscelino Kubitscheck, Km 02, 68902-280, Macapá, AP, Brazil.

² Facultad de Ciencias Forestales, Universidad Nacional de la Amazonia Peruana (UNAP), Pevas 5ta cuadra, Iquitos, Perú.

³ Programa de Pós-graduação em Ecologia, Instituto Nacional de Pesquisas da Amazônia (INPA), Av. André Araújo 2936, Petrópolis 69067-375 Manaus, AM, Brazil.

⁴ Amazonian Mammals Research Group. Av. André Araújo 2936, Petrópolis 69067-375 Manaus, AM, Brazil.

⁵ Coordenação de Ciências Ambientais, Universidade Federal do Amapá (UNIFAP), Rod. Juscelino Kubitschek Km 02, 68902-280 Macapá, AP, Brazil

** Corresponding author at: Coordenação de Ciências Ambientais, Universidade Federal do Amapá

(UNIFAP), Macapá, Brazil. Email address: dnorris75@gmail.com (D. Norris).

Supplementary Table S1

Table S1: Generalized Linear Model values.

			All t	rees					Large	tree	5	
		Full			Best			Full			Best	
Predictors	Est.	CI	р	Est.	CI	р	Est.	CI	р	Est.	CI	p
(Intercept)	0.46	0.40–0.53	<0.001	0.46	0.43–0.50	<0.001	0.66	0.50–0.81	<0.001	0.64	0.55–0.76	<0.001
Last use	0.00	-0.00–0.00	0.933				-0.00	-0.01–0.01	0.896			
Regrowth (late v early)	-0.01	-0.10–0.07	0.826	-0.03	-0.08–0.01	0.176	-0.04	-0.24–0.17	0.710	-0.05	-0.20–0.08	0.441
Regrowth (late v pasture)	-0.00	-0.09–0.08	0.966	-0.03	-0.07–0.02	0.245	-0.08	-0.27–0.10	0.355	-0.07	-0.21–0.06	0.311
Plot (control v regrowth)	0.14	0.02–0.28	0.050	0.08	0.02–0.14	0.022	0.02	-0.40–0.44	0.917	0.53	0.24–1.14	0.016
Interaction (Last use * early)	-0.01	-0.02–0.01	0.467				-0.01	-0.05–0.03	0.525			
Interaction (Last use * pasture)	-0.00	-0.01–0.00	0.386				-0.00	-0.01–0.01	0.986			
Interaction (Last use * Plot)	-0.00	-0.01–0.00	0.280				0.03	-0.04–0.10	0.339			
Interaction (Plot * early)	0.03	-0.11–0.17	0.624	0.09	-0.01–0.19	0.090	46.73		0.999			
Interaction (Plot * pasture)	0.15	0.02–0.29	0.040	0.17	0.06–0.30	0.011	42.03		0.999			
Observations	30			30			30			30		
R ² Nagelkerke	0.8	3		0.80)		0.81	L		0.74	4	
AIC	229	9.40		225	.62		140	.45		132	.02	

1 Supplementary Table S2

Generalized Linear Models created to explain forest structure in 30 plots (15 control and 15 regrowth). Model summaries for responses of five structural attributes: (a) The
 number of all trees ≥ 10 cm DBH; (b) Proportion of small (DBH 10 – 20 cm) trees; (c) Proportion of large (DBH >60 cm) trees; (d) Basal area of all trees; (e) Basal area of
 large trees. Showing slope estimates ("Est") for 10 variables in 5 models (time, regrowth class, mammal diversity, hydrography and topography). "NE" denotes cases
 when values could not be reliably estimated. The time model included years since the regrowth site was opened and years since last use. The regrowth model included sites
 grouped into three regrowth classes (pasture, early-regrowth and late-regrowth). Topography included altitude (masl) and slope. Hydrography was modelled with TWI
 (Topographic wetness index), DND (Distance to Network Drainage) calculated from the interaction between HAND (Height above network drainage) and HDND (Horizontal
 distance to network drainage). Mammal diversity was obtained from camera-traps and quantified as species richness and Functional Dispersion (FDis).

9 (a) The number of all trees $DBH \ge 10 \text{ cm}$

		Time		R	Regrowth cl	ass		Mammals			Hydrography	,		Topography	
Predictors	Est	CI	p	Est	CI	p	Est	CI	p	Est	CI	p	Est	CI	р
(Intercept)	35.4	15.9–55.0	0.002	35.2	27.3–43.1	<0.001	25.04	5.31–44.77	0.021	20.04	-25.26-65.35	6 0.395	33.66	-67.46–134.78	0.521
Plot type	-5.2	-32.9–22.4	40.714	6.6	-4.6–17.8	0.257	-8.48	-29.64–12.67	0.440	-95.06	-201.10-10.9	7 0.093	-402.66	-1045.25–239.93	3 0.232
Since first open	-0.2	-1.2–0.9	0.764												
Since last use	0.1	-2.7–2.8	0.954												
Plot *First	-0.4	-1.9–1.1	0.573												
Plot *Last	-0.8	-4.7–3.1	0.703												
First *Last	0.0	-0.1–0.1	0.963												
Plot *First *Last	0.1	-0.1–0.3	0.388												
Regrowth (Late v Early)				-1.2	-12.4–10.0	0.835									
Regrowth (Late v Pasture)				-2.4	-13.6–8.8	0.677									
Plot *Early				-14.0	-29.8–1.8	0.095									
Plot*Pasture				-23.2	-39.0–-7.4	0.008									
Species.richness							2.9	-7.0–12.8	0.571						
Functional.dispersion							41.7	-78.5–162.0	0.503						
Plot *Species.richness							15.1	1.6–28.5	0.039)					
Plot *FDis							-37.0	-174.8–100.75	5 0.604						

	Time	Regrowth class	Mammals	Hydrography	Topography
Richness *FDis			-11.6 -52.86–29.65 0.	587	
Plot *Richness *FDis			-36.2 -88.80–16.5 0.	192	
ſWI				1.8 -4.2-7.8 0.56	51
OND				-6.6 -42.1–29.0 0.72	22
Plot * TWI				12.7 -2.0–27.3 0.10)5
Plot * DND				-155.8 -285.025.3 0.02	29
TWI * DND				1.6 -4.6-7.7 0.62	23
Plot * TWI* DND				20.4 0.9–39.9 0.05	53
Altitude					-0.0 -1.0–1.0 0.980
Slope					-1.7 -16.9–13.8 0.845
Plot *Altitude					3.7 -2.4–9.7 0.250
Plot * Slope					37.9 -70.3–146.2 0.499
Altitude * Slope					0.0 -0.1–0.2 0.813
Plot *Altitude* Slope					-0.34 -1.4–0.7 0.522
Observations	30	30	30	30	30
² Nagelkerke	1.000	1.000	1.000	1.000	1.000
Deviance	2206.473	1942.400	1883.533	2095.536	1438.744
AIC	232.075	224.251	227.328	230.527	219.246
og-Likelihood	-107.037	-105.125	-104.664	-106.264	-100.623

		Time		Regro	owth cla	ISS	M	ammals		Hyd	Irography		Тој	pography	
Predictors	OddsRatio	5 CI	р	OddsRatios	CI	р	OddsRatios	CI	р	OddsRatios	CI	р	OddsRatios	s Cl	p
(Intercept)	1.1	0.6–2.2	0.704	1.6	1.2-2.2	0.002	1.1	0.5–2.5	0.778	0.5	0.11–2.7	0.461	5.2	0.1–515.3	3 0.475
Plot type	38.4	8.6–236.0	<0.001	. 3.7	2.0–5.1	<0.001	L 5.7	2.1–15.3	0.001	. 0.4	0.00–66.8	8 0.713	126.0	0.0-313.0	0.713
Since first open	1.0	1.0-1.1	0.336												
Since last use	1.0	0.9–1.1	0.834												
Plot *First	0.9	0.8–1.0	0.015												
Plot *Last	0.8	0.7–1.0	0.017												
First *Last	1.0	1.0-1.0	0.841												
Plot *First *Last	1.0	1.0-1.0	0.029												
Regrowth (Late v Early)				0.8	0.5–1.2	0.302									
Regrowth (Late v Pasture))			1.0	0.6–1.5	0.856									
Plot *Early				1.7	0.8–3.6	6 0.190									
Plot*Pasture				1.0	0.4–2.2	0.938									
Species.richness							1.2	0.8–1.8	0.284						
Functional.dispersion							2.3	0.0-256.3	3 0.724						
Plot *Species.richness							1.3	0.7–2.5	0.415						
Plot *FDis							0.0	0.0–0.3	0.020)					
Richness *FDis							0.5	0.1–2.4	0.389	1					
Plot *Richness *FDis							1.7	0.1–22.2	0.702						
TWI										1.1	1.0-1.4	0.210)		
DND										0.4	0.1–1.5	0.200)		
Plot * TWI										1.3	0.6–2.6	0.464			
Plot * DND										0.0	0.0–12.4	0.211			
TWI * DND										1.2	0.9–1.5	0.169)		

	Time	Regrowth class	Mammals	Hydrogra	aphy	Тс	opography
Plot * TWI* DND				1.5 0.6	-3.8 0.411		
Altitude						1.0	1.0–1.0 0.775
Slope						0.6	0.3–1.2 0.153
Plot *Altitude						0.9	0.6–1.5 0.803
Plot * Slope						0.7	0.0–160.2 0.920
Altitude * Slope						1.0	1.0–1.0 0.190
Plot *Altitude* Slope						1.0	0.9–1.1 0.965
Observations	30	30	30	30		30	
R ² Tjur	0.133	0.111	0.113	0.188		0.192	
Deviance	46.970	60.088	45.259	39.873		33.410	
AIC	158.064	167.181	156.352	150.967		144.503	
log-Likelihood	-71.032	-77.591	-70.176	-67.483		-64.252	

		Time		Regro	wth clas	SS	Ma	ammals		Hydr	ography		Торо	graphy	
Predictors	Odds Ratios	5 CI	p	Odds Ratios	CI	p	Odds Ratios	s Cl	р	Odds Ratios	CI	p	Odds Ratios	CI	p
(Intercept)	0.0	0.0–0.1	<0.001	0.0	0.0–0.1	<0.001	0.1	0.0–0.5	0.004	0.0	0.0–0.8	0.032	6.43	NE	0.647
Plot type	0.4	0.0–54.2	0.714	0.2	0.0–0.9	0.042	0.0	0.0–0.9	0.040	3.9	NE	0.887	NE	NE	0.830
Since first open	1.1	1.0–1.2	0.071												
Since last use	1.2	1.0–1.5	0.088												
Plot *First	1.0	0.7–1.2	0.685												
Plot *Last	0.8	0.4–1.6	0.492												
First *Last	1.0	1.0-1.0	0.060												
Plot *First *Last	1.0	1.0-1.0	0.505												
Regrowth (Late v Early)				1.5	0.6–3.8	0.417									
Regrowth (Late v Pasture)			2.4	1.0–5.8	0.060									
Plot *Early				0.3	0.0–9.6	0.526									
Plot*Pasture				0.3	0.0–9.7	0.530									
Species.richness							0.9	0.4–1.8	0.653						
Functional.dispersion							0.6	NE	0.921						
Plot *Species.richness							0.1	0.0–5.3	0.271						
Plot *FDis							165.7	NE	0.540						
Richness *FDis							0.9	0.0–17.0	0.936						
Plot *Richness *FDis							1114.3	NE	0.253						
TWI										1.1	0.7–1.6	0.659			
DND										0.6	0.1–4.9	0.593			
Plot * TWI										0.6	0.0–7.5	0.669			
Plot * DND										NE	NE	0.393			

	Time	Regrowth class	Mammals	Hydrography		То	pography
TWI * DND				1.1	0.8–1.6 0.562		
Plot * TWI* DND				0.3	0.0–10.4 0.462		
Altitude						0.96	0.89–1.03 0.265
Slope						0.63	0.18–2.16 0.464
Plot *Altitude						0.81	0.13–5.00 0.821
Plot * Slope						0.12	NE 0.897
Altitude * Slope						1.00	0.99–1.01 0.406
Plot *Altitude* Slope						1.02	0.75–1.38 0.906
Observations	30	30	30	30		30	
R ² Tjur	0.027	0.008	0.001	0.028		0.026	
Deviance	22.439	23.760	22.382	28.416		27.326	
AIC	72.554	69.778	72.532	78.313		77.272	
log-Likelihood	-28.277	-28.889	-28.266	-31.156		-30.636	

(d) Basal area of all trees

	Time			F	legrowth cl	ass	Mammals				Hydrograp	hy		Topography	y
Predictors	Est	СІ	p	Est	CI	p	Est	СІ	p	Est	CI	p	Est	CI	p
(Intercept)	0.45	0.39–0.52	<0.001	0.46	0.43–0.50	<0.001	0.43	0.36–0.51	<0.001	0.48	0.31–0.65	<0.001	0.48	0.10-0.90	0.028
Plot type	0.21	0.03–0.43	0.046	0.08	0.02–0.14	0.022	0.25	0.13–0.38	0.001	0.35	-0.59–1.47	0.500	4.85	-0.94–10.40	0.106
Since first open	-0.00	-0.00-0.00	0.956												
Since last use	-0.00	-0.01-0.00	0.341												
Plot *First	-0.00	-0.01-0.01	0.790												
Plot *Last	0.00	-0.02-0.02	0.998												
First *Last	0.00	-0.00-0.00	0.331												
Plot *First *Last	-0.00	-0.00-0.00	0.719												
Regrowth (Late v Early)				-0.03	-0.08-0.01	0.176									
Regrowth (Late v Pasture)			-0.03	-0.07–0.02	0.245									
Plot *Early				0.09	-0.01–0.19	0.090									
Plot*Pasture				0.17	0.06–0.30	0.011									
Species.richness							0.01	-0.03-0.05	0.624						
Functional.dispersion							-0.04	-0.53–0.42	0.855						
Plot *Species.richness							-0.06	-0.15-0.03	0.192						
Plot *FDis							-0.53	-1.28–0.22	0.178						
Richness *FDis							-0.01	-0.17–0.15	0.900						
Plot *Richness *FDis							0.22	-0.11-0.57	0.210						
TWI										-0.01	-0.03-0.02	0.634			
DND										0.05	-0.09–0.17	0.499			
Plot * TWI										-0.03	-0.18-0.10	0.679			
Plot * DND										0.46	-0.74–1.86	0.486			

TWI * DND				-0.01 -0.03-0.02 0.468	
Plot * TWI* DND				-0.06 -0.26-0.12 0.553	
Altitude					0.00 -0.00-0.00 0.994
Slope					-0.02 -0.08-0.03 0.412
Plot *Altitude					-0.04 -0.10-0.01 0.126
Plot * Slope					-0.48 -1.33-0.43 0.297
Altitude * Slope					0.00 -0.00-0.00 0.473
Plot *Altitude* Slope					0.00 -0.00-0.01 0.316
Observations	30	30	30	30	30
R ² Nagelkerke	0.997	0.998	0.997	0.996	0.999
Deviance	74.501	65.927	68.631	82.585	47.959
AIC	233.200	225.615	230.793	236.227	220.376

		Time		R	egrowth	class		Mamma	ls	Hy	drograph	у		Topography	/
Predictors	Est	CI	p	Est	CI	р	Est	CI	p	Est	CI	p	Est	СІ	p
(Intercept)	0.7	0.5–0.9	<0.001	0.7	0.6–0.7	<0.001	0.7	0.4–0.7	<0.001	. 0.7	0.4–1.0	<0.001	0.5	-0.53–1.71	0.406
Plot type	535.7	NE	0.998	0.3	-0.0–0.6	0.051	62.9	NE	0.999	NE	NE	0.823	-31.5	-204.4–39.4	0.552
Since first open	-0.0	-0.0–0.0	0.303												
Since last use	-0.0	-0.0–0.0	0.186												
Plot *First	-26.7	NE	0.998												
Plot *Last	-27.4	NE	0.998												
First *Last	0.0	-0.0–0.0	0.159												
Plot *First *Last	1.4 -	1447.1–1449.	9 0.998												
Regrowth (Late v Early)				-0.1	-0.2–0.0	0.189									
Regrowth (Late v Pasture)				-0.1	-0.2–0.0	0.103									
Plot *Early				39.5	NE	0.998									
Plot*Pasture				39.5	NE	0.998									
Species.richness							0.0	-0.1–0.1	0.762						
Functional.dispersion							-0.1	-1.0–0.8	0.811						
Plot *Species.richness							89.8	NE	0.999						
Plot *FDis							-212.3	NE	0.999						
Richness *FDis							0.0	-0.3–0.3	0.859						
Plot *Richness *FDis							-252.1	NE	0.999						
TWI										-0.02	-0.1–0.0	0.392			
DND										0.11	-0.1–0.3	0.273			
Plot * TWI										-63173.6	NE	0.823			
Plot * DND										976655.4	NE	0.823			

	Time	Regrowth class	Mammals	Hydrography	Topography		
TWI * DND				-0.02 -0.1–0.0 0.239	1		
Plot * TWI* DND				-96752.4 NE 0.823			
Altitude					0.0 -0.0-0.0 0.765		
Slope					-0.0 -0.2–0.1 0.861		
Plot *Altitude					0.3 -0.4–1.9 0.550		
Plot * Slope					5.7 -6.2-36.0 0.536		
Altitude * Slope					0.0 -0.0-0.0 0.913		
Plot *Altitude* Slope					-0.1 -0.3-0.1 0.538		
Observations	30	30	30	30	30		
R ² Nagelkerke	1.000	1.000	1.000	1.000	1.000		
Deviance	140.557	134.847	121.384	119.165	161.409		
AIC	138.281	133.726	136.303	136.050	140.145		