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ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive single stranded RNA virus that
causes a highly contagious Corona Virus Disease (COVID19). Entry of SARS-CoV-2 in human cells
depends on binding of the viral spike (S) proteins to cellular receptor Angiotensin-converting enzyme 2
(ACE2) and on S protein priming by host cell serine protease TMPRSS2. Recently COVID19 has been
declared pandemic by World Health Organization yet high differences in disease outcomes across countries
have been seen. We provide evidences based on analyses of existing public datasets and by using various in-
silico approaches to explain some of these as factors that may explain population level differences. One of
the key factors might be entry of virus in host cells due to differential interaction of viral proteins with host
cell proteins due to different genetic backgrounds. Based on our findings, we conclude that higher expression
of ACE? facilitated by natural variations, acting as Expression quantitative trait loci (eQTLs) and with
different frequencies in different populations, results in ACE2 homo-dimerization which is disadvantageous
for TMPRSS2 mediated cleavage of ACE2 and becomes more difficult in presence of broad neutral amino
acid transporter, BOAT1 (coded by SLC6A419), that usually does not express in Lungs. We also propose that
the monomeric ACE2 has higher preferential binding with SARS-CoV-2 S-Protein vis-a-vis its dimerized
counterpart. Further, eQTLs in TMPRSS2 and natural structural variations in the gene may also result in
differential outcomes towards priming of viral S-protein, a critical step for entry of Virus in host cells. In
addition, we suggest some other potential key host genes like ADAM17, RPS6, HNRNPAI, SUMO1, NACA,
BTF3 and some other proteases as Cathepsins, that might have a critical role. Understanding these population

specific differences may help in developing appropriate management strategies.
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Introduction
The recent emergence of corona virus disease (COVID19) caused by severe acute respiratory syndrome

(SARS) coronavirus 2 (SARS-CoV-2) has resulted in >25 Million infections and >170 thousands deaths

worldwide so far, and the numbers are increasing exponentially [https://covid19.who.int/]. SARS-CoV-2 is
reported to be originated in bats [1] and transmitted to humans via unknown intermediate host. However, its
origin is still being questioned time and again. With the declaration of SARS-CoV-2 as pandemic by World
Health Organisation (WHO), extensive research worldwide has been carried out. It has been established that
Human ACE2 mediates SARS-CoV-2 entry into cells through its Spike (S) Protein an primarily makes entry
to host body through respiratory tract with recent reporting of nasal epithelial cells as potential initial
infection site. [2] Angiotensin-converting enzyme 2 (ACE2) is functional receptor on human cells for this
newly originated coronavirus [3] with higher affinity then severe acute respiratory syndrome coronavirus
(SARS-CoV) originated in 2002. [4]. However, no substantial evidence exists that ACE2 higher expression
primarily is associated with degree of infection and in addition COVID19 lethality is mostly driven by the
extent of underlying lung injury [5] whereas a negative correlation has been reported between ACE2

expression and lung injury [6], making it an interesting question to explore.

High differences in clinical outcomes and across countries have been seen [https://covid19.who.int/] and

noted that neither all people who are exposed to SARS-CoV-2 develop infection nor all infected patients end
up in severe respiratory illness [7] which cannot be explained by immunity alone [8] . This results in
hypothesis of differential genetic susceptibility to COVID19 and virulence of SARS-CoV-2 in different
populations [9]. Efforts are being made worldwide to understand it better and it becomes complex with
reports that BCG vaccination reduces morbidity and mortality for COVID19 in human population [10]. Due
to extensive research going on in parallel, evidences in favour [11] as well as against [12] existence of SARS-
CoV-2 S-protein binding-resistant ACE2 natural variants, in different populations, have been generated
recently. In addition, studies highlighting role of eQTLs in ACE2 expression and resulting in potential
differential COVID19 fatality [12, 13] are pouring in. Where most of the such studies are targeting only
natural variations in ACE2 gene as SARS-CoV-2 differential susceptibility factor, recent evidences
suggested that additional host proteins like cellular serine protease TMPRSS2 act as co-factors and are
critical for efficient cellular infection by SARS-CoV-2 [14]. Further, it is equally important to consider that
rare functional variants, though may have consequences, yet may not explain large scale population level

differential clinical outcomes.

This highlights the importance of identification of such other potential co-factors and underlying mechanisms
these genes can play. At the same time, understanding correlations between these host proteins and their
interactions with SARS-CoV-2 and ACE2 may explain many of the unanswered questions. Further

evaluating these host genes, exploring natural occurring variants in these, their expression patterns may also
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shed some light on better understanding of differential susceptibility to COVID19 and virulence of SARS-
CoV-2. In the present study, we have tried to exploit existing literature to understand mechanisms of
correlations, of host genes, specifically associated with interactions related to ACE2 and some prominent
Viral proteins, using in-silico approaches and also tried to understand these as factors explaining population

level differences.

Methodology

As SARS-CoV-2 is primarily a respiratory pathogen, the present study was to understand mechanisms of its
entry to cells in lungs and believe it can be extrapolated to other respiratory tract tissues to explore potential
factors that may result in to differential outcomes in respiratory illness. To being with, we started with the
most studied host protein ACE2 and tried to understand its interaction with SARS-CoV-2 S-Protein through
Molecular Dynamics simulations, followed by adding other interacting proteins. We further added layers of

other methods to understand better the potential causes and outcomes.

Molecular Dynamics (MD) Simulations

Recently submitted experimental structure 6M17.pdb of ACE2 dimer bound to two BOAT1 (SL6A19) and
two receptor-binding domains (RBD) of SARS-CoV-2 with overall resolution of 2.90 Angstrom was
downloaded from the Protein Data Bank for structural, visualization and dynamics analysis [15]. This
structure was corrected for missing amino acids, side chains, missing hydrogen atoms, correction of
disulphide bonds etc., optimized for pKa corresponding to physiological pH 7.2 and energy minimized to
correct steric clashes using the Protein Preparation Wizard of Schrodinger Maestro [16]. Predefined solvation
model TIP3P was used and overall neutrality of the system was maintained by addition of Na+ and ClI-
counter ions[17]. Physiological salt concentration of 0.15 Molar was generated through addition of NaCl.
Periodic boundary condition of 10 Angstrom was set using the System Builder Tool of Desmond
software[18]. Total two MD simulations, each 10 nanosecond long, were conducted. In one of the simulation,
six chains i.e. ACE2 dimer with each monomer bound to a BOATI (SL6A19) and RBD domain was
simulated and the resulting solvated system consisted of 424,847 atoms, while for other simulation
monomeric ACE2 bound to viral RBD consisted of 174,900 atoms. Root mean square fluctuation (RMSF)
and principal component analysis were done through R based BIO3D module [19]. MMGBSA free energy
of binding between proteins was calculated through Prime Software of Schrodinger Suite [20]. Structural

visualizations and images were traced using pyMOL and VM D [20] [21].

Gene Expression in Alternate Transcripts and Regulation Analyses
Genotype-Tissue Expression (GTEx) portal at https://gtexportal.org/ was used to explore various gene
expression. By Tissue, Multigene Query as well as transcript browser was used to understand expression of

splice variants and exons in Lungs. eQTLs were viewed by GTEx IGV Browser as well as GTEx Locus
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Browser was used to plot gene specific eQTLs. eQTLs and other gene regulatory information, splice variants
and ESTs were also explored through UCSC genome browser https://genome.ucsc.edu/ with build
GRCh37/hg19. Table browser was used to interact various datasets to look for overlaps and filter outcomes.
Retrieved information was saved in files as well as plotted on UCSC browser as custom tracks. Comparison
of RNA expression and Protein expression, mainly in lungs, was done at The Human Protein Atlas [22] at
www.proteinatlas.org. HaploReg v4.1 (https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php)

was used to annotate effect of noncoding genome variants of regulation motifs.

Analyses of Allele frequencies distribution of Variants in different population Groups

Genetic data for global population groups was explored through the GnomAD portal at
https://gnomad.broadinstitute.org/, as well as dbSNP database of NCBI at https://www.ncbi.nlm.nih.gov/snp.
Gene specific SNPs data was also retrieved from 1000 genomes (1000G) Phase 3 data set available through
https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes as  per Homo  sapiens:GRCh37.p13
(GCF_000001405.25). Data for the population groups belonging to five super population groups [African
(AFR), Ad mixed American (AMR), East Asian (EAS), European (EUR) and South Asian (SAS)] was
analysed. The folowing sub population groups were studied. AFR: African Caribbeans in Barbados (ACB),
Americans of African Ancestry in SW USA (ASW), Esan in Nigeria (ESN), Gambian in Western Divisions
in the Gambia (GWD), Luhya in Webuye, Kenya (LWK), Mende in Sierra Leone (MSL), Yoruba in Ibadan,
Nigeria (YRI). AMR: Colombians from Medellin, Colombia (CLM), Mexican Ancestry from Los Angeles
USA (MXL), Peruvians from Lima, Peru (PEL), Puerto Ricans from Puerto Rico (PUR). EAS: Chinese Dai
in Xishuangbanna, China (CDX), Han Chinese in Beijing, China (CHB), Southern Han Chinese (CHS),
Japanese in Tokyo, Japan (JPT), Kinh in Ho Chi Minh City, Vietnam (KHV). EUR: Utah Residents (CEPH)
with Northern and Western European Ancestry (CEU), Finnish in Finland (FIN), British in England and
Scotland (GBR), Iberian Population in Spain (IBS), Toscani in Italia (TSI). SAS: Bengali from Bangladesh
(BEB), Gujarati Indian from Houston, Texas (GIH), Indian Telugu from the UK (ITU), Punjabi from Lahore,
Pakistan (PJL) and Sri Lankan Tamil from the UK (STU).

LDproxy tools of LDlink 4.0.3 web based suite (https://Idlink.nci.nih.gov/) was used to map proxy variants
in strong LD and with putatively functional role. LDpop tool of the LDlink 4.0.3 was used for geographically
annotating allele frequencies in 1000G populations, alternatively also done by a web based tool Datawrapper

(https://www.datawrapper.de/ ) in some of the figures.

Computational structural analysis on SARS CoV-2 S-protein and TMPRSS2

TMPRSS2 has been recently characterized as critical component for cell entry by SARS-CoV-2 [14]. To
understand, the interactions, the protein sequence of surface glycoprotein (YP_009724390.1) of SARS CoV-
2 and two transcripts of TMPRSS2 (NP_005647.3 and NP_001128571.1) protein of homo sapiens, were

retrieved from the NCBI-Protein database. Pairwise sequence alignment of TMPRSS2 isoforms was carried
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out by Clustal Omega tool [23]. The protein domain information and transcript variation were retrieved from
Uniport [24], Prosite [25], Pfam [26] and ENSEMBL [27], respectively. The homology model of the S
protein and TMRPSS2 constructed using Swiss model [28], whereas 3D structure of the ACE2 retrieved
from the PDB database (PDB ID: 6M17). These structures were energy minimized by the Chiron energy
minimization server [29]. The binding site residues of the proteins retrieved from Uniport and literature. The
variant structure of the TMRPSS2 protein was generated using WHATIF server [30] and energy minimized.
The effect of the variant was analyzed using HOPE [31] and [-mutant [32]. The [-mutant method allows us
to predict stability of the protein due to mutation. The docking studies for wild and mutant TMRPSS2 with
S protein and ACE2 carried out using HADDOCK [33].

Network analysis on SARS-CoV-2 with Human Proteins

We downloaded the SARS-CoV-2 genome (Accession number: MT121215) from the NCBI database. In
order to find the Host-Pathogen Interactions (HPIs), the SARS-CoV-2 protein sequences were subjected to
Host-Pathogen Interaction Database (HPIDB 3.0) [34, 35]. In addition to the host proteins, we added two
more proteins (TMPRSS2 and SLC6A19) which found to have an important role in the mechanism of viral
entry [14]. The protein-protein interaction (PPI) and transcription factor regulation of human proteins were
retrieved from GeneMANIA [36] and literature [37-42], respectively. The Host Pathogen Interaction
Network (HPIN) was visualized using Cytoscape [43] which includes the information collected from HPIDB,
PPIs and TFs. Modules are defined as the set of statistics and functionally significant interacting genes [44]
which is constructed by using MCODE [45]. Further, Hubs were identified using Network analyzer [46], the
plugin of Cytoscape v3.2.1. We also studied the hub proteins association with diseases using DisGeNET
[47].

Perturbation by leading hub removal analysis

The topological properties (degree distribution, average clustering coefficient and average neighbourhood
connectivity) of the network, which characterizes the structure and behaviour of the HPIN.

Degree Distribution (P(k)): Degree k is the number of interaction a node in the HPIN. P(k) is the probability
of randomly chosen node to have k interaction with the neighbour. The probability of degree distribution

(P(k)) of the network is calculated by:
P =2

where, 1 is equal to the number of nodes with degree k& and N is equal to the size of the network [48, 49].
Clustering Coefficient (C(k)): Clustering coefficient defines how strongly the nodes in a network tend to
cluster together. Clustering coefficient of the i node in undirected network can be obtained by:

2e i

Clki) = ki(k; — 1)
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where, e; is the number of connected pairs of the nearest-neighbour of the i-#4 node and 4; denotes the degree
of the respective node [50, 51].
Neighborhood Connectivity (Cn(k)): Neighbourhood connectivity of a node is defined as the connectivity
of all the neighbours of the node [52]. The average connectivity of the nearest neighbours of a node is given

by:
Cv(k) = )" aP(qlk)
q

where, P(q|k) denotes the conditional probability that a link belonging to a node with connectivity & points
to a node with connectivity g.

For scale free network, Cn(k) is constant while it follows power law Cy(k)= ¢ 7 for hierarchical network
with [ approximately equal to 0.5 [53]. The positive and negative signs in  indicates the assortivity or
disassortivity of network respectively [54].

Removal of high degree nodes (hubs) in biological networks may cause lethality in various complex
biological networks. This idea of understanding may enable us to determine the topological features of the
network architecture, important functionally related modules and hubs [55, 56]. The topological properties
were calculated after each subsequent removal using the Network Analyzer plugin in Cytoscape version
3.7.1. The calculated topological properties of knock-out experiment were compared with those of the main

network and the change in the properties helped in understanding the role of leading hubs in the network.

Results and Discussion

SARS-CoV-2 uses ACE2 for entry and its S-protein priming by the serine protease TMPRSS?2 is key factor.
Other proteases like cathepsin B and L may be available in host cells yet only TMPRSS2 activity is essential
for pathogenesis and spread [14].

Dynamics and binding analysis of ACE2 with SARS CoV-2 RBD in dimeric and monomeric state

Mutagenesis experiments have reported the importance of Arginine and Lysine residues in ACE2 positioned
between 697 to 716 as an important recognition site for TMPRSS2 mediated cleavage (Figure 1A ) of ACE2.
Mapping these residues on the recently resolved structure (61M7.pdb) suggests that this region lies in
symmetric dimerization interface between ACE2 homodimer and is also masked from outside by two
BoATI(SL6A19) in an overall 1:2:1 hetero-tetramer of BOAT1 (SL6A19) and ACE2 (Figure 1A) [15] . In
a recently reported study, the overexpression of ACE2 has been reported to have an overall protective role
in viral infection among patients [6]. Increased density of ACE2 on the cell surface has been observed to
protect from lung injury [6] also been observed at many other instances. We propose increased expression
of ACE2 due to various factors, including natural occurring variations influencing expression of the gene,
may increase collisions and hence result in homo-dimerization of this protein. Binding of BOAT1 (SL6A19)

to ACE2 is not dependent on ACE2 homodimerization, but its presence along with dimerised ACE2
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effectively shields the later from interaction with TMPRSS2 and may prevent it or reduce its efficiency to
cleave ACE2, a hypothesis based on visualization of the available experimentally resolved structure
61M7.PDB [15]. This observation is significant since the cleaved ACE2 interacts more efficiently with the
SARS CoV-2 RBD domain. To understand the mechanistic effect of dimerization, we conceived and
simulated two situations: one, where ACE2 dimer is bound to two BOAT1 (SL6A19) and two, RBD domains
of SARS CoV-2 and second, where only monomeric ACE2 is bound to one viral RBD. From the RMSF
analysis of the simulated trajectories, we observed higher order fluctuation in monomeric ACE2’s homo-
dimerization interface while the rest of the ACE2 displayed a similar fluctuation profile including residues
interacting with RBD (Figure 2A). PCA analysis and amino acid residue loadings on the PCs (PC1 in this
case) reported slightly higher away ward conformational dynamics w.r.t RBD in dimeric ACE2 (Figure 2B
and C). This contrasting essential dynamics in dimeric ACE2 is explained well through the MM-GBSA
based free energy of binding calculation between the 10th nanosecond final confirmation of ACE2-RBD
complex. From both simulations through MM-GBSA method, 1.5 fold strong binding of monomeric ACE2-
RBD complex compared to dimeric ACE2-RBD was observed (i.e. 4G=-75.58 for Dimeric ACE2-RBD vs
AG=-116.98 for Monomeric ACE2-RBD Complex). This observation further explains the protective role of
overexpressed ACE2, resulting in its dimerization and reduced affinity for the RBD domain of SARS CoV-
2 S1 protein. As our current computational resources could not support longer simulations therefore, we
propose longer simulations for robust statistical inference to understand this phenomenon in more details.
Further, we are also not clear whether the presence of BOAT1(SL6A19) has any allosteric effect on this
observation, in addition to already observed masking of ACE2 from TMPRSS2 mediated cleavage.
Additionally, another metalloprotease ADAM17 has been reported to compete with the TMPRSS2 and
cleaves ACE2 in a way that only cleavage by TMPRSS2 was reported to drive the SARS CoV entry inside
the cell [57] which is yet to be explored in relation to SARS CoV-2. Recent literature also indicated the
potential role of other proteases like cathepsin B/L that can functionally replace TMPRSS2, need to be
evaluated extensively. [2] All these hypotheses warrant further in-silico analyses with better computational
resources, as well as experimental study designs and for these we are open to seek collaborations.

However, the observations made are of high importance and emphasise on evaluation of expression of the
ACE2 and BoAT1 (SL6A19) along with TMPRSS2 among patients with varied clinical response to SARS
CoV-2 infection, differential outcomes and also correlation with observed mortality. Therefore differential
expression of these genes among patients with displaying varied responses from asymptomatic to acute

symptoms is worth exploration which may act as biomarkers if proven, to predict severity and susceptibility.

Differential Genomics backgrounds derived expression of ACE2 and TMPRSS2

With the observations, from our MD analyses (Figures 1 and 2) that higher expression of ACE2 gene may
promote ACE2 homo-dimerization rendering less binding affinity to SARS CoV-2 RBD as well as masking
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TMPRSS?2 cleavage site (Figure 3), evidences on eQTLs and ACE2 higher expression in East Asians [13]
and reported protective role of ACE2 in lung injury [6], we explored more about ACE2 expression as well

as differential genomic backgrounds in different population groups.

ACE?2 Expression and functional SNPs related to its expression

Tissue Specific evaluation of ACE2 gene in GTEx portal indicated low level expression of the ACE2 in
Lungs (Figure 4a and Figure 5). Further, it was observed that not all the transcripts and exons of the gene
express in Lungs (Figure 4b and 4c). As expression of ACE? is less in Lungs thus, probably GTEx portal
did not return cis-eQTLs for ACE2 gene in lungs. However, eQTLs for the gene were found in other tissues
(Figure 6a and b) in GTEx portal. These eQTLs remained the same across tissue sets and showed similar
effect patterns in expression (Figure 6b). Yet to corelate the expression of the gene with genomic variations,
regions of the gene were explored for potential regulatory elements and overlapped it with common
variations through table browser tool of UCSC genome browser with assumption that the variants having
population level effect should be common variants (Figure 4d and 7). Variations data was retrieved from
1000 Genomes Phase 3 dataset and filtered for variants with at least 10% frequency of the alternate allele in
global population. Overlapping the variants from both the exercises resulted in shortlisting of 2 SNPs
rs1978124 and rs2106809 which were observed with differential frequency distribution in different
populations of the world (Figure 8) at both super population group and sub population group level.
Interestingly, EAS and EUR sub population groups were observed to show relatively uniform frequency
distribution within group. However, in AFR, AMR and SAS sub population groups intra population group
differences were observed to be higher, indicating diversity in the gene pool of population groups. HaploReg
annotations indicated that these SNPs are in region with Enhancer histone marks and DNAase activity as
well as the same was observed through multiple regulatory elements tracks in UCSC Genome browser
(Figure 4d and 7) including GHOXJ015596 enhancer marked by GeneHancer database. [58] Linkage
Disequilibrium (LD) values as (r?) with other putative proxy functional variants was also explored and
mapped with UCSC genome browser. Interestingly, it was observed that SNPs rs1978124 and rs2106809
have a strong LD block of >100kb with various SNPs in absolute LD but upstream of ACE2 gene across
population groups (Figure 9). This indicates a strong enhancer activity from the region that may affect higher
expression of ACE2 gene in lungs which may facilitate ACE2 homo-dimerization (Figure 3). However, it

also requires experimental validation.

TMPRSS?2 Expression and functional SNPs in the gene with potential effect

GTEx portal indicated relatively high levels of TMPRSS2 expression in Lungs (Figure 4a and Figure 10c¢),
differential transcription (Figure 10c¢) but no protein expression in lungs (Figure 10a). Evaluation of the
Protein atlas portal, source of Figure 10a, indicated that both antibodies used for detection TMPRSS2 (not

shown in Ms) were restricted to target near N terminal of the protein (either cytoplasmic domain or proximal
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extracellular domain near membrane). Evaluation of the GTEx portal for cis-eQTLs for TMPRSS2 gene in
lungs, returned a large number of eQTLs but with a peculiar feature (Figure 11a and b). The eQTLs in lungs
were different as compared to other tissues and found to be concentrated in region of the gene with potential
alternate transcripts (Figure 12a,b and Figure 13), towards end of the gene in relatively high expressing
exons (Figure 12b) and coding for the amino acid sequence that has putative functional role in protein as
serine protease domain (Figure 12a) critical for ACE2 cleavage and SARS CoV-2 S-Protein priming.
Variations data was retrieved from 1000 Genomes Phase 3 dataset and filtered for variants with at least 10%
frequency of the alternate allele in global population and overlapped it with cis-eQTLs data resulting in 10
SNPs (rs463727, 1s55964536, rs4818239, rs734056, rs4290734, rs2276205, rs34783969, rs11702475,
r$62217531 and rs383510). Annotation of the SNPs indicated all the SNPs cluster together and are in strong
LD block (Figure 13 and Figure 14a). HaploReg annotations indicated Enhancer histone marks and DNAase
activity in the regions overlapping these SNPs amongst these rs4818239 showed a prominent putative
functional role (Figure 14b) which further requires experimental validation. However, the frequency
distribution of the variant rs4818239 in different populations groups of 1000G showed interesting differential
pattern (Figure 14¢). We also explored if any alternate functional variations, yet common in populations
exist by screening TMPRSS2 gene through genomAD browser and filtered for missense only variations. The
search  returned  rs75603675  (NP_001128571.1:p.Gly8Val or G8V) and rs12329760
(NP _001128571.1:p.Vall97Met or V197M), also observed with differential frequency distribution in 1000G
populations (Figure 14d and 14e). The observations indicate TMPRSS2 variants may influence interaction

with ACE2 as well as SARS CoV-2 (Figure 3) resulting in population specific differential outcomes.

The variation in TMPRSS2 could inhibit the ingress of SARS CoV-2

We further opted to explore more the structure and function of TMPRSS2 protein. Pairwise sequence
alignment of two isoforms of TMPRSS2 suggests that Isoform-2 lack 37 residues at N-terminal compare to
Isoform-1, which was the longest transcript and codes for 529 amino acids (Figure 15). Since the human
TMPRSS?2 protein structure was not available in the PDB database, We have generated the computational
protein model. The model built using Serine protease hepsin (PDB ID: SCE1) of homo sapiens. The protein
3D structure modelled from 146-491 residues of TMPRSS2 with sequence identity, GMQE and QMEAN of
33.82%, 0.53 and -1.43 values, respectively. It showed that the model was constructed with high confidence
and best quality. In the similar manner 3D structure of S Protein of SARS CoV-2 was built with sequence
identity, GMQE and QMEAN of 99.26%, 0.72 and -2.81 values, respectively. The protein stability analysis
showed that rs12329760 ( p.Vall97Met or V197M) (Isoform-1) variation could decrease the stability of
TMPRSS?2 protein with AAG value of -1.51 kcal/mol. The HOPE results suggest, V197M variation is located
within a domain, SRCR (GO Term: Scavenger Receptor Activity as annotated in UniProt) and introduces an
amino acid with different properties, which could disturb this domain and can abolish its function. Analyses

of another variation rs75603675 (p.Gly8Val or G8V) showed that wild-type residue, glycine flexibility might
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be necessary for the protein function and alteration in this position can abolish this function as the observed
torsion angles for this residue were unusual. It could be speculated that only glycine was flexible enough to
make these torsion angles, change at the location into another residue would force the local backbone into
an incorrect conformation and may disturb the local structure. The variant residue was also observed to be
more hydrophobic than the wild-type residue. Since sequence similarity search did not find any significant
template at the N-terminal of this protein, we could not generate a quality model for isoform-2, which
contains G8V variation; hence we carried out sequence-based stability analysis. The results suggest G8V
variation could increase the stability of the TMPRSS2 protein with AAG value of -0.10 kcal/mol. Further, it
is known that Arginine and lysine residues within amino acids 697 to 716 are essential for efficient ACE2
cleavage by TMPRSS2 [57] and recent studies have shown that SARS CoV-2 uses the ACE2 for entry and
the serine protease TMPRSS?2 for S protein priming. Based on information from previous studies, we docked
the TMPRSS2 p.Val197Met wild-type and variant protein with ACE2 and S protein of SARS CoV-2. The
docking results suggest that the variant 197M protein could promote the binding to S-protein and inhibit the
binding with ACE2 (Figure 16). However, these observations need critical revaluation as well as

experimental work to understand these interactions better.

SLC6A419 (BOAT1) if expresses naturally in Lungs and other respiratory tract cells, may provide
protection.

One of the interesting gene is SLC6A4 19 that codes for protein BOAT1 that expresses in very limited number
of tissues and reported absent in Lungs (Figure 4a and Figure 17a,b,c). Our findings indicated its protective
role with competitive hinderance in binding to TMPRSS2. As its expression was observed to be very low in
Lungs we resolved to look for indirect signatures that may have putative role in providing differential
susceptibility. We noticed several variations clustering together in a potential enhancer region (Figure 17d
and e) and with differential frequencies in different populations. eQTL analyses at GTEx portal also showed
huge list of potential SNPs upregulating or down regulating SLC6A19 expression in Pancreas, leaver and
whole blood cells as well as with overlap with potential Transcription factor binding sites (Figure 17f). We
hypothesize a potential chance of some natural occurring variation/s that can induce expression of BoAT1 in
respiratory tract thus providing protective role in this scenario (Figure 3). However, this requires more

extensive computational exploration as well as experiential validations.

Host-Pathogen Interaction Modelling

We believed additional genes and factors might be playing role thus, we further carried out a systems biology
study to identify these novel key regulators that may influence this Human and SARS CoV-2 interaction. A
detailed Host Pathogen Interaction Network (HPIN) was created. The constructed HPIN contained 163
interactions, involving 31 nodes, which includes 4 viral proteins, 27 human proteins and 8 Transcription

Factors (TF) (Figure 18A). From the HPIN, we identified hubs, namely RPS6, NACA, HNRNPA1, BTF'3 and
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SUMOI with 19, 18, 17, 16 & 12 degrees, respectively in the network (Figure 18A). This indicates the
affinity to attract a large number of low degree nodes towards each hub, which is a strong evidence of
controlling the topological properties of the network by these few hubs [59]. Interestingly, out of five
significant hubs, four hubs (RPS6, NACA, HNRNPAI and BTF3) present in module (Nodes: 16, Edges: 118,
Score: 15.73) and one hub SUMOI is present at motif level which considered one of the most important
regulating motif of biological network at a fundamental level (Figure 18B). From our prediction; we found,
four viral proteins (S, N, ORFla & ORF'lab) target five host protein groups (ACE2, SUMOI, HNRNPAI,
RPS6 & ATP6VIGI). SUMOI & HNRNPAI are target by same viral proteins (N). The hub protein, RPS6
(highest degree) directly interacts with one of the important protein 7TMPRSS2 which further propagate the
signal to ACE2 & SLCA19. The Transcription factor HIF1A and BCL6, STATS, YBXI inhibits ACE2 and
SUMOI whereas MYC, AR and HNF4a, HNF1a activates HNRNPAI, TMPRSS2 and SLCA 19 respectively.
From the gene diseases association study few diseases are highly associated with these important hub proteins
(Figure 19A); HNRNPAI (36%) followed by RPS6 (25%), SUMOI1 (21%), BTF3 (9%) and NACA (9%)
(Figure 19B). Clinically, patients with COVID-19 present with respiratory symptoms, Anoxia, fatigue, heart
failure etc. are associated with these five hub proteins mainly HNRNPA1& SUMOI.

By hub removal methodology; we tried to understand the effect of hub removal and calculated the topological
properties of the HPIN as a control. The probability of degree distribution P(k) showed that the HPIN
followed a power law scaling behavior. The power law behavior was also checked and confirmed by using
statistical test for power law fitting (p-value>0.1)[60] in the hub-removal process. The hub removal analysis
showed an important magnitude of changes in network metrics such as Degree distribution (Indegree &
outdegree), Clustering coefficient and Neighborhood connectivity (Figure 20A). This shows that removing
RPS6, HNRNPAI, SUMOI, NACA & BTF3 leading hubs from the network allows more responsibilities of
the existing leading hubs in the resulting network in order to reorganize and save the network properties from
breakdown. The Indegree and Outdegree distribution of HPIN showed the removal of NACA, RPS6 &
SUMOI differ from the complete (Figure 20B). In case of clustering coefficient, the increase in y indicates
the increase in compactness in the hubs removed network in order to save the network from breakdown.
Perturbation of BF'T3 shows minimum v, indicating removal of BFT3 the network is less compactness, which
may lead to the delay in flow of signal. In Neighbourhood connectivity with exponent u which is maximum
in removal of SUMO1 hub, which reveals that the regulating roles of remaining hubs become more important
[61]. The increase in p indicates that the information processing in the network becomes faster when SUMO!
hubs are removed which means that local perturbations due to hubs removal are strong enough to cause
significant change in global scenario [62] (Figure 20B). The knock out hubs experiment we performed,
shows no drastic change in the topological properties of the perturbed network, but enhance the regulating
capabilities of the modules than the hubs, which is the consequence of strong inter-links in the network.
Overall network analysis showed ACE? is not only the key molecule for entry and survival of SARS-CoV-2
virus, the hub proteins like RPS6, HNRNPAI,SUMOI1, NACA & BTF 3 might also play a vital role. Analysing
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these interactions could provide further important understanding for the underlying biological mechanism of

SARS-CoV-2 virus infection and identifying putative drug targets.

To conclude (Figure 3), higher expression of ACE?2 is facilitated by natural variations with different
frequencies in different populations and functionally associated with expression of the gene. The higher
expression of ACE2 facilitates homo-dimerization resulting in hindrance to TMPRSS2 mediated cleavage of
ACE2. It becomes more difficult in presence of BOATI that usually does not express in Lungs. We also
propose that the monomeric ACE2 has higher preferential binding with SARS-CoV-2 S-Protein vis-a-vis its
dimerized counterpart. Further, natural variations in TMPRSS2, with potential functional role, and their
differential frequencies may also result in differential outcomes towards interaction with ACE2 or priming
of viral S-protein, a critical step for entry of Virus in host cells. In addition, we have identified some other
potential key host genes like ADAM17, RPS6, HNRNPAI, SUMOI, NACA and BTF3, that might have a
critical role. With all this background, it is anticipated that in populations like Indian populations, with highly
diverse gene pool, a great variation in clinical outcomes is expected and that could be population/region
specific, but primarily due to gene pool structure of the region, despite similar exposure levels to SARS CoV-
2 and resources. Understanding these population specific differences may help in developing appropriate

management strategies.
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LIST OF FIGURES

Figure 1 Structural representation and essential dynamics of ACE2

A multi chain complex of dimeric ACE2 is shown (colored as purple and forest green surface representation)
bound to BOAT1 (colored as chocolate and orange surface) through its C terminal amino acids and SARS-
CoV-2 RBD domain through its N terminal amino acids (shown as black and blue surface), the recognition
site. of TMPRSS2 is also highlighted as surface against the cartoon background [A]. The cartoon
representation along with CPK spheres blue-white-red showing the direction of essential dynamics calculated

through PCAs PC1 of ACE2-RBD region from both simulations is shown [B and C].

Figure 2 Root mean square fluctuation and contribution of ACE2 residues to PC1 and 2 along with
proportion of variance
Root mean square fluctuation (RMSF) plots of ACE2 protein from monomeric ACE2-RBD viral complex

and dimeric ACE2(single chain)-RBD complex are shown. The localized fluctuation profile of the amino
acids across the protein were similar for both simulation conditions except higher fluctuation in the region
that constitutes the ACE2 dimerization interface and following C terminal helix which interacts with BOAT1
(BOAT1 was deleted in the monomeric ACE2-RBD simulation [A]. The contribution of the amino acids to
the principal component (PC) 1 and 2 (black and red respectively) along with the scree plot reporting the
proportion of variance by each PC are shown [B and C]. It can be observed that the N terminal amino acids
consisting of the ACE2-RBD binding site contributed more to the overall essential dynamics in dimeric

compared monomeric ACE2 simulated in the present study.

Figure 3. The overall interaction of host protein and SARS CoV-2 entry to cell

The figure summarises various factors involved that can influence the entry of Virus in host cell. It depicts
brief mechanisms that may arise due to natural occurring variations influencing expression of host genes or
structural changes affecting interactions within host proteins or viral proteins resulting in effect on efficiency
of virus entry in host cells which could be key factor is providing differential clinical outcomes in different

population groups.

Figure 4. Expression of host genes in Lungs, alternative transcripts of ACE2 and expression data
depiction and regulatory elements and other annotations related to ACE2

(a) Expression of various human genes in Human Lungs from GTEx portal. Normalized Expression Values
as Transcripts per million (TPM) are plotted as shades from yellow to deep blue in low to high order. (b)
Expression levels as median read count per base as shades of blue from low to high values indicating exons
expression in different tissues in GTEx portal. Gene models of alternate transcripts are also depicted. (c)

Expression levels as median read count per base as shades of red from low to high values indicating exons
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junctions expression in different tissues in GTEx portal. (d) UCSC genome browser showing various tracks
at 5’ Untranslated region of ACE2 gene, common dbSNPs 153 intersecting with conserved transcription

factors and conserved transcription factor binding sites are also depicted.

Figure 5. The screenshot from Human Protein Atlas depicting Human ACE2 expression
RNA and Protein expression in different tissues is depicted. In lungs, only RNA expression of ACE2 gene

is shown with no ACE2 protein expression.

Figure 6. The screenshot from GTEx portal depicting eQTLs of ACE2 Gene

eQTLs in different tissues were plotted through (a) GTEx IGV Browser as well as (b) GTEx Locus Browser.
(a) Red dots indicate eQTLs that showed up in the region against the query. Size of the dot in (b) indicate
level of significance (as negative p values) whereas colour depicts positive or negative correlation with
Normalized effect size (NES) of the eQTL from -1 to 0 to 1. Red color shades represent upregulation whereas
blue color shades show downregulation. (b) also depicts Linkage disequilibrium (LD) with value range from

0 to 1 as white to black shades with 1(dark) as absolute LD.

Figure 7. Annotation of ACE2 depicting various regulatory elements in UCSC Genome browser

UCSC genome browser showing SNPs rs1978124 and rs2106809 in intron 1 of ACE2 gene. Various tracks
covering first 2 exons and 5’ Untranslated region of ACE2 gene are shown. The ACE2 gene is located on
negative strand. In the region GH0XJ015596 enhancer (in red colour) can be located in the track Enhancer

and promoter from GeneHancer database.

Figure 8. Frequency distribution of SNPs rs1978124 and rs2106809 in 1000G population groups
Frequency distribution of SNPs, rs1978124 and rs2106809 in 1000G populations dataset, also depicted on

world map by a web based tool Datawrapper (https://www.datawrapper.de/ ). Derived allele frequencies in

both the SNPs are also plotted for comparison, indicating differential frequency distribution in different
population groups. SNPs showed relatively uniform frequency distribution trend in sub populations
belonging to same super population groups EUR and EAS. However, differences can be seen amongst the

AFR, AMR and SAS sub population groups.

Figure 9. UCSC Genome browser screenshot depicting proxy SNPs and LD structure in the ACE2
region

UCSC genome browser showing r? plot along with other annotations for SNPs rs1978124 and rs2106809
from the intron 1 of ACE2 gene. GeneHancer regulator elements and interaction between GeneHancer

regulatory elements as curved lines can be seen. In addition, it can be seen that all the proxy SNPs (in Brown)
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are clustered together within potential functional regulatory enhancer element and interaction region (in

brown color).

Figure 10. Expression of TMPRSS?2 in different tissues

(a) Expression of TMPRSS2 in different tissues as reterived from GTEx portal. Transcripts per million
(TPM) are plotted on Y axis and different tissues on X axis. (b) RNA and Protein expression in different
tissues is depicted in Human Protein Atlas online portal. In lungs, only RNA expression of TMPRSS2 gene
is noted with no protein expression depiction. (c) Expression levels as read count in shades of purple from
low to high values indicating expression of different transcripts in different tissues in GTEx portal. Gene

models of alternate transcripts are also depicted.

Figure 11. The screenshot from GTEx portal depicting eQTLs of TMPRSS2 gene

eQTLs in different tissues were plotted through (a) GTEx IGV Browser as well as (b) GTEx Locus Browser.
(a) Red dots indicate eQTLs that showed up in the region against the query. Size of the dot in (b) indicate
level of significance (as negative p values) whereas colour depicts positive or negative correlation with
Normalized effect size (NES) of the eQTL from -1 to 0 to 1. Red color shades represent upregulation whereas
blue color shades show downregulation. (b) also depicts Linkage disequilibrium (LD) with value range from
0 to 1 as white to black shades with 1(dark) as absolute LD.

It was noted [also indicated by blue arrow in (a)] that where in other tissues eQTLs are mainly towards 5’

UTR of the gene, in Lungs the eQTLs are towards end of the gene extending towards 3’UTR.

Figure 12. Structure of TMPRSS2 gene, its alternative transcripts and functional domains

(A) TMPRSS2 canonical transcript is constituted of 14 exons and alternate transcripts have been seen. The
coded protein is a transmembrane protein with 1-85 amino acids (aa) forming Cytoplasmic Domain, and 112-
492 aa constituting Extracellular domain. (B) Expression levels as median read count per base as shades of
blue from low to high values indicating exons expression in different tissues in GTEx portal. Gene models
of alternate transcripts are also depicted. Interesting to note exons coding for the extracellular domain have

higher expression in Lungs (row marked by blue arrow) then other exons.

Figure 13. UCSC Genome browser screenshot depicting Lung eQTLs along with SNPs and LD
structure in the TMPRSS?2 region

Lung eQTLs that overlapped with the common dbSNPs are shown and along r? values depicting LD in the
region is plotted. All the SNPs appeared to cluster towards 3° end of the gene. Other annotations include
GeneHancer regulator elements and interaction between GeneHancer regulatory elements as curved lines

can be seen. (dark blue color for TMPRSS2 gene). Alternate splicing graph is also indicated.

15


https://doi.org/10.1101/2020.04.24.050534

bioRxiv preprint doi: https://doi.org/10.1101/2020.04.24.050534; this version posted April 24, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

Figure 14. Elucidation of key functional SNPs of TMPRSS?2 and their Frequency distribution in 1000G
population groups

(a) TMPRSS2 gene eQTLs in lungs appear to cluster in the gene towards 3’ end and potentially are associated
with expression of alternative transcripts in lungs. (b) Amongst these common eQTLs, HaploReg annotations
indicated rs4818239 as an important SNP. (c) Frequency distribution on world map of rs4818239

(d) 1s75603675 (p.Gly8Val) (e) rs12329760 ( p.Vall97Met)

The frequencies of SNPs are based on 1000G populations dataset and depicted on world map by LDpop tool
of web based LDlink 4.0.3 suite from National Cancer Institute, USA. Derived allele frequencies from low

to high are plotted as shades of white to blue.

Figure 15. Sequence alignment and structure of TMPRSS2
(A) The pairwise sequence alignment shows the N-terminal difference in two isoforms and highlights two
mutation regions. (B) The predicted 3D structure of TMPRSS2 protein. Two domains of TMPRSS2 and

mutation residue are highlighted in the carton model with different colors.

Figure 16. In silico protein-protein docking analysis of TMPRSS2.

(A1) Surface Model (A2) Carton Model of TMPRSS2 (Pink) human protein interaction with ACE2 (Green)
of SARS CoV-2. (BI) Surface Model (B2) Carton Model of Docked complex of SARS CoV-2 S-protein
protein (Blue) with TMPRSS2 (Pink). (C) Comparison of docking score between wild-type and mutant
TMPRSS2 with ACE2 and SARS CoV-2 S-protein.

Figure 17. Summarised information about SLC6A19 gene and its variants

(a) Expression of TMPRSS2 in different tissues as retrieved from GTEx portal indicates very restricted
expression of the gene. Expression levels as read count in shades of purple from low to high values. Gene
models of alternate transcripts are also depicted.(b) Expression levels as median read count per base as shades
of blue from low to high values indicating exons expression in different tissues in GTEx portal. Gene models
of alternate transcripts are also depicted. (¢) SLC6A19 RNA and Protein expression in different tissues is
depicted in Human Protein Atlas online portal indicating SLC6A19 has very restricted expression in tissues
and in lungs neither its RNA nor Protein expresses. (d) UCSC genome browser screenshot highlights a
prominent Enhancer element GH05J001199 at 5’UTR of the gene overlapping exon 1 and extending in intron
1 of the gene. (e) Screenshot from UCSC genome browser depicting SNPs cluster overlapping and
intersecting enhancer region GH05J001199. It also depicts common variants (with applied filter on track for
SNPs with frequency greater than 20 percent in global populations) in dbSNP version 151. (f) eQTLs in
different tissues for SLC6A19 were plotted through GTEx Locus Browser. Size of the dot indicate level of
significance (as negative p values) whereas colour depicts positive or negative correlation with Normalized

effect size (NES) of the eQTL from -1 to 0 to 1. Red color shades represent upregulation whereas blue color
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shades show downregulation. It also depicts Linkage disequilibrium (LD) in region with value range from 0
to 1 as white to black shades with 1(dark) as absolute LD. Significant upregulation of the gene by eQTLs
was observed in Pancreas whereas downregulation in Liver and no data on Lungs as it is reported not to be

expressing in Lungs at GTEx portal.

Figure 18. Host-Pathogen Interaction Network and their significant hubs.

(A) The network view of HPIN imported from Cytoscape. The Viral proteins, Human proteins and TFs are
represented as nodes and edges denote the physical interaction. All the nodes of viral proteins (red), human
proteins (blue) and TF (green) are filled triangles, circles and V-shaped respectively. The edges between
Virus-human proteins are shown in orange-headed arrows, PPIs in grey lines and TF-human protein in pink
arrow-headed (activators) and flat-headed (Inhibitors). The significant existence of sparsely distributed few
main hub proteins, namely RPS6, NACA, HNPRNPA1, BTF3 and SUMOLI are colored as dark blue in the
network were represented in the order of four enlarged sized circles.

(B) The Module and Motif constructed and analyzed using MCODE. All the nodes and edges of module &
motif are in blue and gray color, respectively. The significant hubs, present in module & motif highlighted

in dark blue color.

Figure 19. Number of diseases associated with hub proteins.

(A) The network view where nodes represent diseases and hub proteins and edges the association between
them. (All the nodes of diseases rectangle (red), diseases highly associated with hub proteins rectangle (light
green) and hub proteins circle (cyan) are filled color and edges in lines (grey).

(B) The pie chart graph showing the percentage distribution of each hub proteins associated with diseases.

Figure 20. Topological characteristics of the HPIN and hub removal.

(A) The figure illustrates the network properties, such as in-degree, out-degree, clustering coefficient,
neighbourhood connectivity in the HPIN. The In-degree (P(k)i) and out-degree (P(k)ou) distribution,
Clustering Co-efficient C(k), Neighbourhood connectivity Cn(k) is fitted to the power law distribution with
exponent values (a, B, v & p).

(B) Power law distribution with exponent values a, B, y & p of HPIN (complete), hub removed proteins

network (RPS6, NACA, HNRNPAI and BTF3).
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