A transcriptional regulatory atlas of coronavirus infection of

2 human cells

- 3 Scott A Ochsner & Neil J McKenna
- ⁴ The Signaling Pathways Project and Department of Molecular and
- 5 Cellular Biology, Baylor College of Medicine, Houston, TX 77030

6 Address Correspondence To:

7	Neil J. McKenna
8	Department of Molecular and Cellular Biology
9	Baylor College of Medicine
10	Houston, TX 77030
11	USA
12	e: <u>nmckenna@bcm.edu</u>
13	t: 713-798-8568
14	

15 Abstract

Identifying transcriptional responses that are most consistently associated with 16 experimental coronavirus (CoV) infection can help illuminate human cellular signaling 17 pathways impacted by CoV infection. Here, we distilled over 3,000,000 data points from 18 publically archived CoV infection transcriptomic datasets into consensus regulatory 19 signatures, or consensomes, that rank genes based on their transcriptional 20 responsiveness to infection of human cells by MERS, SARS-CoV-1 and SARS-CoV-2 21 22 subtypes. We computed overlap between genes with elevated rankings in the CoV consensomes against those from transcriptomic and ChIP-Seq consensomes for nearly 23 24 880 cellular signaling pathway nodes. Validating the CoV infection consensomes, we identified robust overlap between their highly ranked genes and high confidence targets 25 of signaling pathway nodes with known roles in CoV infection. We then developed a 26 27 series of use cases that illustrate the utility of the CoV consensomes for hypothesis generation around mechanistic aspects of the cellular response to CoV infection. We 28 make the CoV infection datasets and their universe of underlying data points freely 29 accessible through the Signaling Pathways Project web knowledgebase at 30 https://www.signalingpathways.org/datasets/index.jsf. 31

33 Introduction

Infection by coronaviruses (CoV) represents a major current global public health 34 concern. Signaling within and between airway epithelial and immune cells in response 35 to infections by CoV and other viruses is coordinated by a complex network of signaling 36 37 pathway nodes. These include chemokine and cytokine-activated receptors, signaling enzymes and transcription factors, and the genomic targets encoding their downstream 38 effectors (Takeda et al., 2003; Stark et al., 1998; Darnell et al., 1994)]. We recently 39 described the Signaling Pathways Project (SPP; (Ochsner et al., 2019), an integrated 40 'omics knowledgebase designed to assist bench researchers in leveraging publically 41 archived transcriptomic and ChIP-Seg datasets to generate research hypotheses. A 42 unique aspect of SPP is its collection of consensus regulatory signatures, or 43 consensomes, which rank genes based on the frequency of their significant differential 44 expression across transcriptomic experiments mapped to a specific signaling pathway 45 node or node family. By surveying across multiple independent datasets, we have 46 shown that consensomes recapitulate pathway node-genomic target regulatory 47 relationships to a high confidence level (Ochsner et al., 2019). 48 49 Placing the transcriptional events associated with human CoV infection in context with those associated with other signaling paradigms has the potential to catalyze the 50 development of novel therapeutic approaches. The CoV research community has been 51 active in generating and archiving transcriptomic datasets documenting the 52 transcriptional response of human cells to infection by the three major CoV species, 53 54 namely, Middle East respiratory syndrome coronavirus (MERS) and severe acute respiratory syndrome coronaviruses 1 (SARS1) and 2 (SARS2) (DeDiego et al., 2011; 55

56 Josset et al., 2013; Sims et al., 2013; Yoshikawa et al., 2010). To date however the field has lacked a resource that fully capitalizes on these datasets by, firstly, using them to 57 rank human genes according to their transcriptional response to CoV infection and 58 secondly, contextualizing these transcriptional responses by integrating them with 59 omics data points relevant to host cellular signaling pathways. Here, as a service to the 60 research community to catalyze the development of novel CoV therapeutics, we 61 generated consensomes for infection of human cells by MERS, SARS1 and SARS2 62 CoVs. We then analyzed the extent to which high confidence transcriptional targets for 63 64 these viruses intersected with genes with elevated rankings in transcriptomic and ChIP-Seq consensomes for cellular signaling pathway nodes. Integration of the CoV 65 consensomes with the existing universes of SPP transcriptomic and ChIP-Seq data 66 points in a series of use cases illuminates previously uncharacterized intersections 67 between CoV infection and human cellular signaling pathways. The CoV infection 68 consensome and its underlying datasets provide researchers with a unique and freely 69 accessible framework within which to generate and pressure test hypotheses around 70 human cellular signaling pathways impacted by CoV infection. 71

72

73

75 **Results**

76 Generation of the CoV consensomes

We first set out to generate a set of consensomes ranking human genes based on the 77 frequency of their significant differential expression in response to infection by MERS, 78 79 SARS1 and SARS2 CoVs. To do this we searched the Gene Expression Omnibus (GEO) and ArrayExpress databases to identify datasets involving infection of human 80 cells by these species. From this initial collection of datasets, we next carried out a 81 82 three step quality control check as previously described (Ochsner et al., 2019), yielding a total of 3,041,047 million data points in 111 experiments from 25 independent CoV 83 infection transcriptomic datasets (Supplementary information, Section 1). Using these 84 curated datasets, we next generated consensomes for each CoV species, as well as 85 one ranking genes across all CoV infection experiments (ALL CoV). As a reference 86 consensome for a virus whose transcriptional impact on human cells has been studied 87 in depth, we also generated a consensome for human influenza A virus (IAV) infection. 88 The Supplementary information files contain the full human ALL CoV (Section 2), MERS 89 (Section 3), SARS1 (Section 4), SARS2 (Section 5) and IAV (Section 6) infection 90 transcriptomic consensomes. To assist researchers in inferring transcriptional regulation 91 92 of signaling networks, the ALL CoV consensome is annotated to indicate the identity of a gene as encoding a bioactive small molecule, receptor, signaling enzyme or 93 94 transcription factor (Supplementary information, Section 2, columns W-Z). As an initial 95 benchmark for the ALL CoV consensome, we assembled a list of 20 interferon-96 stimulated genes (ISGs), which encode many of the key canonical viral response 97 factors (Supplementary information, Section 2, column I) (Schneider et al., 2014). As

shown in the scatterplot representation of the ALL COV consensome in Figure 1, all 98 canonical ISGs were assigned appropriately elevated rankings in the consensome. 99 To gain insight into transcriptional intersections between CoV infection and human 100 cellular signaling pathways, we next computed genes with elevated rankings in the CoV 101 consensomes against genes with high confidence regulatory relationships with cellular 102 signaling pathway nodes. To do this we generated five lists of genes corresponding to 103 the ALL CoV, MERS, SARS1, SARS2 and IAV transcriptomic consensome 95th 104 percentiles. We then retrieved genes in the 95th percentiles of human transcriptomic (n 105 = 30) consensomes and ChIP-Seq (n = 834) consensomes for a collection of cellular 106 107 signaling pathway nodes, and computed the extent and significance of their overlap with genes in the 95th percentiles of each of the five CoV consensomes. Significant overlap 108 between the 95th percentiles of a node/node family consensome and a CoV 109 110 consensome would indicate a potential biological relationship between loss or gain of function of that node and the transcriptional response to CoV infection. 111 For clarity and brevity we will refer from here on to the 95th percentile of a ChIP-Seq 112 consensome as "CC95" and the 95th percentile of a transcriptomic consensome as 113 114 "TC95". Of the 834 node CC95s evaluated, 377 had significant overlap (p < 0.05) with at least one of the CoV infection TC95s; of the 30 node/node family TC95s evaluated, 25 115 had significant overlap (p< 0.05) with at least one of the CoV infection TC95s. Results of 116 these analyses are shown in Figure 2 (receptor and enzyme transcriptomic analysis), 117 Figure 3 (ChIP-Seg transcription factor analysis), Figure 4 (ChIP-Seg enzyme analysis) 118 119 and Figure 5 (ChIP-Seg co-node analysis); see also Supplementary information Section 7 for the complete numerical data. We next surveyed the significant overlaps to identify 120

121 (i) canonical inflammatory signaling pathway nodes with characterized roles in the response to CoV infection, thereby validating the consensome approach in this context; 122 and (ii) evidence for previously uncharacterized transcriptional biology of CoV infection 123 that are consistent with their roles in the response to other viral infections. 124 125 **Receptors** Reflecting their well-documented roles in the response to viral infection, we observed appreciable significant overlap between all TC95s and those for the toll-like 126 (TLR (Totura et al., 2015), interferon (IFNR (Hensley et al., 2004)) and tumor necrosis 127 factor (TNFR (W. Wang et al., 2007)) receptor families (Fig. 2). Interestingly, these 128 signatures were particularly highly enriched in the SARS2 TC95 – potentially reflecting a 129 130 particularly strong antiviral response to infection by SARS2. TC95 overlaps for receptor systems with previously uncharacterized connections to CoV infection, including 131 epidermal growth factor receptors, glucocorticoid receptor and NOTCH receptor 132 133 signaling, are consistent with the known roles of these receptor systems in the context of other viral infections (Hayward, 2004; Ito et al., 2011; Ng et al., 2013; Ostler et al., 134 2019; Zheng et al., 2014). The relatively strong enrichment for xenobiotic receptors 135 reflects work describing a role for pregnane X receptor in innate immunity (S. Wang et 136 al., 2014) and points to a potential role for members of this family in the response to 137 CoV infection. 138

Transcription factors In general, ChIP-Seq enrichments for transcription factors and other nodes were more specific for individual CoV infection TC95s (compare Fig. 2 with Figs 3, 4 and 5). This is likely due to the fact that ChIP-Seq consensomes are based on direct promoter binding by a specific node antigen, whereas transcriptomic consensomes encompass both direct and indirect targets of specific receptor and

enzyme node families. Not unexpectedly – and speaking again to validation of the 144 consensomes - the strongest and most significant CoV TC95 overlaps were observed 145 for CC95s for known transcription factor mediators of the transcriptional response to 146 CoV infection, including members of the NFkB (Ludwig & Planz, 2008; Poppe et al., 147 2017; Ruckle et al., 2012), IRF (Chiang & Liu, 2018) and STAT (Blaszczyk et al., 2016; 148 Frieman et al., 2007; Garcia-Sastre et al., 1998) transcription factor families. Consistent 149 with its known role in the regulation of interferon-stimulated genes (Hasan et al., 2013), 150 we also observed appreciable overlap between the CC95 for TFEB and the ALL CoV 151 152 TC95. Moreover, the strong overlap between the GTF2B/TFIIB CC95 and all viral TC95s reflects previous evidence identifying GTF2B as a target for orthomyxovirus 153 (Haas et al., 2018), herpes simplex virus (Gelev et al., 2014) and hepatitis B virus 154 (Haviv et al., 1998). 155

156 **Enzymes** Compared to the roles of receptors and transcription factors in the response to viral infection, the roles of signaling enzymes are less well illuminated – indeed, in the 157 context of CoV infection, they are entirely unstudied. Through their regulation of cell 158 cycle transitions, cyclin-dependent kinases play important roles in the orchestration of 159 DNA replication and cell division, processes that are critical in the viral life cycle. CDK6, 160 which has been suggested to be a critical G1 phase kinase (Bellail et al., 2014; Grossel 161 & Hinds, 2006), has been shown to be targeted by a number of viral infections, including 162 Kaposi's sarcoma-associated herpesvirus (Kaldis et al., 2001) and HIV-1 (Pauls et al., 163 164 2014). Consistent with this common role across distinct viral infections, we observed robust overlap between the CDK95 TC95 (Fig. 2) and the CDK6 CC95 (Fig. 4) and 165 those of all viral TC95s. As with the TLRs, IFNRs and TNFRs, which are known to 166

167 signal through CDK6 (Cingoz & Goff, 2018; Handschick et al., 2014; Hennessy et al., 2011), overlap with the CDK6 CC95 was particularly strong in the case of the SARS2 168 TC95 (Fig. 4). CCNT2 is a member of the highly conserved family cyclin family and. 169 along with CDK9, is a member of the viral-targeted p-TEFB complex (Zaborowska et al., 170 2016). Reflecting a potential general role in viral infection, appreciable overlap was 171 172 observed between the CCNT2 CC95 and all viral TC95s (Fig. 4). Finally in the context of enzymes, DNA Topoisomerase (TOP1) has been shown to be required for efficient 173 replication of simian virus 40 (Wobbe et al., 1987) and Ebola (Takahashi et al., 2013) 174 175 viruses. The prominent overlap between its CC95 and those of SARS2 and IAV (Fig. 4) suggest that it may play a similar role in facilitating the replication of these viruses. 176 Co-nodes We have coined the term "co-nodes" as a convenient catch-all for cellular 177 factors that are not members of the three principal signaling pathway node categories 178 179 (receptors, enzymes and transcription factors; Ochsner et al., 2019). The breadth of functions encompassed by members of this category reflects the diverse mechanisms 180 employed both by viruses to infect and propagate in cells, as well as by hosts to mount 181 an efficient immune response. Consistent with its characterized role in the recruitment 182 of p-TEFB by IV-1 Tat protein (Schulze-Gahmen et al., 2013), we observed consistently 183 strong enrichment of the AFF4 CC95 in all viral TC95s (Fig. 5). The targeting of CNOT3 184 185 for degradation in response to adenoviral infection (Chalabi Hagkarim et al., 2018) is reflected in the significant overlap between its CC95 and the viral TC95s, particularly in 186 the case of the SARS2 (Fig. 5). 187

By way of additional independent validation of the CoV and IAV consensomes, Gene
Set Enrichment Analysis (Subramanian et al., 2005) reflected significant overlap

190 between the CoV and IAV TC95s and a variety of viral infection and inflammatory

transcription factor target gene sets (Supplementary information Section 8).

192

193 Use cases

194 Having established the reliability of the consensome approach in the context of CoV

infection, we next wished to use the CoV consensomes to gather evidence to identify

196 previously uncharacterized mediators of the transcriptional response to infection by

197 CoVs and, of particular current interest, SARS2.

198

199 Use case 1: consensome redundancy analysis identifies potential

200 uncharacterized players in the response to CoV infection

We previously showed (Figs. 2 and 3) that the overlap of the CoV TC95 genes was 201 most robust among consensomes for members of the IFNR. TLR and TNF receptor 202 families (Fig. 2), and the NFkB, RELA, IRF and STAT transcription factor families (fig. 203 5). To investigate this further, we ranked genes in the ALL CoV consensome by their 204 aggregate 80th percentile rankings across these consensomes (Supplementary 205 information, Section 2, column V). Transcriptomic consensomes for IFNRs (Section 9), 206 TLRs (Section 10) and TNFRs (Section 11) are provided in Supplementary information. 207 208 as are links to the ChIP-Atlas lists used to generate the ChIP-Seq consensomes (Section 12). 209

210	This redundancy ranking elevates genes with known critical roles in the response to
211	viral infection that are acutely responsive to a spectrum of inflammatory signaling
212	nodes, such as NCOA7 (Doyle et al., 2018), STAT (Chapgier et al., 2009) and TAP1
213	(Gruter et al., 1998). Interestingly, genes such as PSMB9, CSRNP1 and MRPL24 have
214	ALL CoV discovery rates that are comparable to or exceed those of many of the classic
215	viral response ISGs (Fig. 1), but are either largely or completely uncharacterized in the
216	context of viral infection. This use case the reflects the potential of consensome-driven
217	data mining to illuminate novel and potentially therapeutically relevant transcription
218	pathway effectors in the response to CoV infection.
219	
220	Use case 2: discrimination between genes frequently differentially expressed in
221	response to CoV, but not IAV, infection
222	We next wished to gain insight into signaling paradigms that were selectively
222 223	We next wished to gain insight into signaling paradigms that were selectively characteristic of CoV infection but not IAV infection. To do this we generated a set of
223	characteristic of CoV infection but not IAV infection. To do this we generated a set of
223 224	characteristic of CoV infection but not IAV infection. To do this we generated a set of genes that were frequently differentially expressed in response to CoV infection (ALL
223 224 225	characteristic of CoV infection but not IAV infection. To do this we generated a set of genes that were frequently differentially expressed in response to CoV infection (ALL CoV TC99), but less frequently expressed in response to IAV infection (50 th percentile)
223 224 225 226	characteristic of CoV infection but not IAV infection. To do this we generated a set of genes that were frequently differentially expressed in response to CoV infection (ALL CoV TC99), but less frequently expressed in response to IAV infection (50 th percentile) (Table 1). Interestingly, this group contained two genes encoding transcription factors
223 224 225 226 227	characteristic of CoV infection but not IAV infection. To do this we generated a set of genes that were frequently differentially expressed in response to CoV infection (ALL CoV TC99), but less frequently expressed in response to IAV infection (50 th percentile) (Table 1). Interestingly, this group contained two genes encoding transcription factors with well characterized roles in the regulation of oscillatory gene expression, <i>PER1</i> and
223 224 225 226 227 228	characteristic of CoV infection but not IAV infection. To do this we generated a set of genes that were frequently differentially expressed in response to CoV infection (ALL CoV TC99), but less frequently expressed in response to IAV infection (50 th percentile) (Table 1). Interestingly, this group contained two genes encoding transcription factors with well characterized roles in the regulation of oscillatory gene expression, <i>PER1</i> and <i>PER2</i> (Yamajuku et al., 2010). This led us to speculate that genomic targets of
223 224 225 226 227 228 229	characteristic of CoV infection but not IAV infection. To do this we generated a set of genes that were frequently differentially expressed in response to CoV infection (ALL CoV TC99), but less frequently expressed in response to IAV infection (50 th percentile) (Table 1). Interestingly, this group contained two genes encoding transcription factors with well characterized roles in the regulation of oscillatory gene expression, <i>PER1</i> and <i>PER2</i> (Yamajuku et al., 2010). This led us to speculate that genomic targets of transcriptional regulators of circadian rhythms might be enriched among high
223 224 225 226 227 228 229 230	characteristic of CoV infection but not IAV infection. To do this we generated a set of genes that were frequently differentially expressed in response to CoV infection (ALL CoV TC99), but less frequently expressed in response to IAV infection (50 th percentile) (Table 1). Interestingly, this group contained two genes encoding transcription factors with well characterized roles in the regulation of oscillatory gene expression, <i>PER1</i> and <i>PER2</i> (Yamajuku et al., 2010). This led us to speculate that genomic targets of transcriptional regulators of circadian rhythms might be enriched among high confidence CoV-regulated genes, but not IAV-regulated genes. Consistent with this we

233	the IAV TC95 (Fig. 2). These data indicate a hitherto uncharacterized intersection
234	between CoV signaling and the cellular oscillatory apparatus. Another gene of note in
235	this group is INHBA, encoding activin A, overexpression of which in murine lung gives
236	rise to a phenotype resembling acute respiratory distress-like syndrome (Apostolou et
237	al., 2012), a condition commonly associated with CoV infection (Totura & Bavari, 2019).
238	Other genes in the group provide evidence for the potential mechanisms of infection
239	and propagation of CoVs. TJAP1, for example, encodes a member of a family of
240	proteins involved in regulation of tight junctions, shown to be route of porcine epidemic
241	diarrhea coronavirus entry into epithelial cells (Luo et al., 2017). In addition, GON7 is a
242	member of the KEOPS complex (Wan et al., 2017), which is involved in
243	threonylcarbamoylation of tRNAs, which represent an important host facet of the
244	retroviral life cycle (Jin & Musier-Forsyth, 2019). Interestingly, another critical gene in
245	this tRNA pathway, YRDC, is the 19 th ranked gene in the ALL CoV consensome
246	(Supplementary information Section 2).
o 47	

247

Use case 3: evidence for antagonism between progesterone receptor and interferon receptor signaling in the airway epithelium

Although a lack of clinical data has so far prevented a definitive evaluation of the
connection between pregnancy and susceptibility to SARS2 infection in COVID-19,
pregnancy has been previously associated with the incidence of viral infectious
diseases, particularly respiratory infections (Sappenfield et al., 2013; Siston et al.,
2010). We were interested therefore to see consistent overlap between the
progesterone receptor (PGR) TC95 and all the viral TC95s, with the enrichment being

256 particularly evident in the case of the SARS2 TC95 (Fig. 2). To investigate the specific nature of the crosstalk implied by this overlap in the context of the airway epithelium, we 257 first identified a set of 16 genes that were in both the ALL CoV and PGR TC95s. We 258 then retrieved two SPP experiments involving treatment of A549 airway epithelial cells 259 with the PGR full antagonist RU486 (RU), alone or in combination with the GR agonist 260 261 dexamethasone (DEX). As shown in Figure 6, there was nearly unanimous correlation in the direction of regulation of all 16 genes in response to CoV infection and PGR loss 262 263 of function. These data indicate that antagonism between PGR and IFNR signaling in the airway epithelium may predispose pregnant women to infection by SARS2. 264

265

Use case 4: evidence for a role for the telomerase catalytic subunit TERT in the interferon response to viral infection

Although telomerase activation has been well characterized in the context of cell 268 immortalization by human tumor virus infection (Gewin et al., 2004; Klingelhutz et al., 269 270 1996; Yang et al., 2004), no connection has previously been made between CoV or IAV infection and telomerase. We were therefore intrigued to observe robust overlap 271 between all viral TC95s and that of the telomerase catalytic subunit TERT. In support of 272 this finding, NFkB signaling has been shown to induce expression (Yin et al., 2000) and 273 nuclear translocation (Akiyama et al., 2003) of TERT, and direct co-regulation by 274 telomerase of NFkB-dependent transcription has been linked to chronic inflammation 275 (Ghosh et al., 2012). Inspecting the ALL CoV consensome underlying data points (data 276 not shown) we found that the TERT gene was not transcriptionally induced in response 277 278 to infection by any of the CoVs, indicating that the overlap between its TC95 and those

279 of the CoVs might occur in response to an upstream regulatory signal. If functional interactions between TERT and inflammatory nodes did indeed take place in response 280 to CoV infection, we anticipated that this would be reflected in close agreement 281 regarding the direction of differential expression of CoV infection-regulated genes in 282 response to perturbation of TERT on the one hand, and on the other, to stimulation of 283 the classic viral response IFNRs. To test this hypothesis, we took the same set of 20 284 ISGs referred to previously (Fig. 1) and compared their direction of regulation across all 285 experiments underlying the ALL CoV, TERT and IFNR consensomes. For reference, the 286 287 TERT consensome (Section 13) and its underlying data points (Section 14) are provided in the Supplementary information. With respect to the IFNR and TERT data 288 289 points, we observed a nearly universal alignment in the direction of regulation of all genes tested with those in the CoV infection experiments (Fig. 6), with agreement in the 290 direction of regulation across 99% of the underlying probesets. We should note that of 291 the 1859 p < 0.05 CoV infection ISG data points, we observed repression, rather than 292 induction, in response to CoV infection in 303 (\sim 15%), which may be attributable to the 293 impact of differences in cell type, cell cycle stage or virus incubation time across the 294 295 independent experiments. Our results are consistent with a model in which activation of telomerase is a component of the human innate immune response to viral infection. 296

297

Use case 5: SARS2 infection of human cells is specifically associated with an epithelial to mesenchymal transition transcriptional signature

300 Epithelial to mesenchymal transition (EMT) is the process by which epithelial cells lose

301 their polarity and adhesive properties and acquire the migratory and invasive

302 characteristics of mesenchymal stem cells (Lamouille et al., 2014). EMT is known to contribute to pulmonary fibrosis (Hill et al., 2019) and acute interstitial pneumonia (H. Li 303 et al., 2014), both of which have been reported in connection with SARS2 infection in 304 COVID-19 (Adair & Ledermann, 2020; P. Zhou et al., 2020). Moreover, EMT is widely 305 accepted as a core component of the process by which renal tubular cells transform into 306 mesenchymal cells during the development of fibrosis in kidney disease (Y. Liu, 2006), 307 a signature comorbidity of SARS2 infection (Durvasula et al., 2020). Of the 834 CC95s 308 analyzed, overlap (p < 0.05) was specific to the SARS2 CC95 for only five; SNAI2/Slug, 309 SOX2, GATA6, CTBP1 and PRMT1. Strikingly, a literature search indicated that these 310 five nodes were connected by documented roles in in the promotion of EMT (Avasarala 311 et al., 2015; Herreros-Villanueva et al., 2013; Martinelli et al., 2017; Nieto, 2002; Sahu 312 et al., 2017). In addition to these nodes, whose C95 genes were exclusively enriched (p 313 < 0.05) in the SARS2 C95 genes, we identified several other EMT-linked nodes whose 314 CC95 genes were preferentially enriched (p < 0.05) in the SARS2 TC95 genes (Figs. 3-315 5), including the homeodomain transcription factor SIX2 (C.-A. Wang et al., 2014), 316 SMAD4 (Siraj et al., 2019), and the co-nodes PYGO2 (Chi et al., 2019), SKI (Tecalco-317 Cruz et al., 2018), BRD7 (T. Liu et al., 2017) and STAG2 (Nie et al., 2019). 318 To investigate this further, we computed overlap between the individual viral TC99s and 319 a list of 335 genes manually curated from the research literature as signature EMT 320 markers (Supplementary information Section 15; Zhao et al., 2015). Consistent with the 321

- node consensome enrichment analysis, we observed significant enrichment of
- 323 members of this gene set within the SARS2 CC99, but not those of the ALL CoV,
- 324 SARS1, MERS or IAV consensomes (Supplementary information Section 16). One

325 possible explanation for this was the fact that the SARS2 consensome was comprised of airway epithelial cell lines, whereas the SARS1 and MERS consensomes included 326 non-epithelial cell biosamples (Supplementary information Section 1). To exclude this 327 possibility therefore, we next calculated airway epithelial cell-specific consensomes for 328 SARS1 and MERS and computed overlap of their TC95s against the 864 pathway 329 330 node/node family CC95s & TC95s. We found that significant overlap with the CoV TC95s remained specific to SARS2 (data not shown), confirming that significant overlap 331 with the EMT node signature was specific to the SARS2 TC99. 332 We next applied consensome redundancy analysis (see Use case 1) to isolate a set of 333 SARS2 regulated genes (CPV P < 0.05) that were high confidence targets (i.e. in the 334 CC80) for at least two of the EMT nodes (SNAI2, SOX2, GATA6, CTBP1 and PRMT1; 335 Supplementary information, Section 4, column M). A literature survey showed that 13 of 336 337 these 21 genes had a documented connection to EMT (Supplementary information, Section 5, column N). Figure 9 compares the percentile rankings for these genes across 338 the three CoV infection consensomes and the IAV consensome. Although some EMT 339 genes, such as CXCL2 and IRF9, had elevated rankings across all four consensomes, 340 the collective EMT gene signature had a significantly higher mean percentile value in 341 342 the SARS2 consensome than in each of the three others (Fig. 9). Although EMT has been associated with infection by transmissible gastroenteritis virus 343

344 (Xia et al., 2017), this is to our knowledge the first evidence connecting CoV infection,

and specifically SARS2 infection, to EMT. Interestingly, several members of the group

of SARS2-induced EMT genes have been associated with signature pulmonary

347 comorbidities of CoV infection, including ADAR (Diaz-Pina et al., 2018), CLDN1

348 (Vukmirovic et al., 2017) and SOD2 (Gao et al., 2008). Of note in the context of these

- data is the fact that signaling through two SARS2 cellular receptors, ACE2/AT2 and
- 350 CD147/basigin, has been linked to EMT in the context of organ fibrosis (Kato et al.,
- 2011; Ruster & Wolf, 2011; C. Wang et al., 2018). Moreover, overlap between of the
- 352 CoV TC95s and the TERT CC95 was particularly robust in the case of SARS2, a finding
- of potential relevance to the fact that telomerase has been implicated in EMT (Z. Liu et
- al., 2013). Collectively, our data indicate that EMT warrants further investigation as a
- 355 SARS2-specific pathological mechanism.

356 **Development of a CoV infection cell signaling knowledgebase**

- 357 Having validated the ALL CoV consensome, we next wished to make it freely available
- to the research community for re-use in the characterization of signaling events
- associated with CoV infection. Firstly, the viral infection datasets were curated
- accordingly to our previously described protocol (Ochsner et al., 2019) made available
- 361 for browsing in the SPP Dataset listing
- 362 (https://www.signalingpathways.org/datasets/index.jsf). As with other SPP datasets, and
- 363 per FAIR data best practice, CoV infection datasets were associated with detailed
- descriptions, assigned a digital object identifier, and linked to the associated article to
- ³⁶⁵ place the dataset in its original experimental context. Loading the CoV datasets into the
- 366 SPP also automatically made the underlying data points discoverable by the SPP query
- tool Ominer (Ochsner et al., 2019). These reports represent a summary of the current
- 368 state of transcriptomic and ChIP-Seq knowledge on the regulatory relationship of a
- 369 given gene with upstream regulatory pathway nodes, or in clinical and model
- experiments. The full value of the integration of the CoV consensome with the existing

SPP framework can perhaps be best appreciated in the context of the one click links to 371 372 Ominer Regulation Reports from the individual CoV datasets. These Reports provide researchers with a wealth of contextual data on signaling pathways impacted by CoV 373 374 infection in the context of a specific gene. Table 2 shows links to Regulation Reports for the top twenty ranked genes in the ALL CoV consensome. The order of sections in the 375 Reports is Receptors, Enzymes, Transcription Factors, Co-nodes, Clinical and Models, 376 the last section including data points from the CoV infection model experiments that 377 form the basis of this study. 378

379 **Discussion**

An effective research community response to the impact of CoVs on human health 380 demands systematic exploration of the transcriptional interface between viral infection 381 382 and human cell signaling systems. It also demands routine access to existing datasets that is unhindered either by paywalls or by lack of the informatics training required to 383 manipulate archived datasets in their unprocessed state. Moreover, the substantial 384 logistical obstacles to BSL3 certification only emphasizes the need for fullest possible 385 access to, and re-usability of, existing CoV infection datasets to focus and refine 386 hypotheses prior to carrying out in vivo CoV infection experiments. To this end, we 387 generated a set of CoV infection consensomes that rank human genes by the 388 reproducibility of their significant differential expression in response to infection of 389 390 human cells by CoVs. We then computed the CoV consensomes against high 391 confidence transcriptional signatures for a broad range of cellular signaling pathway nodes, affording investigators with a broad range of signaling interests an entrez into 392 393 the study of CoV infection of human cells. The five use cases described here represent illustrative examples of the types of analyses that users are empowered to carry out in 394 the CoV infection knowledgebase. 395

To democratize access to the CoV consensome and its >3,000,000 underlying data points by the broadest possible audience, we have integrated them into the SPP database to create a cell signaling knowledgebase for CoV infection. Incorporation of the CoV data points into SPP in this manner places them in the context of millions more existing SPP data points documenting transcriptional regulatory relationships between pathway nodes and their genomic targets. In doing so, we afford users a unique

402	appreciation of the cellular signaling pathway nodes whose gain or loss of function in
403	response to CoV infection gives rise to these transcriptional patterns.
404	The human CoV and IAV consensomes and their underlying datasets are "living"
405	resources on SPP that will be updated and versioned with appropriate datasets. This
406	will be particularly important in the case of SARS2, as datasets involving infection of
407	human cells with this virus are necessarily currently limited in number. This will allow
408	for hardening of observations that are intriguing, but whose significance is currently
409	unclear, such as the overlap of the CoV TC95s with the TERT TC95, as well as the
410	enrichment of EMT genes among those with elevated rankings in the SARS2
411	consensome. We welcome feedback and suggestions from the research community for
412	the future development of the SPP CoV infection consensomes.
413	
414	
415	
416	
417	

418 Methods

419 Dataset processing and consensome analysis.

420	Differential expression values were calculated for each gene in each experiment using
421	the limma analysis package from Bioconductor then committed to the consensome
422	analysis pipeline as previously described (Ochsner et al., 2019). Briefly, the
423	consensome algorithm surveys each experiment across all datasets and ranks genes
424	according to the frequency with which they are significantly differentially expressed. For
425	each transcript, we counted the number of experiments where the significance for
426	differential expression was \leq 0.05, and then generated the binomial probability, referred
427	to as the consensome p-value (CPV), of observing that many or more nominally
428	significant experiments out of the number of experiments in which the transcript was
429	assayed, given a true probability of 0.05. A more detailed description of the
430	transcriptomic consensome algorithm is available (Ochsner et al., 2019). The
431	consensomes and underlying datasets were loaded into an Oracle 13c database and
432	made available on the SPP user interface as previously described (Ochsner et al.,
433	2019).

434 Statistical analysis

Gene Overlap analysis was performed using the Bioconductor GeneOverlap analysispackage

437 (https://www.rdocumentation.org/packages/GeneOverlap/versions/1.8.0/topics/GeneOv 438 erlap) implemented in R. Briefly, given a whole set I of IDs and two sets $A \in I$ and $B \in I$, 439 and $S = A \cap B$, GeneOverlap calculates the significance of obtaining S. The problem is

formulated as a hypergeometric distribution or a contingency table, which is solved by
Fisher's exact test. The universe for the overlap was set at a recent estimate of the total
number of coding genes in the human genome (21,500; Pertea et al., 2018). Paired
Two Sample t-Test for comparing the mean percentile ranking of EMT genes in the
MERS, SARS1, SARS2 and IAV consensomes was performed in PRISM at 12 degrees
of freedom.

446 **Consensome generation**

The procedure for generating transcriptomic consensomes has been previously 447 described (Ochsner et al., 2019). To generate the ChIP-Seg consensomes, we first 448 retrieved processed gene lists from ChIP-Atlas, which rank human genes based upon 449 450 their average MACS2 occupancy across all publically archived datasets in which a given transcription factor, enzyme or co-node is the IP antigen. Of the three stringency 451 levels available (10, 5 and 1 kb from the transcription start site), we selected the most 452 453 stringent (1 kb). According to SPP convention (Ochsner et al., 2019), we then mapped the IP antigen to its pathway node category and class, and the experimental cell line to 454 its appropriate biosample physiological system and organ. We then organized the 455 ranked lists into percentiles to generate the node ChIP-Seg consensome. 456

457 SPP web application

The SPP knowledgebase is a gene-centric Java Enterprise Edition 6, web-based application around which other gene, mRNA, protein and BSM data from external databases such as NCBI are collected. After undergoing semiautomated processing and biocuration as described above, the data and annotations are stored in SPP's

Oracle 13c database. RESTful web services exposing SPP data, which are served to 462 responsively designed views in the user interface, were created using a Flat UI Toolkit 463 with a combination of JavaScript, D3.JS, AJAX, HTML5, and CSS3. JavaServer Faces 464 465 and PrimeFaces are the primary technologies behind the user interface. SPP has been optimized for Firefox 24+, Chrome 30+, Safari 5.1.9+, and Internet Explorer 9+, with 466 validations performed in BrowserStack and load testing in LoadUIWeb. XML describing 467 each dataset and experiment is generated and submitted to CrossRef to mint DOIs 468 (Ochsner et al., 2019). 469

471 Data availability

- The entire set of data points used to generate the CoV consensome has been uploaded in an R
- 473 file to Figshare and a link included for reviewer access. The entire set of metadata for these
- data points is available in Supplementary information Section 1. Consensome data points are in
- 475 Supplementary information Sections 2-6.
- 476 SPP is freely accessible at <u>https://www.signalingpathways.org</u>. Programmatic access to all
- underlying data points and their associated metadata are supported by a RESTful API at
- 478 <u>https://www.signalingpathways.org/docs/</u>. All SPP datasets are biocurated versions of publically
- archived datasets, are formatted according to the recommendations of the FORCE11 Joint
- 480 Declaration on Data Citation Principles ⁷⁴, and are made available under a Creative Commons
- 481 CC 3.0 BY license. The original datasets are available are linked to from the corresponding SPP
- 482 datasets using the original repository accession identifiers. These identifiers are for
- 483 transcriptomic datasets, the Gene Expression Omnibus (GEO) Series (GSE); and for
- 484 cistromic/ChIP-Seq datasets, the NCBI Sequence Read Archive (SRA) study identifier (SRP).
- 485 DOIs for the consensomes and datasets are pending.

486 Code availability

- 487 The full SPP source code is available in the SPP GitHub account under a Creative Commons
- 488 CC 3.0 BY license at https://github.com/signaling-pathways-project/ominer/.

489 Acknowledgements

- 490 This work was supported by the National Institute of Diabetes, Digestive and Kidney
- 491 Diseases NIDDK Information Network U24 (DK097748), the National Cancer Institute
- 492 (CA125123) and by the Brockman Medical Research Foundation. We appreciate the
- 493 technical assistance of Apollo McOwiti and Shijing Qu of the Biostatistics and
- 494 Informatics Shared Resource of the Duncan NCI Comprehensive Cancer Center. We
- thank all investigators who archive their datasets, without whom SPP would not be
- 496 possible.
- 497

498 **Author contributions**

- 499 **Dataset biocuration:** SO
- 500 Data analysis: SO, NM
- 501 Manuscript drafting: NM

502

503 **Competing interests**

- 504 The authors declare no competing interests.
- 505
- 506

507 **References**

- Adair, L. B. 2nd, & Ledermann, E. J. (2020). Chest CT Findings of Early and
 Progressive Phase COVID-19 Infection from a US Patient. In *Radiology case reports.* https://doi.org/10.1016/j.radcr.2020.04.031
- 511 Akiyama, M., Hideshima, T., Hayashi, T., Tai, Y.-T., Mitsiades, C. S., Mitsiades, N., 512 Chauhan, D., Richardson, P., Munshi, N. C., & Anderson, K. C. (2003). Nuclear
- factor-kappaB p65 mediates tumor necrosis factor alpha-induced nuclear
- translocation of telomerase reverse transcriptase protein. *Cancer Research*, 63(1),
- 515 **18–21**.
- Apostolou, E., Stavropoulos, A., Sountoulidis, A., Xirakia, C., Giaglis, S.,
- 517 Protopapadakis, E., Ritis, K., Mentzelopoulos, S., Pasternack, A., Foster, M.,
- 518 Ritvos, O., Tzelepis, G. E., Andreakos, E., & Sideras, P. (2012). Activin-A
- overexpression in the murine lung causes pathology that simulates acute
- 520 respiratory distress syndrome. American Journal of Respiratory and Critical Care
- 521 *Medicine*, *185*(4), 382–391. https://doi.org/10.1164/rccm.201105-0784OC
- Avasarala, S., Van Scoyk, M., Karuppusamy Rathinam, M. K., Zerayesus, S., Zhao, X.,
 Zhang, W., Pergande, M. R., Borgia, J. A., DeGregori, J., Port, J. D., Winn, R. A., &
 Bikkavilli, R. K. (2015). PRMT1 Is a Novel Regulator of Epithelial-Mesenchymal Transition in Non-small Cell Lung Cancer. *The Journal of Biological Chemistry*,
 290(21), 13479–13489. https://doi.org/10.1074/jbc.M114.636050
- Barata, J. T., Durum, S. K., & Seddon, B. (2019). Flip the coin: IL-7 and IL-7R in health
 and disease. *Nature Immunology*, 20(12), 1584–1593.
 https://doi.org/10.1038/s41590-019-0479-x
- Bellail, A. C., Olson, J. J., & Hao, C. (2014). SUMO1 modification stabilizes CDK6
 protein and drives the cell cycle and glioblastoma progression. *Nature Communications*, *5*, 4234. https://doi.org/10.1038/ncomms5234
- Blaszczyk, K., Nowicka, H., Kostyrko, K., Antonczyk, A., Wesoly, J., & Bluyssen, H. A.
 R. (2016). The unique role of STAT2 in constitutive and IFN-induced transcription and antiviral responses. *Cytokine & Growth Factor Reviews*, 29, 71–81.
 https://doi.org/10.1016/j.cytogfr.2016.02.010
- Chalabi Hagkarim, N., Ryan, E. L., Byrd, P. J., Hollingworth, R., Shimwell, N. J.,
 Agathanggelou, A., Vavasseur, M., Kolbe, V., Speiseder, T., Dobner, T., Stewart,
 G. S., & Grand, R. J. (2018). Degradation of a Novel DNA Damage Response
 Protein, Tankyrase 1 Binding Protein 1, following Adenovirus Infection. *Journal of*
- 541 *Virology*, 92(12). https://doi.org/10.1128/JVI.02034-17
- Chang, B., Yang, H., Jiao, Y., Wang, K., Liu, Z., Wu, P., Li, S., & Wang, A. (2016).
 SOD2 deregulation enhances migration, invasion and has poor prognosis in
- salivary adenoid cystic carcinoma. *Scientific Reports*, 6, 25918.
- 545 https://doi.org/10.1038/srep25918

- 546 Chapgier, A., Kong, X.-F., Boisson-Dupuis, S., Jouanguy, E., Averbuch, D., Feinberg, 547 J., Zhang, S.-Y., Bustamante, J., Vogt, G., Lejeune, J., Mayola, E., de
- 548 Beaucoudrey, L., Abel, L., Engelhard, D., & Casanova, J.-L. (2009). A partial form 549 of recessive STAT1 deficiency in humans. *The Journal of Clinical Investigation*,
- 550 *119*(6), 1502–1514. https://doi.org/10.1172/JCI37083
- Chi, Y., Wang, F., Zhang, T., Xu, H., Zhang, Y., Shan, Z., Wu, S., Fan, Q., & Sun, Y.
 (2019). miR-516a-3p inhibits breast cancer cell growth and EMT by blocking the
 Pygo2/Wnt signalling pathway. *Journal of Cellular and Molecular Medicine*, 23(9),
 6295–6307. https://doi.org/10.1111/jcmm.14515
- Chiang, H.-S., & Liu, H. M. (2018). The Molecular Basis of Viral Inhibition of IRF- and
 STAT-Dependent Immune Responses. *Frontiers in Immunology*, *9*, 3086.
 https://doi.org/10.3389/fimmu.2018.03086
- Cingoz, O., & Goff, S. P. (2018). Cyclin-dependent kinase activity is required for type I
 interferon production. *Proceedings of the National Academy of Sciences of the United States of America*, *115*(13), E2950–E2959.
- 561 https://doi.org/10.1073/pnas.1720431115
- Darnell, J. E. J., Kerr, I. M., & Stark, G. R. (1994). Jak-STAT pathways and
 transcriptional activation in response to IFNs and other extracellular signaling
 proteins. *Science (New York, N.Y.)*, 264(5164), 1415–1421.
 https://doi.org/10.1126/science.8197455
- DeDiego, M. L., Nieto-Torres, J. L., Jimenez-Guardeno, J. M., Regla-Nava, J. A.,
 Alvarez, E., Oliveros, J. C., Zhao, J., Fett, C., Perlman, S., & Enjuanes, L. (2011).
 Severe acute respiratory syndrome coronavirus envelope protein regulates cell
 stress response and apoptosis. *PLoS Pathogens*, 7(10), e1002315.
 https://doi.org/10.1371/journal.ppat.1002315
- Diaz-Pina, G., Ordonez-Razo, R. M., Montes, E., Paramo, I., Becerril, C., Salgado, A.,
 Santibanez-Salgado, J. A., Maldonado, M., & Ruiz, V. (2018). The Role of ADAR1
 and ADAR2 in the Regulation of miRNA-21 in Idiopathic Pulmonary Fibrosis. *Lung*, *196*(4), 393–400. https://doi.org/10.1007/s00408-018-0115-9
- Doherty, M. R., Cheon, H., Junk, D. J., Vinayak, S., Varadan, V., Telli, M. L., Ford, J.
 M., Stark, G. R., & Jackson, M. W. (2017). Interferon-beta represses cancer stem cell properties in triple-negative breast cancer. *Proceedings of the National Academy of Sciences of the United States of America*, *114*(52), 13792–13797. https://doi.org/10.1073/pnas.1713728114
- Doyle, T., Moncorge, O., Bonaventure, B., Pollpeter, D., Lussignol, M., Tauziet, M.,
 Apolonia, L., Catanese, M.-T., Goujon, C., & Malim, M. H. (2018). The interferon inducible isoform of NCOA7 inhibits endosome-mediated viral entry. *Nature Microbiology*, 3(12), 1369–1376. https://doi.org/10.1038/s41564-018-0273-9
- 584 Durvasula, R., Wellington, T., McNamara, E., & Watnick, S. (2020). COVID-19 and 585 Kidney Failure in the Acute Care Setting: Our Experience From Seattle. In

586 American journal of kidney diseases : the official journal of the National Kidney 587 Foundation. https://doi.org/10.1053/j.ajkd.2020.04.001

- Ercolano, G., De Cicco, P., Rubino, V., Terrazzano, G., Ruggiero, G., Carriero, R.,
 Kunderfranco, P., & Ianaro, A. (2019). Knockdown of PTGS2 by CRISPR/CAS9
 System Designates a New Potential Gene Target for Melanoma Treatment.
- 591 *Frontiers in Pharmacology*, *10*, 1456. https://doi.org/10.3389/fphar.2019.01456
- Frieman, M., Yount, B., Heise, M., Kopecky-Bromberg, S. A., Palese, P., & Baric, R. S.
 (2007). Severe acute respiratory syndrome coronavirus ORF6 antagonizes STAT1
 function by sequestering nuclear import factors on the rough endoplasmic
 reticulum/Golgi membrane. *Journal of Virology*, *81*(18), 9812–9824.
 https://doi.org/10.1128/JVI.01012-07
- Gao, F., Kinnula, V. L., Myllarniemi, M., & Oury, T. D. (2008). Extracellular superoxide
 dismutase in pulmonary fibrosis. *Antioxidants & Redox Signaling*, *10*(2), 343–354.
 https://doi.org/10.1089/ars.2007.1908

 Garcia-Sastre, A., Durbin, R. K., Zheng, H., Palese, P., Gertner, R., Levy, D. E., &
 Durbin, J. E. (1998). The role of interferon in influenza virus tissue tropism. *Journal* of *Virology*, 72(11), 8550–8558.

Gaucher, J., Montellier, E., & Sassone-Corsi, P. (2018). Molecular Cogs: Interplay
 between Circadian Clock and Cell Cycle. *Trends in Cell Biology*, *28*(5), 368–379.
 https://doi.org/10.1016/j.tcb.2018.01.006

Gelev, V., Zabolotny, J. M., Lange, M., Hiromura, M., Yoo, S. W., Orlando, J. S.,
Kushnir, A., Horikoshi, N., Paquet, E., Bachvarov, D., Schaffer, P. A., & Usheva, A.
(2014). A new paradigm for transcription factor TFIIB functionality. *Scientific Reports*, *4*, 3664. https://doi.org/10.1038/srep03664

- Gewin, L., Myers, H., Kiyono, T., & Galloway, D. A. (2004). Identification of a novel
 telomerase repressor that interacts with the human papillomavirus type-16 E6/E6 AP complex. *Genes & Development*, *18*(18), 2269–2282.
- 613 https://doi.org/10.1101/gad.1214704
- Ghosh, A., Saginc, G., Leow, S. C., Khattar, E., Shin, E. M., Yan, T. D., Wong, M.,
 Zhang, Z., Li, G., Sung, W.-K., Zhou, J., Chng, W. J., Li, S., Liu, E., & Tergaonkar,
 V. (2012). Telomerase directly regulates NF-kappaB-dependent transcription. *Nature Cell Biology*, *14*(12), 1270–1281. https://doi.org/10.1038/ncb2621
- Grossel, M. J., & Hinds, P. W. (2006). Beyond the cell cycle: a new role for Cdk6 in
 differentiation. *Journal of Cellular Biochemistry*, *97*(3), 485–493.
 https://doi.org/10.1002/jcb.20712
- Gruter, P., Tabernero, C., von Kobbe, C., Schmitt, C., Saavedra, C., Bachi, A., Wilm,
 M., Felber, B. K., & Izaurralde, E. (1998). TAP, the human homolog of Mex67p,
 mediates CTE-dependent RNA export from the nucleus. *Molecular Cell*, 1(5), 649–
- 624 659. https://doi.org/10.1016/s1097-2765(00)80065-9

- Haas, D. A., Meiler, A., Geiger, K., Vogt, C., Preuss, E., Kochs, G., & Pichlmair, A.
 (2018). Viral targeting of TFIIB impairs de novo polymerase II recruitment and
- affects antiviral immunity. *PLoS Pathogens*, 14(4), e1006980.
- 628 https://doi.org/10.1371/journal.ppat.1006980
- Handschick, K., Beuerlein, K., Jurida, L., Bartkuhn, M., Muller, H., Soelch, J., Weber, A.,
 Dittrich-Breiholz, O., Schneider, H., Scharfe, M., Jarek, M., Stellzig, J., Schmitz, M.
 L., & Kracht, M. (2014). Cyclin-dependent kinase 6 is a chromatin-bound cofactor
 for NF-kappaB-dependent gene expression. *Molecular Cell*, *53*(2), 193–208.
- 633 https://doi.org/10.1016/j.molcel.2013.12.002
- Hasan, M., Koch, J., Rakheja, D., Pattnaik, A. K., Brugarolas, J., Dozmorov, I., Levine,
 B., Wakeland, E. K., Lee-Kirsch, M. A., & Yan, N. (2013). Trex1 regulates
 lysosomal biogenesis and interferon-independent activation of antiviral genes. *Nature Immunology*, *14*(1), 61–71. https://doi.org/10.1038/ni.2475
- Haviv, I., Shamay, M., Doitsh, G., & Shaul, Y. (1998). Hepatitis B virus pX targets TFIIB
 in transcription coactivation. *Molecular and Cellular Biology*, *18*(3), 1562–1569.
 https://doi.org/10.1128/mcb.18.3.1562
- Hayward, S. D. (2004). Viral interactions with the Notch pathway. Seminars in Cancer
 Biology, *14*(5), 387–396. https://doi.org/10.1016/j.semcancer.2004.04.018
- Hennessy, E. J., Sheedy, F. J., Santamaria, D., Barbacid, M., & O'Neill, L. A. J. (2011).
 Toll-like receptor-4 (TLR4) down-regulates microRNA-107, increasing macrophage
 adhesion via cyclin-dependent kinase 6. *The Journal of Biological Chemistry*,
 286(29), 25531–25539. https://doi.org/10.1074/jbc.M111.256206
- Hensley, L. E., Fritz, L. E., Jahrling, P. B., Karp, C. L., Huggins, J. W., & Geisbert, T. W.
 (2004). Interferon-beta 1a and SARS coronavirus replication. *Emerging Infectious Diseases*, *10*(2), 317–319. https://doi.org/10.3201/eid1002.030482
- Herreros-Villanueva, M., Zhang, J.-S., Koenig, A., Abel, E. V, Smyrk, T. C., Bamlet, W.
 R., de Narvajas, A. A.-M., Gomez, T. S., Simeone, D. M., Bujanda, L., & Billadeau,
 D. D. (2013). SOX2 promotes dedifferentiation and imparts stem cell-like features
 to pancreatic cancer cells. *Oncogenesis*, 2, e61.
- 654 https://doi.org/10.1038/oncsis.2013.23
- Hill, C., Jones, M. G., Davies, D. E., & Wang, Y. (2019). Epithelial-mesenchymal
 transition contributes to pulmonary fibrosis via aberrant epithelial/fibroblastic crosstalk. *Journal of Lung Health and Diseases*, *3*(2), 31–35.
- Ito, T., Allen, R. M., Carson, W. F. 4th, Schaller, M., Cavassani, K. A., Hogaboam, C.
 M., Lukacs, N. W., Matsukawa, A., & Kunkel, S. L. (2011). The critical role of Notch
 ligand Delta-like 1 in the pathogenesis of influenza A virus (H1N1) infection. *PLoS Pathogens*, 7(11), e1002341. https://doi.org/10.1371/journal.ppat.1002341
- Jiang, R., Li, Y., Xu, Y., Zhou, Y., Pang, Y., Shen, L., Zhao, Y., Zhang, J., Zhou, J.,
 Wang, X., & Liu, Q. (2013). EMT and CSC-like properties mediated by the

- 664 IKKbeta/IkappaBalpha/RelA signal pathway via the transcriptional regulator, Snail,
- are involved in the arsenite-induced neoplastic transformation of human
- keratinocytes. *Archives of Toxicology*, 87(6), 991–1000.
- 667 https://doi.org/10.1007/s00204-012-0933-0
- Jin, D., & Musier-Forsyth, K. (2019). Role of host tRNAs and aminoacyl-tRNA
 synthetases in retroviral replication. *The Journal of Biological Chemistry*, 294(14),
 5352–5364. https://doi.org/10.1074/jbc.REV118.002957
- Jordan, N. V., Prat, A., Abell, A. N., Zawistowski, J. S., Sciaky, N., Karginova, O. A.,
 Zhou, B., Golitz, B. T., Perou, C. M., & Johnson, G. L. (2013). SWI/SNF chromatinremodeling factor Smarcd3/Baf60c controls epithelial-mesenchymal transition by
 inducing Wnt5a signaling. *Molecular and Cellular Biology*, 33(15), 3011–3025.
 https://doi.org/10.1128/MCB.01443-12
- Josset, L., Menachery, V. D., Gralinski, L. E., Agnihothram, S., Sova, P., Carter, V. S.,
 Yount, B. L., Graham, R. L., Baric, R. S., & Katze, M. G. (2013). Cell host response
 to infection with novel human coronavirus EMC predicts potential antivirals and
 important differences with SARS coronavirus. *MBio*, *4*(3), e00165-13.
 https://doi.org/10.1128/mBio.00165-13
- Kaldis, P., Ojala, P. M., Tong, L., Makela, T. P., & Solomon, M. J. (2001). CAKindependent activation of CDK6 by a viral cyclin. *Molecular Biology of the Cell*, *12*(12), 3987–3999. https://doi.org/10.1091/mbc.12.12.3987
- Kato, N., Kosugi, T., Sato, W., Ishimoto, T., Kojima, H., Sato, Y., Sakamoto, K.,
 Maruyama, S., Yuzawa, Y., Matsuo, S., & Kadomatsu, K. (2011). Basigin/CD147
 promotes renal fibrosis after unilateral ureteral obstruction. *The American Journal*of *Pathology*, *178*(2), 572–579. https://doi.org/10.1016/j.ajpath.2010.10.009
- Klingelhutz, A. J., Foster, S. A., & McDougall, J. K. (1996). Telomerase activation by the
 E6 gene product of human papillomavirus type 16. *Nature*, *380*(6569), 79–82.
 https://doi.org/10.1038/380079a0
- Kolosionek, E., Savai, R., Ghofrani, H. A., Weissmann, N., Guenther, A., Grimminger,
 F., Seeger, W., Banat, G. A., Schermuly, R. T., & Pullamsetti, S. S. (2009).
 Expression and activity of phosphodiesterase isoforms during epithelial
 mesenchymal transition: the role of phosphodiesterase 4. *Molecular Biology of the Cell*, 20(22), 4751–4765. https://doi.org/10.1091/mbc.e09-01-0019
- Kuo, W.-Y., Wu, C.-Y., Hwu, L., Lee, J.-S., Tsai, C.-H., Lin, K.-P., Wang, H.-E., Chou,
 T.-Y., Tsai, C.-M., Gelovani, J., & Liu, R.-S. (2015). Enhancement of tumor initiation
 and expression of KCNMA1, MORF4L2 and ASPM genes in the adenocarcinoma
 of lung xenograft after vorinostat treatment. *Oncotarget*, *6*(11), 8663–8675.
 https://doi.org/10.18632/oncotarget.3536
- Lamouille, S., Xu, J., & Derynck, R. (2014). Molecular mechanisms of epithelial mesenchymal transition. *Nature Reviews. Molecular Cell Biology*, *15*(3), 178–196.
 https://doi.org/10.1038/nrm3758

- Li, H., Zhang, J., Song, X., Wang, T., Li, Z., Hao, D., Wang, X., Zheng, Q., Mao, C., Xu,
 P., & Lv, C. (2014). Alveolar epithelial cells undergo epithelial-mesenchymal
 transition in acute interstitial pneumonia: a case report. *BMC Pulmonary Medicine*,
 14, 67. https://doi.org/10.1186/1471-2466-14-67
- Li, N., Gou, J.-H., Xiong, J., You, J.-J., & Li, Z.-Y. (2020). HOXB4 promotes the
 malignant progression of ovarian cancer via DHDDS. *BMC Cancer*, *20*(1), 222.
 https://doi.org/10.1186/s12885-020-06725-4
- Liu, T., Zhao, M., Liu, J., He, Z., Zhang, Y., You, H., Huang, J., Lin, X., & Feng, X.-H.
 (2017). Tumor suppressor bromodomain-containing protein 7 cooperates with
 Smads to promote transforming growth factor-beta responses. *Oncogene*, *36*(3),
 362–372. https://doi.org/10.1038/onc.2016.204
- Liu, X., Fu, Y., Huang, J., Wu, M., Zhang, Z., Xu, R., Zhang, P., Zhao, S., Liu, L., &
 Jiang, H. (2019). ADAR1 promotes the epithelial-to-mesenchymal transition and
 stem-like cell phenotype of oral cancer by facilitating oncogenic microRNA
 maturation. *Journal of Experimental & Clinical Cancer Research : CR*, *38*(1), 315.
 https://doi.org/10.1186/s13046-019-1300-2
- Liu, Y. (2006). Renal fibrosis: new insights into the pathogenesis and therapeutics.
 Kidney International, 69(2), 213–217. https://doi.org/10.1038/sj.ki.5000054
- Liu, Z., Li, Q., Li, K., Chen, L., Li, W., Hou, M., Liu, T., Yang, J., Lindvall, C., Bjorkholm,
 M., Jia, J., & Xu, D. (2013). Telomerase reverse transcriptase promotes epithelial mesenchymal transition and stem cell-like traits in cancer cells. *Oncogene*, *32*(36),
 4203–4213. https://doi.org/10.1038/onc.2012.441
- Ludwig, S., & Planz, O. (2008). Influenza viruses and the NF-kappaB signaling pathway
 towards a novel concept of antiviral therapy. *Biological Chemistry*, 389(10), 1307–
 1312. https://doi.org/10.1515/BC.2008.148
- Luo, X., Guo, L., Zhang, J., Xu, Y., Gu, W., Feng, L., & Wang, Y. (2017). Tight Junction
 Protein Occludin Is a Porcine Epidemic Diarrhea Virus Entry Factor. *Journal of Virology*, *91*(10). https://doi.org/10.1128/JVI.00202-17
- Martinelli, P., Carrillo-de Santa Pau, E., Cox, T., Sainz, B. J., Dusetti, N., Greenhalf, W.,
 Rinaldi, L., Costello, E., Ghaneh, P., Malats, N., Buchler, M., Pajic, M., Biankin, A.
 V, Iovanna, J., Neoptolemos, J., & Real, F. X. (2017). GATA6 regulates EMT and
 tumour dissemination, and is a marker of response to adjuvant chemotherapy in
 pancreatic cancer. *Gut*, *66*(9), 1665–1676. https://doi.org/10.1136/gutjnl-2015311256
- Mendoza-Rodriguez, M., Arevalo Romero, H., Fuentes-Panana, E. M., Ayala-Sumuano,
 J.-T., & Meza, I. (2017). IL-1beta induces up-regulation of BIRC3, a gene involved
 in chemoresistance to doxorubicin in breast cancer cells. *Cancer Letters*, 390, 39–
 44. https://doi.org/10.1016/j.canlet.2017.01.005
- Ng, S. S. M., Li, A., Pavlakis, G. N., Ozato, K., & Kino, T. (2013). Viral infection

- 743 increases glucocorticoid-induced interleukin-10 production through ERK-mediated 744 phosphorylation of the glucocorticoid receptor in dendritic cells: potential clinical implications. *PloS One*, 8(5), e63587. https://doi.org/10.1371/journal.pone.0063587 745
- Nie, Z., Gao, W., Zhang, Y., Hou, Y., Liu, J., Li, Z., Xue, W., Ye, X., & Jin, A. (2019). 746 747 STAG2 loss-of-function mutation induces PD-L1 expression in U2OS cells. Annals of Translational Medicine, 7(7), 127. https://doi.org/10.21037/atm.2019.02.23 748
- Nieto, M. A. (2002). The snail superfamily of zinc-finger transcription factors. Nature 749 Reviews. Molecular Cell Biology, 3(3), 155–166. https://doi.org/10.1038/nrm757 750
- 751 Ochsner, S. A., Abraham, D., Martin, K., Ding, W., McOwiti, A., Kankanamge, W., Wang, Z., Andreano, K., Hamilton, R. A., Chen, Y., Hamilton, A., Gantner, M. L., 752 753 Dehart, M., Qu, S., Hilsenbeck, S. G., Becnel, L. B., Bridges, D., Ma'ayan, A., Huss, J. M., ... McKenna, N. J. (2019). The Signaling Pathways Project, an 754 755 integrated 'omics knowledgebase for mammalian cellular signaling pathways. 756 Scientific Data, 6(1), 252. https://doi.org/10.1038/s41597-019-0193-4
- Ostler, J. B., Harrison, K. S., Schroeder, K., Thunuguntla, P., & Jones, C. (2019). The 757 Glucocorticoid Receptor (GR) Stimulates Herpes Simplex Virus 1 Productive 758 Infection, in Part Because the Infected Cell Protein 0 (ICP0) Promoter Is 759 Cooperatively Transactivated by the GR and Kruppel-Like Transcription Factor 15. 760 761 Journal of Virology, 93(6). https://doi.org/10.1128/JVI.02063-18
- Pauls, E., Ruiz, A., Badia, R., Permanyer, M., Gubern, A., Riveira-Munoz, E., Torres-762 763 Torronteras, J., Alvarez, M., Mothe, B., Brander, C., Crespo, M., Menendez-Arias, 764 L., Clotet, B., Keppler, O. T., Marti, R., Posas, F., Ballana, E., & Este, J. A. (2014). Cell cycle control and HIV-1 susceptibility are linked by CDK6-dependent CDK2 765 phosphorylation of SAMHD1 in myeloid and lymphoid cells. Journal of Immunology 766 (Baltimore, Md.: 1950), 193(4), 1988-1997. 767
- https://doi.org/10.4049/jimmunol.1400873 768
- Pertea, M., Shumate, A., Pertea, G., Varabyou, A., Breitwieser, F. P., Chang, Y.-C., 769 Madugundu, A. K., Pandey, A., & Salzberg, S. L. (2018). CHESS: a new human 770 gene catalog curated from thousands of large-scale RNA sequencing experiments 771 reveals extensive transcriptional noise. Genome Biology, 19(1), 208. 772
- https://doi.org/10.1186/s13059-018-1590-2 773
- 774 Poppe, M., Wittig, S., Jurida, L., Bartkuhn, M., Wilhelm, J., Muller, H., Beuerlein, K., Karl, N., Bhuju, S., Ziebuhr, J., Schmitz, M. L., & Kracht, M. (2017). The NF-775 776 kappaB-dependent and -independent transcriptome and chromatin landscapes of human coronavirus 229E-infected cells. PLoS Pathogens, 13(3), e1006286. 777 778 https://doi.org/10.1371/journal.ppat.1006286
- 779 Ruckle, A., Haasbach, E., Julkunen, I., Planz, O., Ehrhardt, C., & Ludwig, S. (2012). The NS1 protein of influenza A virus blocks RIG-I-mediated activation of the 780 noncanonical NF-kappaB pathway and p52/RelB-dependent gene expression in 781 lung epithelial cells. Journal of Virology, 86(18), 10211–10217. 782
- https://doi.org/10.1128/JVI.00323-12 783

Ruster, C., & Wolf, G. (2011). Angiotensin II as a morphogenic cytokine stimulating
 renal fibrogenesis. *Journal of the American Society of Nephrology : JASN*, 22(7),
 1189–1199. https://doi.org/10.1681/ASN.2010040384

Sahu, S. K., Tiwari, N., Pataskar, A., Zhuang, Y., Borisova, M., Diken, M., Strand, S.,
Beli, P., & Tiwari, V. K. (2017). FBXO32 promotes microenvironment underlying
epithelial-mesenchymal transition via CtBP1 during tumour metastasis and brain
development. *Nature Communications*, 8(1), 1523. https://doi.org/10.1038/s41467017-01366-x

- Sappenfield, E., Jamieson, D. J., & Kourtis, A. P. (2013). Pregnancy and susceptibility
 to infectious diseases. *Infectious Diseases in Obstetrics and Gynecology*, 2013,
 752852. https://doi.org/10.1155/2013/752852
- Schneider, W. M., Chevillotte, M. D., & Rice, C. M. (2014). Interferon-stimulated genes:
 a complex web of host defenses. *Annual Review of Immunology*, *32*, 513–545.
 https://doi.org/10.1146/annurev-immunol-032713-120231
- Schulze-Gahmen, U., Upton, H., Birnberg, A., Bao, K., Chou, S., Krogan, N. J., Zhou,
 Q., & Alber, T. (2013). The AFF4 scaffold binds human P-TEFb adjacent to HIV
 Tat. *ELife*, 2, e00327. https://doi.org/10.7554/eLife.00327
- Sims, A. C., Tilton, S. C., Menachery, V. D., Gralinski, L. E., Schafer, A., Matzke, M. M.,
 Webb-Robertson, B.-J. M., Chang, J., Luna, M. L., Long, C. E., Shukla, A. K.,
 Bankhead, A. R. 3rd, Burkett, S. E., Zornetzer, G., Tseng, C.-T. K., Metz, T. O.,
 Pickles, R., McWeeney, S., Smith, R. D., ... Baric, R. S. (2013). Release of severe
 acute respiratory syndrome coronavirus nuclear import block enhances host
 transcription in human lung cells. *Journal of Virology*, *87*(7), 3885–3902.
 https://doi.org/10.1128/JVI.02520-12
- Siraj, A. K., Pratheeshkumar, P., Divya, S. P., Parvathareddy, S. K., Bu, R., Masoodi,
 T., Kong, Y., Thangavel, S., Al-Sanea, N., Ashari, L. H., Abduljabbar, A., AlHomoud, S., Al-Dayel, F., & Al-Kuraya, K. S. (2019). TGFbeta-induced SMAD4dependent Apoptosis Proceeded by EMT in CRC. *Molecular Cancer Therapeutics*, *18*(7), 1312–1322. https://doi.org/10.1158/1535-7163.MCT-18-1378
- Siston, A. M., Rasmussen, S. A., Honein, M. A., Fry, A. M., Seib, K., Callaghan, W. M.,
 Louie, J., Doyle, T. J., Crockett, M., Lynfield, R., Moore, Z., Wiedeman, C., Anand,
 M., Tabony, L., Nielsen, C. F., Waller, K., Page, S., Thompson, J. M., Avery, C., ...
 Jamieson, D. J. (2010). Pandemic 2009 influenza A(H1N1) virus illness among
 pregnant women in the United States. *JAMA*, *303*(15), 1517–1525.
 https://doi.org/10.1001/jama.2010.479
- Stark, G. R., Kerr, I. M., Williams, B. R., Silverman, R. H., & Schreiber, R. D. (1998).
 How cells respond to interferons. *Annual Review of Biochemistry*, 67, 227–264.
 https://doi.org/10.1146/annurev.biochem.67.1.227
- Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A.,
 Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., & Mesirov, J. P. (2005).

- Gene set enrichment analysis: a knowledge-based approach for interpreting
- genome-wide expression profiles. *Proceedings of the National Academy of*
- 826 Sciences of the United States of America, 102(43), 15545–15550.
- 827 https://doi.org/10.1073/pnas.0506580102
- Suh, Y., Yoon, C.-H., Kim, R.-K., Lim, E.-J., Oh, Y. S., Hwang, S.-G., An, S., Yoon, G., Gye, M. C., Yi, J.-M., Kim, M.-J., & Lee, S.-J. (2013). Claudin-1 induces epithelial-
- mesenchymal transition through activation of the c-Abl-ERK signaling pathway in
- human liver cells. *Oncogene*, 32(41), 4873–4882.
- 832 https://doi.org/10.1038/onc.2012.505
- Takahashi, K., Halfmann, P., Oyama, M., Kozuka-Hata, H., Noda, T., & Kawaoka, Y.
 (2013). DNA topoisomerase 1 facilitates the transcription and replication of the
 Ebola virus genome. *Journal of Virology*, *87*(16), 8862–8869.
 https://doi.org/10.1128/JVI.03544-12
- Takeda, K., Kaisho, T., & Akira, S. (2003). Toll-like receptors. *Annual Review of Immunology*, *21*, 335–376.
- 839 https://doi.org/10.1146/annurev.immunol.21.120601.141126
- Taki, M., Abiko, K., Baba, T., Hamanishi, J., Yamaguchi, K., Murakami, R., Yamanoi, K.,
 Horikawa, N., Hosoe, Y., Nakamura, E., Sugiyama, A., Mandai, M., Konishi, I., &
 Matsumura, N. (2018). Snail promotes ovarian cancer progression by recruiting
 myeloid-derived suppressor cells via CXCR2 ligand upregulation. *Nature Communications*, 9(1), 1685. https://doi.org/10.1038/s41467-018-03966-7
- Tecalco-Cruz, A. C., Rios-Lopez, D. G., Vazquez-Victorio, G., Rosales-Alvarez, R. E., &
 Macias-Silva, M. (2018). Transcriptional cofactors Ski and SnoN are major
 regulators of the TGF-beta/Smad signaling pathway in health and disease. *Signal Transduction and Targeted Therapy*, *3*, 15. https://doi.org/10.1038/s41392-018 0015-8
- Totura, A. L., & Bavari, S. (2019). Broad-spectrum coronavirus antiviral drug discovery.
 Expert Opinion on Drug Discovery, *14*(4), 397–412.
 https://doi.org/10.1080/17460441.2019.1581171
- Totura, A. L., Whitmore, A., Agnihothram, S., Schafer, A., Katze, M. G., Heise, M. T., &
 Baric, R. S. (2015). Toll-Like Receptor 3 Signaling via TRIF Contributes to a
 Protective Innate Immune Response to Severe Acute Respiratory Syndrome
 Coronavirus Infection. *MBio*, 6(3), e00638-15. https://doi.org/10.1128/mBio.0063815
- Vukmirovic, M., Herazo-Maya, J. D., Blackmon, J., Skodric-Trifunovic, V., Jovanovic, D.,
 Pavlovic, S., Stojsic, J., Zeljkovic, V., Yan, X., Homer, R., Stefanovic, B., &
 Kaminski, N. (2017). Identification and validation of differentially expressed
 transcripts by RNA-sequencing of formalin-fixed, paraffin-embedded (FFPE) lung
 tissue from patients with Idiopathic Pulmonary Fibrosis. *BMC Pulmonary Medicine*, *17*(1), 15. https://doi.org/10.1186/s12890-016-0356-4

Wan, L. C. K., Maisonneuve, P., Szilard, R. K., Lambert, J.-P., Ng, T. F., Manczyk, N.,
Huang, H., Laister, R., Caudy, A. A., Gingras, A.-C., Durocher, D., & Sicheri, F.
(2017). Proteomic analysis of the human KEOPS complex identifies C14ORF142
as a core subunit homologous to yeast Gon7. *Nucleic Acids Research*, *45*(2), 805–
817. https://doi.org/10.1093/nar/gkw1181

- Wang, C.-A., Drasin, D., Pham, C., Jedlicka, P., Zaberezhnyy, V., Guney, M., Li, H.,
 Nemenoff, R., Costello, J. C., Tan, A.-C., & Ford, H. L. (2014). Homeoprotein Six2
 promotes breast cancer metastasis via transcriptional and epigenetic control of E cadherin expression. *Cancer Research*, 74(24), 7357–7370.
- https://doi.org/10.1158/0008-5472.CAN-14-0666
- Wang, C., Zhang, J., Fok, K. L., Tsang, L. L., Ye, M., Liu, J., Li, F., Zhao, A. Z., Chan,
 H. C., & Chen, H. (2018). CD147 Induces Epithelial-to-Mesenchymal Transition by
 Disassembling Cellular Apoptosis Susceptibility Protein/E-Cadherin/beta-Catenin
 Complex in Human Endometriosis. *The American Journal of Pathology*, *188*(7),
 1597–1607. https://doi.org/10.1016/j.ajpath.2018.03.004
- Wang, K., & Li, J. (2016). Overexpression of ANXA3 is an independent prognostic
 indicator in gastric cancer and its depletion suppresses cell proliferation and tumor
 growth. *Oncotarget*, 7(52), 86972–86984.
 https://doi.org/10.18632/oncotarget.13493
- Wang, S., Lei, T., Zhang, K., Zhao, W., Fang, L., Lai, B., Han, J., Xiao, L., & Wang, N.
 (2014). Xenobiotic pregnane X receptor (PXR) regulates innate immunity via
 activation of NLRP3 inflammasome in vascular endothelial cells. *The Journal of Biological Chemistry*, 289(43), 30075–30081.
- 887 https://doi.org/10.1074/jbc.M114.578781
- Wang, W., Ye, L., Ye, L., Li, B., Gao, B., Zeng, Y., Kong, L., Fang, X., Zheng, H., Wu,
 Z., & She, Y. (2007). Up-regulation of IL-6 and TNF-alpha induced by SARScoronavirus spike protein in murine macrophages via NF-kappaB pathway. *Virus Research*, *128*(1–2), 1–8. https://doi.org/10.1016/j.virusres.2007.02.007
- Wei, C.-Y., Zhu, M.-X., Yang, Y.-W., Zhang, P.-F., Yang, X., Peng, R., Gao, C., Lu, J.C., Wang, L., Deng, X.-Y., Lu, N.-H., Qi, F.-Z., & Gu, J.-Y. (2019). Downregulation
 of RNF128 activates Wnt/beta-catenin signaling to induce cellular EMT and
 stemness via CD44 and CTTN ubiquitination in melanoma. *Journal of Hematology*& Oncology, 12(1), 21. https://doi.org/10.1186/s13045-019-0711-z
- Wobbe, C. R., Dean, F. B., Murakami, Y., Borowiec, J. A., Bullock, P., & Hurwitz, J.
 (1987). In vitro replication of DNA containing either the SV40 or the polyoma origin. *Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences*, *317*(1187), 439–453. https://doi.org/10.1098/rstb.1987.0071
- Xia, L., Dai, L., Yu, Q., & Yang, Q. (2017). Persistent Transmissible Gastroenteritis
 Virus Infection Enhances Enterotoxigenic Escherichia coli K88 Adhesion by
 Promoting Epithelial-Mesenchymal Transition in Intestinal Epithelial Cells. *Journal* of Virology, 91(21). https://doi.org/10.1128/JVI.01256-17

Xu, C.-B., Liu, X.-S.-B.-J., Li, J.-Q., Zhao, X., Xin, D., & Yu, D. (2019). microRNA-539
functions as a tumor suppressor in papillary thyroid carcinoma via the transforming
growth factor beta1/Smads signaling pathway by targeting secretory leukocyte
protease inhibitor. *Journal of Cellular Biochemistry*, *120*(6), 10830–10846.
https://doi.org/10.1002/jcb.28374

- Yamajuku, D., Shibata, Y., Kitazawa, M., Katakura, T., Urata, H., Kojima, T., Nakata, O.,
 & Hashimoto, S. (2010). Identification of functional clock-controlled elements
 involved in differential timing of Per1 and Per2 transcription. *Nucleic Acids Research*, 38(22), 7964–7973. https://doi.org/10.1093/nar/gkg678
- Yang, J., Deng, X., Deng, L., Gu, H., Fan, W., & Cao, Y. (2004). Telomerase activation
 by Epstein-Barr virus latent membrane protein 1 is associated with c-Myc
 expression in human nasopharyngeal epithelial cells. *Journal of Experimental & Clinical Cancer Research : CR*, 23(3), 495–506.
- Yin, L., Hubbard, A. K., & Giardina, C. (2000). NF-kappa B regulates transcription of the
 mouse telomerase catalytic subunit. *The Journal of Biological Chemistry*, 275(47),
 36671–36675. https://doi.org/10.1074/jbc.M007378200
- Yoshikawa, T., Hill, T. E., Yoshikawa, N., Popov, V. L., Galindo, C. L., Garner, H. R.,
 Peters, C. J., & Tseng, C.-T. K. (2010). Dynamic innate immune responses of
 human bronchial epithelial cells to severe acute respiratory syndrome-associated
 coronavirus infection. *PloS One*, *5*(1), e8729.
 https://doi.org/10.1371/journal.pone.0008729
- Zaborowska, J., Isa, N. F., & Murphy, S. (2016). P-TEFb goes viral. *BioEssays : News and Reviews in Molecular, Cellular and Developmental Biology, 38 Suppl 1*, S75 https://doi.org/10.1002/bies.201670912
- Zhang, L., Wang, X., Lai, C., Zhang, H., & Lai, M. (2019). PMEPA1 induces EMT via a
 non-canonical TGF-beta signalling in colorectal cancer. *Journal of Cellular and Molecular Medicine*, 23(5), 3603–3615. https://doi.org/10.1111/jcmm.14261
- Zhao, M., Kong, L., Liu, Y., & Qu, H. (2015). dbEMT: an epithelial-mesenchymal
 transition associated gene resource. *Scientific Reports*, *5*, 11459.
 https://doi.org/10.1038/srep11459
- Zheng, K., Kitazato, K., & Wang, Y. (2014). Viruses exploit the function of epidermal
 growth factor receptor. *Reviews in Medical Virology*, *24*(4), 274–286.
 https://doi.org/10.1002/rmv.1796
- 938 Zhou, F., Geng, J., Xu, S., Meng, Q., Chen, K., Liu, F., Yang, F., Pan, B., & Yu, Y.
- 939 (2019). FAM83A signaling induces epithelial-mesenchymal transition by the
 940 PI3K/AKT/Snail pathway in NSCLC. *Aging*, *11*(16), 6069–6088.
- 941 https://doi.org/10.18632/aging.102163

Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li,
B., Huang, C.-L., Chen, H.-D., Chen, J., Luo, Y., Guo, H., Jiang, R.-D., Liu, M.-Q.,

- Chen, Y., Shen, X.-R., Wang, X., ... Shi, Z.-L. (2020). A pneumonia outbreak
- associated with a new coronavirus of probable bat origin. *Nature*, 579(7798), 270–
- 946 273. https://doi.org/10.1038/s41586-020-2012-7

949 Figure Titles Legends

- 950 Figure 1. Ranking of ISGs in the human ALL CoV infection transcriptomic
- 951 **consensome.** See Supplementary information, Section 2, column I.
- 952 Figure 2. GeneOverlap analysis of CoV and IAV TC95s and SPP receptor or
- 953 **enzyme TC95s.** OR: Odds ratio. All ORs are p < 0.05. Numerical data are provided in
- 954 Supplementary information Section 8.
- 955 Figure 3. GeneOverlap analysis of CoV and IAV TC95s and ChIP-Atlas

956 transcription factor CC95s. OR: Odds ratio. All ORs are p < 0.05. Numerical data are

- provided in Supplementary information Section 8.
- 958 Figure 4. GeneOverlap analysis of CoV and IAV TC95s and ChIP-Atlas enzyme
- 959 **CC95s.** OR: Odds ratio. Numerical data are provided in Supplementary information
- 960 Section 8. All ORs are p < 0.05.
- 961 Figure 5. GeneOverlap analysis of CoV and IAV TC95s and ChIP-Atlas co-node
- 962 **CC95s.** OR: Odds ratio. Numerical data are provided in Supplementary information
- 963 Section 8. All ORs are p < 0.05.
- 964 Figure 6. Antagonism between PGR and IFNR signaling in the regulation of viral
- response genes in the airway epithelium. PGR loss of function experiments were
- 966 retrieved from GSE17307 (SPP DOI 10.1621/xigKzGn1se).
- 967 Figure 7. Conservation of polarity of differential expression in CoV, IFNR and
- 968 **TERT perturbation transcriptomic experiments across diverse canonical**
- 969 interferon-inducible viral response genes. Positive/negative regulatory relationship
- of TERT with a transcriptional target was inferred from the design of the underlying

971	experiments: this was loss of function for experiments in GSE77014 (MST132 inhibitor)
972	and GSE60175 (shRNA), and gain of function in E-MEXP-563 (overexpression). All
973	IFNR experiments were gain of function using characterized physiological ligands for
974	members of the family.
975	Figure 8. Identification of a SARS2 epithelial to mesenchymal transcriptional
976	signature. Note that the SARS2 genes are all in the 99 th percentile and are therefore
977	superimposed in the scatterplot. Indicated are the results of the Paired Two Sample for
978	Means t-Test comparing the Relative Ranks of the genes in the SARS2 consensome
979	with those in the SARS1, MERS and IAV consensomes.

981 Tables

Table 1. Genes in the 99th %ile of the ALL CoV consensome and the 50th

983

percentile of the IAV consensome

		CONSENS	OME %ILE
Symbol	Name	All CoV	IAV
GEM	GTP binding protein overexpressed in skeletal muscle	99	43
DHRS1	dehydrogenase/reductase 1	99	43
NIPSNAP3A	nipsnap homolog 3A	99	43
SFSWAP	splicing factor SWAP	99	43
GON7	GON7 subunit of KEOPS complex	99	39
INHBA	inhibin subunit beta A	99	37
PDZK1	PDZ domain containing 1	99	37
PER1	period circadian regulator 1	99	33
PAQR6	progestin and adipoQ receptor family member 6	99	33
IFT20	intraflagellar transport 20	99	33
ZNF628	zinc finger protein 628	99	33
KANSL1	KAT8 regulatory NSL complex subunit 1	99	33
CREB5	cAMP responsive element binding protein 5	99	27
PER2	period circadian regulator 2	99	17
TJAP1	tight junction associated protein 1	99	17

984


985

987 Table 2. Links to SPP Regulation Reports for the top 20 ranked genes in the ALL

988

CoV consensome

Symbol	Name	Link
JUN	Jun proto-oncogene, AP-1 transcription factor subunit	SPP Regulation Report
DUSP1	dual specificity phosphatase 1	SPP Regulation Report
FOS	Fos proto-oncogene, AP-1 transcription factor subunit	SPP Regulation Report
EGR1	early growth response 1	SPP Regulation Report
CXCL2	C-X-C motif chemokine ligand 2	SPP Regulation Report
TNFAIP3	TNF alpha induced protein 3	SPP Regulation Report
IER2	immediate early response 2	SPP Regulation Report
CCNL1	cyclin L1	SPP Regulation Report
PIM3	Pim-3 proto-oncogene, serine/threonine kinase	SPP Regulation Report
CSRNP1	cysteine and serine rich nuclear protein 1	SPP Regulation Report
FOSB	FosB proto-oncogene, AP-1 transcription factor subunit	SPP Regulation Report
ZC3H12A	zinc finger CCCH-type containing 12A	SPP Regulation Report
ZFP36	ZFP36 ring finger protein	SPP Regulation Report
BHLHE40	basic helix-loop-helix family member e40	SPP Regulation Report
RELB	RELB proto-oncogene, NF-kB subunit	SPP Regulation Report
EGR2	early growth response 2	SPP Regulation Report
NFKBIA	NFKB inhibitor alpha	SPP Regulation Report
BCL3	BCL3 transcription coactivator	SPP Regulation Report
YRDC	yrdC N6-threonylcarbamoyltransferase domain containing	SPP Regulation Report
IFIT1	interferon induced protein with tetratricopeptide repeats 1	SPP Regulation Report

				CORON	AVIRUS		
Category	Class	Family	ALL	SARS1	SARS2	MERS	IAV
Receptors	Catalytic	Collagen receptors					
		Epidermal growth factor receptors					
		Fibroblast growth factor receptors					
		Insulin receptors					
		Interferon receptors					
		Toll-like receptors					
		Transforming growth factor β receptors					
		Tumor necrosis factor receptors					
	G protein-coupled	Frizzled receptors					
	Nuclear	Androgen receptor					
		Estrogen receptors					
		Estrogen related receptors					
		Glucocorticoid receptor					
		Peroxisome proliferator-activated receptors					
		Progesterone receptor					
		Retinoic acid receptors					
		Retinoid X receptors					
		Vitamin D receptors					
		Xenobiotic Receptors					
	Others	NOTCH receptors					
Enzymes	Kinases	ABL family kinases					
		Cyclin-dependent kinases					
		SRC kinases					
	Telomerases	TERT					
	Topoisomerases	Topoisomerases					

Odds	ratio
	>8
	8
	7
	6
	5
	4
	3
	2
	1

				RONAVIR			,				_	CORONA		<u> </u>
s	Family	Node	ALL S	ARS1 SAR	S2 MERS	IAV		Class	Family	Node	ALL	SARS1 S	ARS2 MERS	IAV
) domain	ARID1 family	ARID1A							Small Maf factors	MAFG				
	ARID2 family	ARID2								MAFK				
	ARID3 family	ARID3A						C2H2 Zn finger	B-cell lymphoma 13 (BCL13)	BCL11B				
LH	Ahr-like family	AHR							B-cell lymphoma 2 (BCL12)	BCL11A				
		EPAS1							BCL6 factors	BCL6				
		HIF1A							CTCF-like	CTCF				
	AP-2 family	TFAP2A							Early growth response (EGR)	EGR1				
		TFAP2C							GFI1 factors	GFI1				
	AP-4 family	TFAP4			_					GLI2				
	Arnt-like factors	ARNT							Hypermethylated in Cancer	HIC1				
	Arrite like factors	ARNTL							Ikaros family	IKZF1				
	E2A-related factors	TCF12							Kruppel-like	KLF1				
	EZA-related factors								Kruppel-like					
		TCF3								KLF11			_	
		TCF4								KLF4				
	Hairy-related	BHLHE40								KLF5				
		HEY1							Kruppel-like	KLF6				
	Mad-like factors	MXI1							MAZ-like	MAZ				
	MESP	TCF21							REST	REST				
	Mondo-like factors	MLXIP							Snail-like	SNAI2				
	Myc / Max factors	MAX							Sp1-like	SP1				
		MYC								SP2				
		MYCN								SP4				
	Myogenic transcription factors	MYF5							ZBTB17	ZBTB17				
		MYOD1							ZBTB7	ZBTB7A				
	Neurogenin-Atonal like	NEUROD1							ZFX/ZFY factors	ZFX				
	SREBP factors	SREBF1							ZNF24-like factors	ZKSCAN1				
		SREBF2							ZNF263	ZNF263				
	TFE3-like factors	MITF							ZNF362-like	ZNF384				
		TFEB							ZNF366-like factors	ZNF366				
	Twist-like factors	HAND2							ZNF639-like	ZNF711				
		USF1							ZNF76-like	ZNF143				
b	ATF-2-like factors	ATF2							ZNF83	ZNF83				
	ATF-3-like factors	ATF3							ZNF92	ZNF92				
	ATT-5-like factors	JDP2							ZNF99-like	ZBTB48				
	ATF-4-related factors	ATF4						CXXC zinc finger	CpG-binding proteins	CXXC1			-	
	B-ATF-related factors	BATF						Fork head / winged helix	E2F family	E2F6				
								Fork head / winged helix	· · · · · · · · · · · · · · · · · · ·					
	C/EBP family	CEBPA							FOXA family	FOXA1			_	
		CEBPB								FOXA2			_	
		CEBPD							FOXF family	FOXF1			_	
		DDIT3							FOXK family	FOXK1				
	CREB-like factors	CREB1							FOXM family	FOXM1			_	
	Fos factors	FOS							FOXO family	FOXO1				
		FOSL1							FOXP family	FOXP1				
		FOSL2							FOXP family	FOXP2				
	Jun factors	JUN							Regulatory factor X (RFX)	RFX5				
		JUNB						Grainyhead domain factors	CP2-related	TFCP2				
		JUND						Heat shock factors	HSF family	HSF1				
	Large Maf factors	MAF						Heteromeric CCAAT	, Heteromeric CCAAT-binding	NFYA				
	NF-E2-like factors	BACH2								NFYB				
		NFE2L2								NFYC				

					IAVIRU							CORONAVIR		
Class	Family	Node	ALL	SARS1	SARS	2 MERS	IAV	Class	Family	Node	ALL	SARS1 SARS	2 MERS	IAV
HMG domain	Group B	SOX2							GTFs	GTF2F1				
		SOX3								GTF3C5				
	Group E	SOX9						Others	bromodomain PHD finger	BPTF				
	TCF-7-related	TCF7L2						Others	Notch receptors	NOTCH1				
	UBF-related	UBTF						p53 domain	p53-related factors	TP53				
	WHSC1-related	SSRP1						p53 domain		TP63				
Homeo domain	Caudal type homeobox (CDX)	CDX2						Paired box	PAX-2-like factors	PAX5				
	HNF1-like factors	HNF1B						Rel Homology Region	Early B-Cell Factor-related	EBF1				
	HOX4	HOXA4								EBF3				
	HOX5 family	HOXC5							IkappaB-related factors	BCL3				
	, HOX6-7	HOXA6							M	RBPJ				
	NK-2.1	NKX2-1							NFAT-related factors	NFATC1				
	Oct-1/2-like (POU2)	POU2F2							NF-kappaB p50 subunit-like	NFKB1				
	Orthodenticle homeobox	OTX2							NI -Kappab poo subunit-like	NFKB2				
	PBX	PBX1								REL				
	1.57	PBX1 PBX3								RELA				
		PBX4								RELB				
	SIX1-like factors	SIX2						Runt domain	Core hinding footor suburits	CBFB				
								Runt domain	Core-binding factor subunits				_	
	TLX	TLX1								RUNX1				
	ZHX family	ZHX2								RUNX1T1			_	
	Zn finger E-box binding	ZEB1								RUNX2				_
MADS box	Myocyte enhancer factor 2	MEF2A			_					RUNX3				
		MEF2B						SMAD/NF1 DBD	Co-activating (Co) Smads	SMAD4				_
		MEF2C							Regulatory (R) Smads	SMAD2				
	Responders to external signals	SRF								SMAD3				
Nuclear receptors	Androgen receptor	AR						STAT domain	STAT factors	STAT1				
	COUP-TF-like receptors	NR2F2								STAT2				
	Estrogen receptors	ESR1								STAT3				
	Estrogen-related receptors	ESRRA								STAT4				
	Glucocorticoid receptor	NR3C1								STAT5B				
	HNF4 receptors	HNF4A						TATA-binding proteins	TBP-related factors	TBP				
		HNF4G						TEA domain	TEF-1-related factors	TEAD1				
	Liver X receptors	NR1H2								TEAD4				
		NR1H3						Tryptophan cluster	EHF-like	ELF3				
	NGFBI-like (NR4A) receptors	NR4A1							Elf-1-like	ELF1				
	PPARs	PPARG							Elk-like	ELK1				
	Progesterone receptor	PGR								ELK4				
	Retinoid X receptors	RXRA								ETV1				
	Vitamin D receptor	VDR								ETV4				
Other C4 zinc finger	Single GATA-type zinc-finger	MTA3								ETV5				
state. e4 zine miger	single on a type zine miger	TRPS1							Ets-like	ERG				
	Two zinc-finger GATA factors	GATA1							Ets like	FLI1				-
	Two zinc-iniger GATA factors	GATA1 GATA2								GABPA	<u> </u>			
									later former annulations					
		GATA3							Interferon-regulatory	IRF1				
		GATA4								IRF2				
		GATA6								IRF4				
Other regulators	Canonical HMG	HMGB1								IRF8	L			
		HMGB2							Myb-like	MYB				
	GTFs	GTF2B								MYBL2				
									Spi-like	SPI1				

 Iog10 OR

 >1

 0.9

 0.8

 0.7

 0.6

 0.5

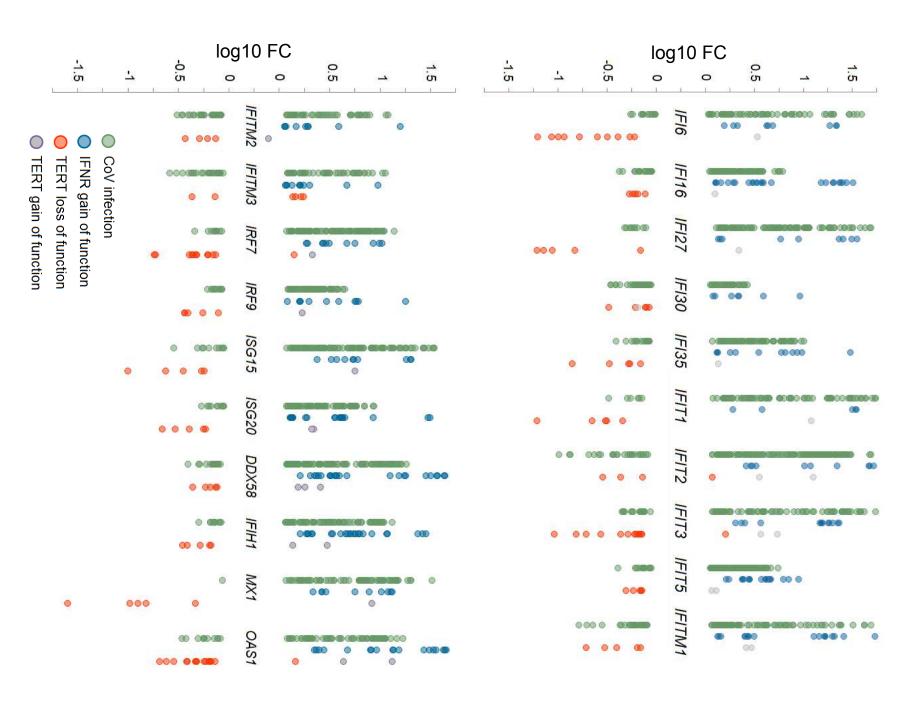
 0.4

 0.3

 0.2

 0.1

			-	CORON			
Class	Family	Node	ALL	SARS1	SARS2	MERS	IAV
Acetyltransferases	CBP/p300	CREBBP					
		EP300					
	Lysine acetyltransferases (KAT)	KAT5					
		KAT7					
	Nuclear receptor coactivator (NCOA)	NCOA1					
Deacetylases	Histone deacetylases (HDAC)	HDAC1					
		HDAC2					
Demethylases	Histone-H3-lysine-36 demethylases (KDM)	JMJD1C					
		KDM1A					
		KDM2B					
		KDM4C					
		KDM5A					
		KDM5B					
		KDM5D					
		KDM6A					
		KDM6B					
	jumonji domain containing	JWID 6					
Dioxygenases	Ten-eleven translocation (TET)	TET2					
E3 ubiquitin ligases	Breast cancer associated (BRCA)	BRCA1					
	Cullins (CUL)	CUL4A					
	Protein inhibitor of activated STAT (PIAS)	PIAS1					
	Tripartite motif-containing (TRIM)	TRIM24					
		TRIM24					
		TRIM25					
Helicases	Chromodomain-helicases-DNA binding (CHD)	CHD1					
TellCases	ERCC excision repair (ERCC)						
hudua la ana	,	ERCC2					
Hydrolases	Recombination activating	RAG1					
<i>n</i>		RAG2					
(inases	Cyclin-dependent kinases (CDK)	CDK6					
		CDK7					
		CDK8					
		CDK9					
	Mammalian target of rapamycin (MTOR)	MTOR					
	Mitogen-activated protein kinases (MAPK)	MAPK14					
	protein kinase, DNA-activated, catpeptide	PRKDC					
Vethyltransferases	DNA (cytosine-5-)-methyltransferases (DNMT)	DNMT3A					
	Histone-lysine N-methyltransferases (KMT)	KMT2A					
		KMT2B					
		KMT2C					
	Protein arginine methyltransferases (PRMT)	PRMT1					
	SET domain-containing (SETD)	SETD1A					
Regulatory factors	Cyclin-dependent kinase inhibitors (CDKN)	CDKN1B					
	Cyclins (CCN)	CCND2					
		CCNT2					
	Protein phosphatase 1 regulatory subunits	APC					
	······································	NONO					
		SFPQ					
lopoisomerases	DNA topoisomerases (TOP)	TOP1					
opoisoinerases	DivA topoisonierases (TOP)	1071					


log1	0 OR
	>1
	1
	0.9
	0.8
	0.7
	0.6
	0.5
	0.4
	0.3
	0.2
	0.1

Class	Family	Node	ALL	SARS1	AVIRU:		IAV
		BRD2	ALL	SARSI	SARSZ	IVIERS	IAV
Bromodomain	BET family	BRD2 BRD3					
		BRD4					
		BRD7					
		BRD9					
	BRPF family	BRD9 BRD1					
	BRPFiamily	BRPF3					
Chromatin remodellers	SMARCA-like	SMARCA4					
chiomatimemodellers	SMARCC-like	SMARCC1					
	SWARCC-IKe	SMARCC2					
Cytoskeleton factors	Lamins (LMN)	LMNA					
cytoskeleton lactors	Lamins (LMN)	LMNB1					
GTFs	TAFs	TAF1					
5115	IAI3	TAF3					
		TAF7					
Plant homeodomain (PHD) finge	r Double PHD fingers (DPF)	DPF2					
lane nonreodoniali (i rib) ilige	PHD finger proteins (PHF)	PHF2					
		PHF8					
	Pygopus family PHD finger (PYGO)	PYGO2					
Polycomb group (PcG)	ASXL transcriptional regulator (ASXL)	ASXL1					
	Embryonic ectoderm development	EED					
PR domain	PR/SET domain family	PRDM11					
RNA binding motif	Argonaute/PIWI family	AGO1					
and binding moti	A Bolladicy I will failing	AGO2					
	Heterogeneous nuclear ribonucleoprotein (HNRNP)	HNRNPL					
	necessigeneous nuclear ribonucleoprotein (FINRIP)	HNRNPL					
	Negative elongation factor complex member (NLEF)						
	Nebarive elongation raciol complex member (NLEF)	NELFA					
	RNA binding motif (RBM)						
	NAS BINNING HIGH (KDIVI)	RBM22 RBM25					
	RNA binding protein for 1 homeles (RREOV)	RBFOX2					
	RNA binding protein, fox-1 homolog (RBFOX)						
	U2 small nuclear RNA auxiliary factor (U2AF)	U2AF2	<u> </u>				
Franscriptional regulators	Others	TARDBP HMGN1					
i ranscriptional regulators	Canonical high mobility group proteins (HMGN)	HMGN1 HMGN3					
	CCR4-NOT transcription complex subunits (CNOT)	CNOT3					
	CREB regulated transcription coactivator (CRTC)	CRTC2					
	Histone cell cycle regulator	HIRA					
	Integrator complex subunits	INTS12					
	integrator complex subunits	INTS13					
		INTS3					
	MEDIATOR Complex	MED1					
	MEDIATOR Complex	MED26					
	Nuclear receptor corepressor	NCOR1					
	Nuclear receptor corepressor	NCOR2					
	Paf1/RNA polymerase II complex	LEO1					
	rait/ NVA polymerase in complex	PAF1					
	Sin3A associated proteins	SAP30					
	SKI transcriptional corepressors	SKI					
Tripartite motif	Promyelocytic leukemia	PML					
WD repeat proteins	Transducin beta like	TBL1XR1					
WD Tepeat proteins	Transducin like enhancer of split	TLE3					
Zinc finger	Zinc finger MIZ-type (ZMIZ)	ZMIZ1					
Elite hinger	Zinc fingers RANBP2-type	RYBP					
Others	AF4/FMR2 family	AFF4					
	Chromobox family	CBX3					
	Cohesin complex	STAG2					
	Condensin II	NCAPH2		-			
	C-terminal binding protein (CTBP)	CTBP1		-			
	DDB1 and CUL4 associated factors	PHIP		-			
	Decapping mRNA (DCP)	DCP1A					
	Delangin	NIPBL					
	Fanconi anemia complementation groups	BRCA2					
	Hexamethylene bisacetamide inducible	HEXIM1					
	Host cell factors	HCFC1					
	Inhibitor of growth (ING)	ING5					
	La ribonucleoprotein domain containing	LARP7					
	Mastermind-like	MAML1					
	Methyl-CpG Binding Domain (MBD)	MBD3					
	Myosin heavy chains	MYH11					
	Nuclear factor 1	NFIC					
	Nuclear factor 1 Nuclear protein coactivator of histone transcription	NPAT					
	Nuclear respiratory factor	NRF1					
	PRAME family	PRAME					
	RB binding proteins	RBBP5					
	the strong process	RBBP7					
	retinol binding protein	RBP1					
	Small ubiquitin-like modifier	SUM01					
	sman ubiquitin-like moullier						
	Structural maintenance of chrom	SUMO2	-				
	Structural maintenance of chromosomes proteins	SMC1A					
	Commence of Tar Education	SMC3					
	Suppressor of Ty 5 homolog	SUPT5H					
	Tudor domain containing	TP53BP1					
	WD repeat domain containing	PRPF4					
	WTAP complex	BCLAF1					
	X-ray repair cross complementing	XRCC5					
	Yes associated protein (YAP)	YAP1					
	Others	CPSF3					
		FIP1L1					

log1	0 OR
	>1
	1
	0.9
	0.8
	0.7
	0.6
	0.5
	0.4
	0.3
	0.2
	0.1

			log10 FC PGR I	oss of function				
Symbol	Name	log10 FC SARS2	RU/DEX vs V	RU vs V (DEX)	0.60			
CXCL2	C-X-C motif chemokine ligand 2	0.33	0.57		<u><u></u></u>		RU/DEX vs V	1
IL1B	interleukin 1 beta	0.30	0.30	0.29	S2)		RU vs V (DE)	X)
TNFAIP3	TNF alpha induced protein 3	0.34	0.27		0.40 -			-
NFKBIA	NFKB inhibitor alpha	0.19	0.24		SP SP		•	
ISG15	ISG15 ubiquitin like modifier	0.88	0.23	0.27		o 🎱 o 🔵		
STAT1	signal transducer and activator of transcription 1	0.29	0.21	0.14	U L	• •		
ISG20	interferon stimulated exonuclease gene 20	0.14	0.20	0.22	0.20		•	
IFI35	interferon induced protein 35	0.32	0.19	0.19	log1	•••		
IFITM2	interferon induced transmembrane protein 2	0.14	0.18	0.23	<u> </u>			
IFIT3	interferon induced protein with tetratricopeptide repeats	0.45	0.16	0.26	0.00	•		
OAS1	2'-5'-oligoadenylate synthetase 1	0.49	0.16	0.28	0.00		1	
IFITM3	interferon induced transmembrane protein 3	0.24	0.16	0.20	0.00	0.20	0.40 0.60	0.80
CXXC5	CXXC finger protein 5	-0.14	0.14	0.29				
IER3	immediate early response 3	0.20		0.53	-0.20	•		
MYD88	MYD88 innate immune signal transduction adaptor	0.07		0.19	-0.20	log10	FC (PGR LOF)	
CXCL1	C-X-C motif chemokine ligand 1	0.32		0.18			(

EPITHELIAL TO MESENCHYMAL TRANSITION (EMT) GENES			CONSENS	OME %ILE]				3 8E 03	3.2E-03	1.6E-02		
Symbol	Name	SARS2	SARS1	MERS	IAV	EMT REFERENCE		400	_	5.0L-05	J.ZL-0J	1.02-02	
ADAR	adenosine deaminase RNA specific	99	96	43	98	Liu et al., 2019		100 -] 📍		8	9	
ANXA3	annexin A3	99	80	86	43	Wang & Li, 2016	<u>e</u>				8		
BIRC3	baculoviral IAP repeat containing 3	99	98	96	94	Mendoza et al., 2017	ntile	80 -	-	8	8	ŏ	
CLDN1	claudin 1	99	47	83	97	Suh et al., 2013	e e			0			SARS
CXCL2	C-X-C motif chemokine ligand 2	99	99	99	99	Taki et al., 2018	20	60 -		0	•		SARS
DHDDS	dehydrodolichyl diphosphate synthase subunit	99	23	49	43	Li et al., 2020	be	60 -		0			
FAM83A	family with sequence similarity 83 member A	99	31	3	47	Zhou et al., 2019	це –			0	0		
IRF9	interferon regulatory factor 9	99	99	91	99	Doherty et al., 2017	l S	40 -	-		0		IAV
KCNMA1	potassium calcium-activated channel subfamily M alpha	99	10	2	10	Kuo et al., 2015	ensome			0			
PDE4B	phosphodiesterase 4B	99	61	99	82	Kolosionek et al., 2009	S	20 -		\circ			
RNF128	ring finger protein 128	99	84	60	86	Wei et al., 2019	Con	20		-			
RRAGD	Ras related GTP binding D	99	76	79	94	Jordan et al., 2013				\circ	•		
SOD2	superoxide dismutase 2	99	84	91	97	Chang et al., 2016		0 -					