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Abstract  

Powerful technologies have been developed to probe chromatin 3D physical interactions genome-wide, 
such as Hi-C, GAM and SPRITE. Due to their intrinsic differences and without a benchmarking reference, 
it is currently difficult to assess how well each method represents the genome 3D structure and their 
relative performance. Here, we develop a computational approach to implement Hi-C, GAM and SPRITE 
in-silico to compare the three methods in a simplified, yet controlled framework against known polymer 
3D structures. We test our approach on models of three 6-Mb genomic regions, around the Sox9 and 
the HoxD genes in mouse ES cells, and around the Epha4 gene in mouse CHLX-12 cells. The model-
derived contact matrices consistently match Hi-C, GAM and SPRITE experiments. We show that in-silico 
Hi-C, GAM and SPRITE average data are overall faithful to the 3D structures of the polymer models. We 
find that the inherent variability of model single-molecule 3D conformations and experimental 
efficiency differently affect the contact data of the different methods. Similarly, the noise-to-signal 
levels vary with genomic distance differently in in-silico Hi-C, SPRITE and GAM. We benchmark the 
performance of each technology in bulk and in single-cell experiments, and identify the minimal 
number of cells required for replicates to return statistically consistent chromatin contact measures. 
Under the same experimental conditions, SPRITE requires the lowest number of cells, Hi-C is close to 
SPRITE, while GAM is the most reproducible method to capture interactions at large genomic distances. 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 25, 2020. ; https://doi.org/10.1101/2020.04.24.059915doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.24.059915
http://creativecommons.org/licenses/by-nc-nd/4.0/


INTRODUCTION 

The 3-dimensional (3D) organization of chromosomes in the nucleus of cells has a crucial role in the 
regulation of genomic activities and transcriptional programs1–7. To access genome-wide information 
on chromatin architecture and DNA interactions, a number of sequencing approaches are currently 
being developed8, while high-resolution microscopy is rapidly advancing9–12. Sequencing approaches 
include 3C-based methods, such as Hi-C and its developments13–19, Genome Architecture Mapping 
(GAM)20 and Split-Pool Recognition of Interactions by Tag Extension (SPRITE)21. These approaches have 
shown that the mammalian genome has a complex 3D organization where functional contacts occur 
across distal DNA regions, such as loops between enhancers and promoters15, along with interactions 
at the megabase scale within Topologically Associated Domains (TADs)22,23 and higher-order structures 
such as metaTADs24 and A/B compartments13. However, it remains unclear to what extent these 
technologies are faithful to the underlying 3D structure of the genome and whether they measure 
different aspects of chromosomal 3D organization. Since they return distinct measures of chromatin 
interactions, it is also difficult to identify a clear benchmark to compare their performances in different 
conditions. 

Hi-C methods have revolutionised the field of chromosome architecture and are widely used. They 
provide a measure of the abundance of pairwise interactions, i.e., a Hi-C contact frequency map, by 
sequencing the ligation products of DNA fragments that are in close spatial proximity in the nucleus13,15. 
GAM probes 3D proximity of DNA sites by sequencing the genomic content of thin cryo-sectioned and 
laser micro-dissected slices from the nuclei of cells fixed in optimal preservation conditions8,20. 
Physically distant DNA sites are unlikely to co-segregate in the same thin slice, whereas physically 
proximal sites tend to co-segregate. The output of a GAM experiment is a segregation table indicating 
which loci are present in each slice, based on sequencing its DNA content. To identify pair-wise or multi-
ways contacts, a GAM co-segregation map is calculated, i.e., the frequency with which pairs (or groups) 
of genomic regions are found in the same slices. From GAM data single-cell DNA non-random 
interaction probabilities can be reconstructed by use of statistical tools, such as SLICE20. Finally, SPRITE21 
relies on the sequencing of barcoded DNA: after DNA crosslinking and fragmentation in isolated nuclei 
(as in Hi-C), interacting chromatin complexes are uniquely barcoded via a split-pool method and 
identified by sequencing. SPRITE interaction maps can be extracted from analysing the DNA segments 
that have the same barcode, which must originate from the same interacting complex.  

To compare Hi-C, GAM and SPRITE, we run a computational experiment that implements the three 
methods in-silico on an ensemble of known 3D polymer structures and analyse their outputs in a 
simplified, yet fully controlled framework. To facilitate the comparison with real experimental data, 
rather than using arbitrary polymer conformations, we focused on the polymer models of two genomic 
regions around the Sox9 and the HoxD genes from mouse embryonic stem cells (mESC), respectively 
6Mb and 7Mb long25,26. We also considered the model of a 6Mb long region around the Epha4 gene 
from mouse CHLX-12 cells27. The comparison of the performance of the different technologies in those 
loci is interesting also because, for instance, disease-linked structural variants located around the Sox9 
and Epha4 genes have been shown to induce gene mis-expression as a consequence of the rewiring of 
contacts with local enhancers6,27,28; and the HoxD locus presents a complex 3D compartmentalization 
which is thought to have a broad functional role in controlling transcriptional states during 
differentiation29,30. Different computational approaches31–34 and polymer models25,27,35–44 have been 
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discussed  to reconstruct chromatin 3D conformations. Here, we focused on the String&Binders (SBS) 
polymer model27,37,39 because it has been already validated against Hi-C data in those loci25–27. The 
polymer models of the considered loci were inferred from Hi-C data and used to derive an ensemble of 
known 3D structures for each locus. Those 3D structures were in turn employed to benchmark the 
performances of Hi-C, SPRITE and GAM in bulk as well as in single-cell computational experiments. For 
the Sox9 locus, a polymer model inferred from GAM data has been also analysed45 and returned similar 
results. Finally, as a control, we also ran investigations in a toy block-copolymer model, unrelated to 
any chromosomal region, which returned a similar scenario about the performance of the three 
technologies.  

Here, we show that in-silico average Hi-C, GAM and SPRITE matrices match their corresponding 
experimental bulk data validating our approach and the polymer models chosen. We found that bulk 
in-silico Hi-C, GAM and SPRITE data are all faithful to the reference 3D architecture as they have high 
correlations with the benchmark average distance matrix of our polymer structures. In contrast, single-
cell data are affected by high levels of variability even in the case of ideal detection efficiency because 
of the inherent variety of single-molecule conformations of the polymer ensembles. Finally, we show 
that detection efficiency and number of single-molecule structures (a proxy for single cells) considered 
in the in-silico experiments differently affect contact data and the noise-to-signal ratio at different 
genomic distances across the three technologies. While poor efficiencies can be compensated by large 
cell numbers, we found that GAM is significantly less noise affected at larger genomic distances than 
the other methods, under similar experimental conditions (e.g., a given detection efficiency), but 
requires a comparatively much larger number of cells to ensure similarity across replicates, SPRITE 
requiring the least and Hi-C close to SPRITE. 

RESULTS 

Derivation of in-silico Hi-C, SPRITE, and GAM interaction maps from known single-molecule 3D 
structures 

To compare in-silico Hi-C, GAM and SPRITE data, we focused first on the case study of a 6Mb-wide 
region around the Sox9 gene (chr11:109Mb-115Mb, mm9) in mESCs. The SBS polymer model of that 
locus had been previously developed and shown to well reproduce Hi-C data25. The SBS is a model of 
chromatin describing the textbook picture where molecules, such as transcription factors, form DNA 
loops by bridging distal cognate binding sites37 (see also Materials and Methods). The SBS model has 
been shown to well describe Hi-C, GAM and FISH data across loci and cell types20,24–27,39,45–47. The 
genomic locations of the binding sites of the model of the Sox9 locus were inferred from its Hi-C data23 
by the PRISMR algorithm25,27, which finds the minimal set of binding sites (and cognate binders) best 
describing the input data from only polymer physics (Materials and Methods). Here, we considered the 
published model of the locus at 40kb resolution, with no additional refinements or improvements, and 
explored an ensemble of single-molecule 3D polymer structures derived by Molecular Dynamics 
simulations in the thermodynamics steady state of the system (Figure 1a, Materials and Methods).  

Next, we computationally implemented the steps of the Hi-C, GAM and SPRITE methods on such 
ensemble of 3D structures to derive an in-silico proxy of their contact data (Figure 1a). In brief, in in-
silico Hi-C, we fragmented in equal segments the two polymer chains representing the two Sox9 alleles 
in each cell, ligated cross-linked fragments and counted ligation products to derive an in-silico analogue 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 25, 2020. ; https://doi.org/10.1101/2020.04.24.059915doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.24.059915
http://creativecommons.org/licenses/by-nc-nd/4.0/


of Hi-C contact frequencies (Materials and Methods). The overall efficiency of the process is considered 
to be the product of the in-silico cross-linking, digestion, biotinylation, ligation and sequencing 
efficiencies. In-silico SPRITE was analogously implemented, in particular, by counting chain fragments 
tagged with the same barcode. Finally, in-silico GAM was performed by producing randomly oriented 
slices out of a sphere (representing the nucleus) where two single-molecule 3D structures (the two 
“alleles”) have been randomly positioned and by listing the polymer segments falling within each slice 
to derive the co-segregation matrix (see Materials and Methods). The overall efficiency here is the 
detection and sequencing efficiency of such segments, while the nuclear radius and the slice thickness 
are parameters set to match typical experimental values20 (Materials and Methods).  

Such a procedure returns in-silico contact maps from the known 3D structures of the SBS model, 
providing a simplified, yet fully known benchmark to compare Hi-C, SPRITE and GAM in different 
contexts. In particular, we investigated how the overall efficiency and the number of pairs, N, of 3D 
single-molecule structures included in the analysis (below, N is named, for simplicity, the number of in-
silico cells) affect the output of the three technologies.  

In-silico Hi-C, SPRITE and GAM reproduce experimental data 

As our polymer model is inferred from Hi-C data23, we checked that the derived in-silico bulk Hi-C map, 
i.e., contact data averaged over the ensemble of 3D structures, reproduces bulk Hi-C experimental 
interaction frequencies in the Sox9 locus in mESC23 (Figure 1b). We measured the correlation between 
the simulated and real Hi-C data and found that the Spearman (rS), Pearson (r) and HiCRep (scc)48 
coefficients have all high values, respectively rs=0.83, r=0.83 and scc=0.80 (Supplementary Table 1a), 
as previously reported25. Analogous results were obtained in the comparison between in-silico and 
experimental Hi-C maps using the HoxD locus in mESC and the Epha4 locus in CHLX-12 cells 
(Supplementary Figure 1, Supplementary Figure 3a and Materials and Methods).  

Importantly, the in-silico SPRITE and GAM contact matrices derived from the same model 3D structures 
have also high correlations with the independent SPRITE and GAM experimental data (respectively 
rs=0.92 and rs=0.79, r=0.75 and r=0.80, and scc=0.57 and scc=0.40, Figure 1b, Supplementary Table 1a). 
In the comparison, we used published SPRITE bulk mESC data21 and a GAM dataset produced for the 
4D Nucleome consortium49 (Materials and Methods) composed of 1122 nuclear profiles (slices) from 
F123 mESC cells, here compared with the output from precisely 1122 in-silico slices.  Similar results are 
found for the mESC HoxD locus (Supplementary Figure 1). In particular, the visual differences and lower 
correlations between experimental and in-silico GAM contact matrices derived from Hi-C-based 
polymers may also raise the possibility that Hi-C and GAM experimental data may capture some 
different specific features of chromatin contacts, although they could just derive from experimental 
noise.  

Overall, the agreement between model and experiments across independent datasets provides a 
validation of our polymer model, as the 3D structures inferred from Hi-C data only well reproduce 
independent GAM and SPRITE data too. It also shows that our in-silico approach has no major biases 
favouring Hi-C, SPRITE or GAM. That supports the view that our ensemble of 3D structures provides a 
good description of single-cell conformations of the loci and that the approach presented here can work 
as a simplified, yet useful reference system to compare the performance of the three technologies.  
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Bulk Hi-C, SPRITE and GAM data all faithfully describe benchmark average distance matrices 

Next, we investigated how well in-silico Hi-C, SPRITE and GAM data on the Sox9 locus reflect the 
underlying spatial conformations of the polymers in the ensemble. Towards this aim, we computed the 
average distance matrix of the known 3D structures and compared it with in-silico Hi-C, SPRITE and 
GAM bulk data, i.e., the average over a large number of in-silico cells (Figure 2). We found that the 
three methods have high absolute Spearman correlation coefficients with the average distance matrix 
(rs<-0.89, values are negative because large physical distances correspond to small contact 
frequencies), GAM having the highest, followed by SPRITE and Hi-C (Pearson and HiCRep correlations 
give analogous results, Supplementary Table 1b).  

Interestingly, the patterns visible in the in-silico Hi-C, SPRITE and GAM bulk data are similar to each 
other, albeit GAM better highlights longer-range contacts between TADs (Figure 2a). In particular, the 
three in-silico methods all identify TADs that correspond to those previously found by experimental Hi-
C23 (Figure 2b, different colours in the bottom bar). This is consistent with previous genome-wide 
analyses showing that the location of TAD boundaries in mESC is highly correlated in Hi-C, SPRITE and 
GAM20,21. Additionally, the contact patterns in Hi-C, SPRITE and GAM all reflect the underlying domain-
like patterns of the average 3D distance matrix in the model locus, representing the known 
conformations of the ensemble of single-molecules inferred from Hi-C (Figure 2b). Again, analogous 
results are found for the HoxD and Epha4 loci (Supplementary Figures 2a,b and Supplementary Figures 
3b,c). 

Taken together, our results support the view that bulk data from Hi-C, SPRITE and GAM are faithful to 
the overall spatial structure of the underlying 3D conformations, providing comparable information on 
the average distance map of the considered Sox9, HoxD and Epha4 locus models.  

Stochasticity of single-cell data reflects intrinsic variability of single-molecule 3D conformations 

Whereas bulk interaction matrices are comparatively similar across replicate experiments, single-cell 
Hi-C data exhibit a strong variability50–54. Here, we explore how single-cell variability reflects limited 
detection efficiency and, importantly, the inherent differences across single-molecule conformations 
of chromatin, whereby even single-cell experiments with 100% efficiency can return different contact 
maps (Figure 3).  

We discuss first the ideal case of in-silico experiments where the efficiency is set to 1.0. Single-molecule 
conformations vary widely across the ensemble of 3D structures (Figure 3a, bottom) and their 
corresponding in-silico single-cell distance matrices (Figure 3a, top) have broadly varying Spearman 
correlations with the average distance matrix, with a mean of rs=0.88 (Figure 3b, the values of the mean 
Pearson and HiCRep correlations are analogous, Supplementary Table 1c). Hence, there are broad 
structural differences between pairs of single molecules, as manifested in their corresponding single-
cell measures. We found that the correlation of an in-silico single-cell Hi-C, SPRITE or GAM contact map 
(Figure 3c) with its corresponding single-cell distance matrix is much lower than in the case of bulk data 
discussed before: even in the case with efficiency 1, the average Spearman correlation is around rs=-
0.37 and rs=-0.46 for respectively in-silico Hi-C and SPRITE (Figure 3d, and Supplementary Table 1d). 
For GAM the correlation is even lower (average rs=-0.15) and its distribution much broader, in the range 
-0.4 < rs < 0. That is also a consequence of the different experimental procedure, because a single-cell 
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in-silico Hi-C and SPRITE experiment returns the contacts measured over an entire in-silico nucleus, i.e., 
two independent polymer structures representing the alleles, whereas a single-cell in-silico GAM 
experiment probes the polymer content of only a single slice of an in-silico nucleus, i.e., a tiny fraction 
of the two polymers.  

Summarizing, even in the ideal case of a 100% efficiency experiment, single-cell contact data are 
drastically less faithful to single-cell distance patterns than bulk data. In particular, single-cell in-silico 
Hi-C and SPRITE maps of the considered 6Mb locus have a correlation around rs=-0.4 with their 
corresponding single-cell distance matrices, whereas GAM has lower and much broader correlations 
because the experimental procedure samples a single slice rather than a single nucleus.  

Contact data from single-cell experiments become further deteriorated, as expected, for lower values 
of the detection efficiency, and have worse correlations with the corresponding single-cell distance 
maps (Supplementary Table 1e). Consequently, the variability of replicates from in-silico single-cell 
experiments increases, i.e., the correlation between their contact maps decreases. For example, for an 
efficiency of 0.5, we found  that the average correlation between in-silico single-cell replicates is around 
rs=0.2, 0.4 and 0.1 for respectively Hi-C, SPRITE and GAM maps. Importantly, the values of correlation 
found are consistent with those reported in real experimental studies: for example, the average 
Spearman correlation between different Hi-C maps of the Sox9 locus from real single-cell experiments 
in CD4 TH1 cells with efficiency approximately around 0.02550 is rs=0.01, which is numerically equal to 
the Spearman correlation found between in-silico Hi-C maps at the same efficiency in our model of 
mESC (Materials and Methods and Supplementary Figure 4a). The impact of a limited efficiency on 
interactions maps is systematically investigated in the next section.  

In brief, our results show that in-silico single-cell experiments are inherently broadly varying because 
they sample different single-molecule 3D structures and, additionally, their contact maps are less 
faithful to the corresponding single-cell distances. A limited detection efficiency further increases the 
fluctuations in contact maps to the point that replicates can have correlations well below 0.1 for 
realistic efficiencies. That appears to be reflected in, and consistent with, the stochastic nature of 
interactions between DNA sites observed in real single-cell experiments20,50–53.  

Threshold cell number required for replicate reproducibility differs in Hi-C, SPRITE and GAM 

The quality of in-silico Hi-C, SPRITE and GAM contact maps improves when the number of in-silico cells, 
N, is increased in the computational experiments (Figure 4). Due to the intrinsic variability of single-
molecule structures, the improvement with N occurs also in the ideal case of a 100% efficiency (Figure 
4a). Figure 4b shows, for example, the effect of different N on the contact matrices of in-silico Hi-C, 
SPRITE and GAM, in the case where the analyses are run with efficiencies comparable to typical 
experimental values. We set the Hi-C efficiency to 0.05, taken as an upper limit of values reported in 
recent studies50,51,53,55; the same value is used as an estimate of the efficiency for SPRITE (M. Guttman, 
personal communication). Since the experimental efficiency in GAM is roughly one order of magnitude 
larger than Hi-C and SPRITE20, in the shown example we used an in-silico GAM efficiency of 0.5, a value 
which is close to the 0.6 efficiency estimated for the mESC dataset used in this work (Materials and 
Methods).  

The patterns of the contact matrices become sharper and stabilise when N becomes large enough, as 
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also observed in experimental investigations50,56. Importantly, overall the large N matrices do not 
depend on the considered efficiency value and the average over a large number of cells compensates, 
in general, for reduced efficiencies (see Figure 4a and 4b and Materials and Methods). However, our 
data show that the threshold value of N to reach saturation in the data strongly depends on the 
efficiency level and is different in different technologies, as we now illustrate.  

We aimed to identify the minimal number of cells that, at a given efficiency, is required for replicate 
experiments to return similar outputs, i.e., to approach the bulk limit, in the in-silico implementation of 
Hi-C, SPRITE and GAM. To measure the similarity of pairs of identical experiments in the Sox9 locus 
(each having a given N and efficiency, Figure 4c), we computed the average Pearson correlation 
between contact maps (Figures 4d,e; the use of Spearman or HiCRep correlations returned analogous 
results Supplementary Figure 5). The correlation grows when N is increased and it plateaus to 1 in the 
large N limit (Figures 4d,e), independently of the efficiency of the in-silico experiment. For each given 
efficiency, we heuristically define the minimal number of cells, M, required for having statistically 
reproducible results across replicates, as the value of N where the correlation grows larger than a given 
threshold, rt=0.9 (Materials and Methods). Importantly, we  found  that M is significantly different in 
the different technologies: for example, if the efficiency is 0.1, we found that M is 200, 100 and 2000 
for respectively Hi-C, SPRITE and GAM (Figure 4d). Figure 4e shows the correlation between replicates 
at varying N obtained for efficiencies close to those reported in real Hi-C, SPRITE and GAM experiments, 
i.e., as specified above, 0.05 for Hi-C and SPRITE and 0.5 for GAM: in those cases, M is approximately 
650, 250 and 800 respectively. Similar behaviours were also found for the HoxD and Epha4 loci 
(Supplementary Figures 2c and 3d). In general, for a given efficiency, we find that in-silico SPRITE 
plateaus earlier than Hi-C, while GAM typically requires a number of cells one order of magnitude larger. 
However, GAM experiments have currently efficiencies one order of magnitude higher than Hi-C or 
SPRITE, hence the number of cells required for saturation become similar in the three methods. 

Next, we checked how the in-silico estimates of M compares against available systematic experimental 
investigations. First, we verified that the correlation values between in-silico replicates are comparable 
to those found in experiments. We considered the 60 different single-cell Hi-C maps produced in CD4 
TH1 cells50 with efficiency around 0.025 and compared their average map with the corresponding bulk 
Hi-C data for the Sox9 locus: the correlation is rs=0.33, which is not far from rs=0.27 found between in-
silico Hi-C maps in the analogous conditions in mESC (Supplementary Figure 4b and Materials and 
Methods). Second, to verify that our estimates of M are consistent with available experimental results 
we considered the data from a recent Low-C experiment on mESC56 where, in the case of a 10Mb wide 
locus, a sample of 1000 cells was shown to be large enough to produce contact maps highly similar to 
the bulk one (Pearson correlation r=0.95). That estimate of the minimal number of cells needed to 
approach the bulk limit is consistent with the above reported value of M=650 for in-silico Hi-C for an 
efficiency equal to 0.05. Taken together, these examples show that the in-silico estimates of M are 
informative of real experiments.  

Finally, we systematically investigated how the quality of the in-silico data is affected by the efficiency 
of the experiment (Supplementary Figure 6). In particular, the number of cells required for saturation, 
M, strongly depends on the efficiency (Figure 4f): M diverges approximately as an inverse squared 
power law as the efficiency becomes small. In other words, halving the efficiency requires to quadruple 
the cell number to achieve the same quality levels. In general, we find that M for SPRITE is two times 
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smaller than the corresponding value for Hi-C and one order of magnitude smaller than GAM. 
Additionally, our investigation shows that even in the ideal case of an efficiency equal to 1, single-cell 
replicates have below threshold correlations, as M is larger than 10 even for SPRITE due to the intrinsic 
variability of single-molecule 3D structures, as reported above. That rationalises of the broad variability 
observed in single-cell Hi-C experiments.  

We stress that the above definition of M is heuristic, albeit easy to visualise. It is, however, fully 
consistent with a definition grounded on the Central Limit Theorem (CLT). Consider the average value, 

, and the standard deviation, , of a given entry of a contact map in an experiment with N cells at a 

given efficiency. CLT imposes that the noise-to-signal squared ratio, 2/2 scales as 1/N. Accordingly, 
from the CLT, the minimal number of cells, L, required to make the noise-to-signal squared ratio smaller 

than a given threshold, , is L=A-22/2, where A is a constant (Materials and Methods). We checked 
that M and the average value of L are linearly proportional to each other, i.e., M is inversely 
proportional to the squared signal-to-noise ratio averaged over all the entries of a single-cell contact 
map, 𝜌  (Materials and Methods and Supplementary Figure 7). Hence, albeit heuristic, the above 
intuitive definition of M is grounded on the CLT. With analogous statistical arguments (Materials and 
Methods) the approximate inverse squared power law relation between M and the efficiency (Figure 
4f) can be explained.  

The sets of in-silico single-molecule 3D structures employed in all our analyses were produced using 
polymer models inferred from Hi-C data25–27. However, for the Sox9 locus we tested that our results 
remain overall unchanged also when the polymer 3D structures are constructed from the SBS polymer 
model of the locus inferred from GAM data rather than Hi-C45 (Supplementary Figure 8 and Materials 
and Methods). Additionally, to assess the general validity of our analyses, we applied the in-silico 
approach to 3D conformations of a toy block-copolymer, unrelated to real chromatin loci, finding 
similar results (Supplementary Figure 9 and Materials and Methods).  

SLICE single-cell interaction probability maps 

Next, we investigated the performance of the GAM data analysis tool SLICE (Supplementary Figure 10). 
SLICE is a statistical method to identify non-random co-segregation events (i.e., specific interactions) 
from GAM co-segregation data. In particular, the output of SLICE is the single-cell interaction probability 
(Pi) of pairs, and multiplets, of DNA sites20. Importantly, we found that SLICE bulk interaction 
probabilities are faithful to the known average distance matrix (r=-0.95, rs=-1.00, scc=-0.99, 
Supplementary Figures 10a,b). The SLICE matrices behave with N and with the efficiency as found for 
GAM contact maps (Figure 4). However, as by definition SLICE specifically detects significant 
interactions, we found that the average number of in-silico cells, M, needed to return statistically 
reproducible results across replicates is approximately half than the one required for GAM in the same 
conditions (Supplementary Figures 10c-e). For a realistic efficiency of 0.5, for example, we found that 
M=400 for SLICE, whereas M=800 for GAM. In that respect, SLICE can be employed as an useful tool in 
applications of GAM, especially where the number of available cells is small, such as in the analysis of 
sample tissues or biopsies.  

Summarizing, our findings illustrate how the level of variability of in-silico contact matrices is affected 
by the number of single cells, N, and by the experimental efficiency, and how different technologies 
perform in different situations. Overall, under same conditions, SPRITE turns out to be the more 
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suitable method to extract pair-wise contact information from small cell samples as M is smaller than 
in Hi-C, and GAM requires a much larger number of cells for replicate robustness. Interestingly, 
however, at realistic efficiency values for Hi-C, SPRITE and GAM, the number of required cells become 
similar across the three methods, especially if SLICE is used in combination with GAM. 

Noise-to-signal levels vary with genomic distance differently in Hi-C, SPRITE and GAM    

Finally, we investigated the noise-to-signal level of the entries of contact matrices and how it varies 
with the genomic separation, with the number of cells, N, and with the efficiency of in-silico 
experiments. For each entry of a contact map, as discussed before, the noise-to-signal ratio is defined 
as the ratio of the standard deviation, 𝜎, to mean value, 𝜇, across replicates from experiments in the 
same conditions. For a given N and a given efficiency, we observed that the average noise-to-signal 
ratio, 〈𝜎 𝜇⁄ 〉, is strongly dependent on genomic distance (Figure 5a). In the Sox9 locus, we found for 
both Hi-C and SPRITE that 〈𝜎 𝜇⁄ 〉  grows more than one order of magnitude as the genomic separation 
increases from 50kb to 5Mb. In particular, there is a steep increase above the 1Mb scale. SPRITE has 
the lowest 〈𝜎 𝜇⁄ 〉 ratio at genomic scales below the Mb, but interestingly GAM has an overall less 
varying noise-to-signal level. This is deriving from the GAM methodology that in a single slice samples 
DNA regions spanning the entire nucleus. Therefore, at larger genomic separations, GAM has almost a 
one order of magnitude lower noise-to-signal ratio than Hi-C and SPRITE.  

At a given genomic distance and efficiency, as expected, the noise-to-signal ratio decreases as the 
number of cells, N, is increased in our computational experiments (Figure 5b). Consistent with the 
Central Limit Theorem, it follows an inverse squared power law in N (i.e., N-1/2). A consequence of such 
a scaling behaviour is that single-cell (N=1) contact maps become highly noisy at large genomic 
separations. For example, at the 1Mb scale and for a detection efficiency of 0.5, the noise-to-signal ratio 
for N=1 is larger than 100% for all three methods, Hi-C having the largest fluctuations with 
〈𝜎 𝜇⁄ 〉>1000%. As expected, the noise-to-signal ratio is also strongly affected by the experimental 
efficiency (Figure 5c): in brief, we find that for a given genomic distance and for a given N, 〈𝜎 𝜇⁄ 〉 
decreases roughly as an inverse power law of the efficiency in our in-silico study.  

In summary, we find that GAM is the method comparatively less noise affected at larger genomic 
distances, while SPRITE has the best performance below the Mb scale.  

DISCUSSION 

Hi-C, SPRITE and GAM are powerful technologies to generate genomic contact maps, which return 
different measures of physical proximity between DNA sites, each affected by specific biases and 
limitations. As we lack an experimental benchmark to compare their performance, in this study we ran 
a computational investigation where we implemented in-silico the three methods on ensembles of 
known single-molecule 3D structures to compare them within a simplified, yet fully controlled 
framework. In particular, we focused, as a case study, on a 6Mb wide region around the Sox9 gene in 
mESC. To check the robustness of our main conclusions, we also investigated a region around the HoxD 
genes in mESC and around the Epha4 gene in CHLX-12 cells, as well as a toy block-copolymer model, 
finding analogous results.  
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The agreement between independent Hi-C, SPRITE and GAM bulk data and in-silico maps in all the 
studied loci supports the use of our single-molecule 3D structures and the in-silico method as a proxy 
for real experiments, providing a tool to compare those technologies in a fair way. Importantly, in all 
the studied cases, we find that in-silico Hi-C, SPRITE and GAM bulk contact data, as well as SLICE 
interaction probabilities, all faithfully represent the known spatial conformations of the model 
polymers. That also suggests that our approach has no biases in favour of any of the three technologies. 
In particular, we observed that the different methods identify very similar pairwise contact patterns, 
such as TADs and sub-TADs, which are found to correspond to the known underlying structure of the 
3D conformations of the polymer ensemble.  
 
We analysed how the entries of the contact maps of Hi-C, SPRITE and GAM are differently affected by 
some important parameters of the computational experiments, such as the number of in-silico cells, N, 
the detection efficiency and the genomic distance. We also quantified how the stochasticity of single-
cell experiments is dependent on the intrinsic variability of chromatin 3D conformations. In summary, 
we showed that if N is below a threshold value M, replicate experiments can return broadly different 
outcomes. The value of M, consistent with arguments based on the Central Limit-Theorem, increases 
as the efficiency of the experiment decreases. For equal conditions, M is different in different 
technologies: SPRITE is the method having the lowest M and so better performing on samples with a 
small number of cells; GAM has the highest value, but in combination with SLICE M is drastically 
reduced. In real applications, it is important to take into account that the efficiency is different across 
the three methods, and the corresponding values of M can become similar. For example, the 
experimental estimations of the efficiency of Hi-C is around 0.0550, SPRITE is around 0.05 too (M. 
Guttmann personal communication) and for GAM around 0.520: in those considitions we find that M is 
around 650, 250 and 800 for respectively Hi-C, SPRITE and GAM; additionally, when GAM is combined 
with SLICE, M becomes approximately 400.  Reassuringly, we found that the use of large N can generally 
compensate for a limited efficiency and in the bulk limit the different technologies are all overall faithful 
to the benchmark model 3D structures. Finally, we analysed the noise-to-signal ratio in contact maps 
as a function of the genomic distance and found that GAM is less noise sensitive at large genomic 
separations, while Hi-C and SPRITE at lower distances, under the same conditions.  
 
More generally, the consistent behaviour of our computational analyses across all the investigated 
cases (models of real loci as well as toy models) supports the view that their conclusions have a broad 
validity and can help guiding the design of novel Hi-C, SPRITE and GAM experiments in different 
contexts and applications. 
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MAIN FIGURES  

Figure 1. In-silico Hi-C, SPRITE and GAM average contact maps match experimental data. 

a) By use of the PRISMR procedure27, from Hi-C data the polymer model of the DNA locus of interest is 
inferred and, based on polymer-physics, an ensemble of its single-molecule 3D conformations, 
consistent with the input Hi-C data, derived. We implemented computationally the Hi-C, SPRITE and 
GAM methods on those 3D structures and measure in-silico the corresponding contact maps. 

b) Albeit inferred from Hi-C data only, the model 3D conformations return average contact maps 
(bottom) well matching the Hi-C and the independent SPRITE and GAM experimental data (top) in the 
case study of the Sox9 locus (chr11:109Mb-115Mb, mm9) in mESC. Experimental Hi-C and SPRITE maps 
are bulk data21,23, while GAM data are from a new dataset constructed from 1122 F123 cells (Materials 
and Methods), and correspondingly the in-silico maps. The color scale represents the percentiles of 
each dataset. The Spearman correlation coefficients (rs) between model and experiment are reported 
in the middle, as Pearson or HiCRep correlations have similar values (Supplementary Table 1a). 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 25, 2020. ; https://doi.org/10.1101/2020.04.24.059915doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.24.059915
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 2. Bulk Hi-C, SPRITE and GAM data are all overall faithful to the average 3D distances. 

a) The in-silico bulk Hi-C, SPRITE and GAM maps of the Sox9 locus, although corresponding to different 
measures of DNA physical proximity, return similar contact patterns. The color scale represents the 
percentiles of each contact map. The Spearman correlation coefficients are reported, on the bottom, 
between each contact map and the average 3D distance matrix in panel b) of the known single-molecule 
3D conformations of the locus model (Pearson and HiCRep return similarly high correlations, 
Supplementary Table 1b).   

b) The average 3D distance map derived from the ensemble of in-silico model single-molecule 3D 
conformations is shown. Its high correlation values with each of three contact maps of panel a) 
(Supplementary Table 1b) illustrates that the three technologies faithfully capture the average pairwise 
distances of the system. We find that the TADs of the locus23 (different colors of the bar in the bottom) 
correspond to the domain-like patterns of the average distance matrix. They are well identified by the 
in-silico Hi-C, SPRITE and GAM bulk maps, as highlighted by the drawn vertical and horizontal lines. In 
particular, GAM captures well the longer-range inter-TADs contacts.  
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Figure 3. Stochasticity of single-cell contact maps reflects the intrinsic variability of single-molecule 
3D conformations.  
 
a) The variability of single-molecule conformations of the model of the Sox9 locus is represented here 
by three examples (bottom, the color scheme reflects the colors of the TADs of the locus23, shown in 
the color bar). Their corresponding in-silico single-cell distance maps (on top) can be different from the 
average distance matrix (left). For example, the Spearman correlations between the shown in-silico 
single-cell and the average distance maps are:  rS=0.89 for cell 1; rS=0.82 for cell 2; rS=0.83 for cell 3. 
Replicate single-cell experiments can differ from each other just because they capture distinct 
underlying chromatin structures.   
 
b) The Spearman correlation between in-silico single-cell distance maps and the average distance map 
has a broad distribution (mean value rS = 0.88 and median rS = 0.89, Materials and Methods). Mean 
Pearson and HiCRep correlations are analogous and reported in Supplementary Table 1c. 
 
c) The in-silico single-cell Hi-C, SPRITE and GAM contact maps corresponding to the first of the three in-
silico cells of panel a) are shown (color scale indicates the percentiles of each map). Here, the in-silico 
efficiency is set to 1, so all contacts are captured in Hi-C or SPRITE, and all segregated windows are 
detected in GAM.   
 
d) The distribution is shown of Spearman correlation coefficients between in-silico single-cell contact 
matrices at efficiency 1 and their corresponding in-silico single-cell distance matrices. In-silico single-
cell data average correlations (Supplementary Table 1d,e and Materials and Methods) are overall 
significantly lower than correlations in bulk data (Figure 2 and Supplementary Table 1b). Single-cell Hi-
C and SPRITE perform comparatively better than single-cell GAM in reproducing the pattern of physical 
distances, as single-cell GAM derives from only a single slice cut out of a nucleus. Overall, single-cell 
contact matrices are less faithful to their corresponding distance map than bulk matrices (see Figure 
2). Here we considered the ideal case where the efficiency is 1 to highlight the effects on contact data 
of the variability of single molecules, yet in real experiments the efficiency is different in the three 
technologies and well below 1 (see Main Text and Figure 4). 
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Figure 4. Threshold cell number required for replicate reproducibility differs in Hi-C, SPRITE and GAM. 
 
a) The in-silico Hi-C, SPRITE and GAM contact maps of the Sox9 locus depend on the number of in-silico 
cells, N, considered in the experiment (here is shown the case with efficiency equal to 1), albeit in the 
bulk limit (large N), the effects of cell-to-cell variability are averaged out for all the three technologies. 
Color scale indicates the percentiles of each map.  

b) Results analogous to those in panel a) are shown in the case where efficiencies similar to those found 
in real experiments are considered: here, for Hi-C and SPRITE the in-silico efficiency is set equal to 0.05, 
and for GAM equal to 0.5  (see Main Text).  

c) To assess the similarity between in-silico replicate contact maps (i.e. maps obtained with same 
number of cells, N, and efficiency), we measured the average Pearson correlation between them. The 
minimal number of cells, M, to have a reproducible output map is defined as the value of N where the 
average Pearson correlation between replicates crosses the threshold rt=0.9 (Main Text and Materials 
and Methods).  

d) The Pearson correlation is shown between replicate experiments as a function of N for Hi-C, SPRITE 
and GAM at a given efficiency (0.1). The dashed line is the threshold correlation value rt=0.9. Analogous 
results are found when the Spearman or HiCRep correlations are considered (Supplementary Figure 5).  
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e) Results analogous to those in panel d) are shown in the case of efficiencies similar to those in real 
experiments, as discussed in panel b). As GAM has a higher efficiency, its corresponding behavior with 
N becomes closer to those of Hi-C and SPRITE. For example, here, for the reported realistic efficiencies 
of 0.05 for Hi-C and SPRITE, and 0.5 for GAM, M is respectively approximately 650, 250 and 800.  

f) The value of M is shown for Hi-C, SPRITE and GAM as a function of the efficiency. M increases as the 
efficiency is reduced and grows approximately as an inverse squared power law at small efficiencies. 
The obtained values of M are consistent with the Central Limit Theorem (Materials and Methods). For 
a given efficiency, M is the smallest in SPRITE, a factor of two higher in Hi-C and one order of magnitude 
higher in GAM.   
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Figure 5. Noise-to-signal levels vary with genomic distance differently in Hi-C, SPRITE and GAM. 

a) The mean noise-to-signal ratio 〈𝜎 𝜇⁄ 〉 of a contact map (see Main Text and Materials and Methods), 
for a given number of cells N and efficiency, depends on the considered genomic separation. For the 
Sox9 locus, in Hi-C and SPRITE, the noise-to-signal ratio drastically grows above 1Mb, i.e. the scale of 
TADs, while GAM retains low noise-to-signal ratios across larger genomic separations (the case shown 
is for N=50000 and efficiency=0.5).  

b) For a given genomic distance and efficiency (the case shown is for 1Mb and efficiency=0.5), 〈𝜎 𝜇⁄ 〉 
decreases with N as an inverse square root, as expected from the Central Limit Theorem. 

c) Analogously, for a given genomic distance and N (the case shown is for 1Mb and N=50000), 〈𝜎 𝜇⁄ 〉 
increases, for small efficiencies, approximately as an inverse power law when the efficiency is reduced. 
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SUPPLEMENTARY FIGURES 

Supplementary Figure 1. In-silico average contact maps of the HoxD locus compare well with Hi-C, 
SPRITE and GAM experimental data.  
 
a) In the case of the murine HoxD locus (chr2:71Mb-78Mb, mm9) in mESC, our 3D conformations return 
in-silico contact maps (bottom) that match well with Hi-C23, SPRITE21 and GAM experimental data from 
mESC (top). GAM data are from the new dataset of 1122 nuclear slices (Materials and Methods). 
Correspondingly, in-silico Hi-C and SPRITE are bulk data, while in-silico GAM data are from 1122 in-silico 
cells (see Materials and Methods). Color scale indicates the percentiles of the maps.  

b) Pearson, Spearman and HiCRep correlations between the in silico and experimental maps of panel 
a), for the three technologies.  
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Supplementary Figure 2. In-silico bulk contact maps overall reproduce the average distance map in 
the HoxD locus.  

a) In-silico bulk Hi-C, SPRITE and GAM maps of the HoxD locus return contact patterns that are 
compatible with the average distance pattern derived from the ensemble of single-molecule 3D 
conformations. The horizontal lines are drawn to mark the domain-like structure of the distance map. 
The color scale indicates the percentiles.  

b) Pearson, Spearman and HiCRep correlations are reported between the bulk contact maps and the 
average distance map. Correlations indicate a high degree of similarity, showing that the three 
technologies all faithfully capture the underlying conformations of the HoxD locus, analogously to the 
Sox9 case study (Figure 2 and Supplementary Table 1b).  

c) The Pearson correlation is shown between replicates against the number of in-silico cells for the HoxD 
locus at efficiency 0.1. The dashed line is the threshold correlation value rt=0.9. The resulting trend is 
similar to the Sox9 locus case in Figure 4d. Also, the M values found for Hi-C, SPRITE and GAM are 
analogous to the Sox9 ones in Figure 4d.  
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Supplementary Figure 3. In-silico contact maps from 3D conformations of the Epha4 locus. 

a) In the model of the Epha4 locus in mouse CHLX-12 cells the in-silico bulk Hi-C map (left) is compared 
to the experimental map15 (right) (color scale indicates the percentiles of the maps). In the table on the 
bottom, Pearson, Spearman and HiCRep correlations are reported, indicating good similarity between 
the two matrices.  

b) The in-silico bulk contact maps are compared with the average distance pattern obtained from the 
ensemble of 3D conformations of the model of the locus. The horizontal lines are drawn to mark the 
domain-like structure of the distance map.  

c) Pearson, Spearman and HiCRep correlations are reported between each bulk contact map and the 
average distance map, indicating overall a good degree of similarity for each of the technologies.  

d) The Pearson correlation is shown between replicates against the number of in-silico cells for the 
Epha4 locus, at efficiency 0.1. The dashed line is the threshold correlation value rt=0.9. The values of M 
are compatible with the ones we find in the Sox9 and HoxD loci (Figure 4d and Supplementary Figure 
2c), for all three technologies. 
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Supplementary Figure 4. Experimental and in-silico single-cell Hi-C data. 

a) Left panel. Two examples of experimental single-cell Hi-C contact maps50, for the Sox9 locus in the 
mouse CD4 TH1 cells. The mean Spearman correlation between all the available pairs of such single-cell 
Sox9 maps50 is rS=0.01 (see also Materials and Methods). Right panel. Two examples of the in-silico 
single-cell Hi-C maps for the Sox9 locus in mESC. Mean Spearman correlation is rS=0.01, consistent to 
the experimental result (Materials and Methods). The efficiency is set to 0.02550. Color scale indicates 
the percentiles of the maps.  
 
b) Left panel. In the same genomic region in CD4 TH1 cells, the average experimental map resulting from 
60 available single-cell contact data is compared against the bulk Hi-C map50: their Spearman 
correlation is rS=0.33 (see Materials and Methods). Right panel. A similar calculation from the in-silico 
Hi-C maps in mESC returns a Spearman correlation between the bulk and the 60-cell map of rs=0.27, 
close to the experimental value (Materials and Methods). Color scale indicates the percentiles of the 
maps.  
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Supplementary Figure 5. Pearson, Spearman and HiCRep correlations between replicates in relation 
to the number of cells considered in the in-silico experiments.  
 
The Pearson, Spearman and HiCRep correlations between replicate in-silico contact maps are shown 
for Hi-C, SPRITE and GAM at efficiency 0.1, in the case of the model of the Sox9 locus. Dashed lines in 
each plot indicates the considered 0.9 threshold value (see Figures 4c,d,e).  
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Supplementary Figure 6. Impact of the detection efficiency on in-silico contact maps. 
 
Hi-C, SPRITE and GAM in-silico contact maps are shown for three different efficiencies (0.01, 0.1 and 
1.0) for a fixed N=1000 in-silico cells, in the Sox9 locus case study. Low efficiencies can strongly disrupt 
the quality of the maps (see Figure 4f) 
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Supplementary Figure 7. The estimated value of M is consistent with the Central-Limit-Theorem 
 
In the Sox9 locus case study, the values of M (see Main Text, Figure 4) at different efficiencies are 
plotted against 𝜌, the squared signal-to-noise ratio averaged over all the entries of a single-cell contact 
map (Materials and Methods). This is done for Hi-C (left), SPRITE (middle) and GAM (right). In all three 
plots (in log-log scale) the trend of M vs 𝜌 is well fitted by a linear relationship with slope -1 (dashed 
lines) as expected by arguments based on the Central Limit Theorem (Materials and Methods).  
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Supplementary Figure 8. In-silico contact maps from 3D conformations derived from GAM data. 

a) We considered 3D structures for the mESC Sox9 locus derived from GAM data45 (Materials and 
Methods). The corresponding Hi-C, SPRITE and GAM in-silico contact maps are compared to the 
experimental data (the same used in Figure 1, see Materials and Methods) and their Pearson, 
Spearman and HiCRep correlations are reported.  

b) The in-silico bulk contact maps are compatible with the average distance pattern obtained from the 
ensemble of GAM-derived 3D conformations. Horizontal lines are drawn to highlight the patterns 
detected across the contact and the distance maps. For the contact maps, color scale indicates the 
percentiles.  

c) Pearson, Spearman and HiCRep correlations are reported between each bulk contact map and the 
average distance map.   

d) Pearson correlation between replicates against the number of cells, for efficiency 0.1. The dashed 
line is the threshold correlation value rt=0.9. The values of M in this case are analogous to the ones 
obtained for the Sox9, HoxD and Epha4 ensembles derived from Hi-C data, at the same 0.1 efficiency 
value (Figure 4d, Supplementary Figure 2c and Supplementary Figure 3d, respectively).  
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Supplementary Figure 9. In-silico contact maps from 3D conformations of a toy polymer model.  

a) We considered a simple block copolymer model made of 210 beads where same colored regions 
attract each other (see Materials and Methods). The example of a 3D structure is shown.  

b) In-silico Hi-C, SPRITE and GAM bulk contact maps all yield contact patterns compatible with the 
average distance pattern derived from our ensemble of conformations. The horizontal lines are a guide 
to the eye. Color scale for the contact maps indicates the percentiles. For the distance map, color scale 
is given in the units of σ, the diameter of a polymer bead (Materials and Methods).  

c) The Pearson, Spearman and HiCRep correlations between each bulk contact and the average distance 
map are reported.  

d) Replicate Pearson correlations are plotted v.s. the number of cells, N, for: an efficiency equal to 0.5 
for Hi-C and SPRITE, 0.9 for GAM. The values of M for the toy model are comparable to the ones 
obtained from the models of the Sox9, HoxD and Epha4 loci at similar efficiencies (Figures 4d,e; 
Supplementary Figure 2c, Supplementary Figure 3d, Supplementary Figure 8d). 
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Supplementary Figure 10. The SLICE analysis tool for GAM is faithful to the benchmark distance map.  

a) For the Sox9 locus case study, the in-silico bulk GAM map and the corresponding SLICE map (Main 
Text) return consistent interaction patterns. Color scale indicates the percentiles of the maps. In 
particular, the SLICE single-cell interaction probability map is also faithful to the average distance 
pattern. Horizontal lines highlight that GAM and SLICE both capture the domain structure of the 
distance map, corresponding to the TADs23 shown in the color bar at the bottom.  

b) Pearson, Spearman and HiCRep correlations between SLICE and GAM bulk maps (top) and between 
SLICE and the average distance maps (bottom). 

c) The Pearson correlation between replicate contact maps is shown as a function of the number of 
cells, N, for GAM and SLICE at efficiency 0.5 (Materials and Methods).  

d) The minimal number of cells, M, to have reproducible replicates at different efficiencies for SLICE 
and GAM (as in Figure 4f).  

e) The ratio between M for GAM and for SLICE v.s. the efficiency. For efficiencies close to the 
experimental ones, say 0.5 or above20, the value of M for SLICE is approximately a factor two lower than 
for GAM. 
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SUPPLEMENTARY TABLE 

Supplementary Table 1.  Pearson, Spearman and HiCRep correlations for the Sox9 locus 

a) Pearson (r), Spearman (rs) and HiCRep (scc) correlations between bulk Hi-C, SPRITE and GAM (from 
1122 slices) experimental maps and the corresponding in-silico maps (see Figure 1 and Materials and 
Methods), for the Sox9 locus.  

b) Pearson, Spearman and HiCRep correlations between the average distance map and the in-silico bulk 
Hi-C, SPRITE and GAM contact maps (see Figure 2) for the Sox9 locus.  

c) Pearson, Spearman and HiCRep mean correlations between in-silico single-cell distance maps and 
the average distance map for the Sox9 locus (see Figures 3a,b).  

d) Mean correlations between in-silico single-cell contact maps - at efficiency 1 - and the corresponding 
single-cell distance map (see Figures 3c,d).  

e) Same as panel d), but here in-silico contact maps are generated with efficiencies similar to the 
experimental ones (0.05 for Hi-C and SPRITE and 0.5 for GAM; see Main Text and Materials and 
Methods). The reduction of efficiency worsens the similarity with the single-cell distance pattern.  
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