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ABSTRACT 

In spite of evidence of females having a greater lifetime risk of developing Alzheimer’s Disease 

(AD) and greater apolipoprotein E4-related (apoE4) AD risk compared to males, molecular 

signatures underlying these findings remain elusive. We took a meta-analysis approach to study 

gene expression in the brains of 1,084 AD patients and age-matched controls and whole blood 

from 645 AD patients and age-matched controls. Gene-expression, network-based analysis and 

cell type deconvolution approaches revealed a consistent immune signature in the brain and blood 

of female AD patients that was absent in males. Machine learning-based classification of AD 

using gene expression from whole blood in addition to clinical features revealed an improvement 

in classification accuracy upon stratifying by sex, achieving an AUROC of 0.91 for females and 

0.80 for males. These results help identify sex and apoE4 genotype-specific transcriptomic 

signatures of AD and underscore the importance of considering sex in the development of 

biomarkers and therapeutic strategies for AD.  
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INTRODUCTION 

Alzheimer’s disease (AD)  is a progressive neurodegenerative disorder and the most 

common cause of dementia1,2. It is pathologically characterized by the deposition of extracellular 

amyloid β (Aβ) and intracellular tau, otherwise referred to as plaques and neurofibrillary tangles, 

respectively3–5. AD is also marked by neuronal loss, impaired neurotransmitter signaling, 

neuroinflammation, and dysregulation of neuronal metabolism and immune response in the 

central nervous system6–8. AD prevalence increases dramatically with age, where the majority of 

cases are in individuals above the age of 651,9.  Although AD was identified more than a century 

ago10, its cause and pathophysiology are not fully understood, and there are no available 

treatments that aid in halting or reversing the disease11. Accordingly, it is of high priority to tackle 

AD, as it is projected to triple in incidence by 2050 as a consequence of population aging6,8,12 and, 

to date, has no disease-modifying therapies.    

 While the exact cause and pathophysiology remain unknown, a number of mutations and 

genetic risk factors have been identified as associated with AD.  Apolipoprotein E (apoE) is the 

most common genetic risk factor for late onset AD8,13–18. ApoE is a lipid binding protein, that 

plays a central role in lipid transport and metabolism. It is highly expressed in the brain, and is 

important for maintaining neuronal membranes during inflammation and damage. In humans, 

apoE has three isoforms, apoE2, apoE3, and apoE4, which are encoded by the three alleles, ε2, 

ε3, and ε4, of the apoE gene, respectively. The ε2 isoform has been shown to be protective against 

AD, while the ε4 isoform (apoE4) is associated with increasing the risk  and lowering the age of 

onset for developing late onset AD in a gene dose-dependent manner19,20. Specifically, one copy 
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of the ε4 isoform confers a 3 to 4-fold increased risk and 7 year decrease in age of onset, while 

two copies confers a 12 to 15-fold increased risk of AD, and a 14 year decrease in age of onset8,21.  

 Sex is another major risk factor in AD. Female sex is associated with increased AD 

incidence, exacerbated pathophysiology and increased rate of cognitive decline related to the 

disease progression8,22–25. It has been conjectured that the higher prevalence in females is a result 

of longer life span8,25.  Alternatively, studies have alluded to sex-specific hormonal and metabolic 

changes that interplay with the onset and progression of AD dementia6,16,26.  Sex also interacts 

with apoE isoform status, where females with the apoE4 isoform are at increased risk compared 

to males27–29. Despite the clear therapeutic potential to better understanding these 

pathophysiological patterns, there is still little understanding of the mechanisms underlying sex-

specific differences in AD.  

 With the rising prevalence of AD, it is critical to facilitate the development of robust 

means to detect AD early and discover therapeutic interventions30–33. Technological innovations 

and the increasing availability of large transcriptomic datasets present worthwhile avenues to 

study and characterize the molecular underpinnings of AD stratified by sex. Here, we analyze 

publicly available gene expression datasets from over 1,500 brain and blood samples to 

characterize this highly complex disease. To derive sex-specific transcriptomic molecular 

signatures, we perform a meta-analysis, differential gene expression, weighted gene co-

expression network analysis, pathway enrichment, and cell-type deconvolution in a large cohort 

of brain and blood samples from AD patients and healthy controls (Figure 1). We further 

characterize these signatures and apply machine learning to build a predictive model based on 

biomarkers identified in the blood of AD patients. Our findings reveal underlying mechanisms of 

sex differences, which provide clinical implications for identifying more accurate, and less 
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invasive biomarkers, as well as efficacious therapeutics tailored to better fit the complex 

molecular profiles in AD. 

 

 

METHODS 

Study Cohorts:  

Publicly available RNA-sequencing (RNA-Seq) and microarray datasets from the Gene 

Expression Omnibus (GEO) and from consortium studies indexed on PubMed were searched for 

the key word “Alzheimer’s”. To minimize technical variability, brain samples were restricted to 

RNA-sequencing studies while blood analyses were restricted to microarray studies. Samples 

were curated to include bulk gene expression from subjects with Alzheimer’s or elderly healthy 

individuals with no history of neurodegenerative disease. Individuals with non-Alzheimer’s 

neurodegenerative diseases including Huntington’s and Parkinson’s were excluded. Brain 
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samples were restricted to the hippocampus, parietal cortex, temporal cortex and prefrontal cortex. 

Additional clinical covariates, including age, sex, apoE4 carrier status, education were recorded 

for the samples and used as covariates or stratification variables in subsequent analyses. 

Gene Expression Meta-Analysis: 

Meta-analysis was conducted separately for brain and blood studies according to standard 

quality control, normalization, and batch correction procedures. All data processing was 

conducted using R (v3.6.1). 

Brain studies:  

Raw RNA-sequencing data were processed for the Mount Sinai Brain Bank (MSBB)34, 

Mayo Clinic RNAseq 35, and Religious Orders Study and Memory and Aging Project 

(ROSMAP)36 as previously described in the AMP-AD consortium project . Briefly, read 

alignment and counting was performed using STAR38. Alignment quality metrics were generated 

using PICARD39. For the Allen dataset, expected counts produced using RSEM were downloaded 

from the Allen Brain Atlas: Aging Dementia and TBI Study website40. Counts-per-million (CPM) 

were calculated for all studies. Genes with less than 1 CPM in at least 50% of samples across 

tissue diagnosis group were removed. Genes with missing gene length or GC content percentage 

metrics were removed. Library normalization was performed using conditional quantile 

normalization.   

 Following read alignment and normalization, studies were merged using common genes 

between the four studies. Mean value imputation was performed for missing gene expression 

values. Quantile normalization was performed across studies. The ComBat function from the sva 

package41 was used to perform cross-study normalization, retaining variation in apoE4 carrier 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 25, 2020. ; https://doi.org/10.1101/2020.04.24.060558doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.24.060558
http://creativecommons.org/licenses/by-nc-nd/4.0/


status, sex, and diagnosis. Principal component analysis (PCA) plots were generated to evaluate 

successful batch correction and to detect outliers.  

Blood studies: 

Study data were downloaded from GEO for the AddNeuroMed datasets42 or the 

Alzheimer’s Disease Neuroimaging Initiative Consortium43 (ADNI) for the ADNI dataset and 

processed. Raw data were not available for the ADNI dataset and therefore normalized expression 

data were used for all studies. Outlier removal was performed on individual studies by removing 

probes whose mean expression was outside 1.5 times the interquartile range. Probe IDs were 

mapped to gene symbols. Expression value of probes mapping to the same gene were reported as 

the median of all probes mapping to that gene44.  Quantile normalization was performed across 

studies. Similar to the brain data analysis, the ComBat function from the sva package was used 

to perform cross-study normalization, retaining variation in apoE4 carrier status, sex and 

diagnosis. Principal component analysis (PCA) plots were generated to evaluate successful batch 

correction.  

Differential Gene Expression Analysis: 

All differential gene expression analyses were performed separately for brain and blood 

samples. The Limma package45 was used to determine differentially expressed genes between 

cases and controls all together and stratified by sex. In each model, age and apoE4 carrier status 

were included as covariates to minimize confounding. An additional covariate of education was 

used in the blood analyses. Education was not available for all brain samples and therefore was 

not included as a covariate. A cutoff false discovery rate (FDR) of 0.05 and fold change (FC) of 

greater than or equal to 1.2 was used for brain analyses. Fold changes were calculated using the 
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individual study data before merging and weighted by sample size. For blood analyses, a FC 

cutoff was not used to maximize gene discovery. Significant overlap between up‐ and down-

regulated genes between males and females was assessed using a hypergeometric test. Functional 

enrichment analysis of gene lists was carried out by overrepresentation analysis using the KEGG46 

database of biological pathways.  

Network Analysis:  

Weighted Gene Co‐Expression Network Analysis: 

In order to detect gene network level differences, network analysis was performed using 

Weighted Gene Co‐Expression Network Analysis (WGCNA)47. All analyses were performed 

separately for brain and blood samples. In signed WGCNA, a module is defined as a set of genes 

whose expression is highly correlated in the same direction. Signed gene co-expression networks 

were created separately for male and female samples to identify sex-specific gene modules. 

Module Z-summary scores were computed to assess module preservation between male and 

female networks, as described previously48. A Z-summary score greater than ten was considered 

to be strong evidence of preservation between the two networks. A score between two and ten 

was considered to represent weak to moderate evidence of preservation, as previously described48. 

 Association between module gene expression and case/control status was assessed by 

relating the module eigengenes, defined as the first principal component of the genes in a given 

module, to case/control status using linear regression. Age, apoE4 carrier status, and education 

(for blood samples) were used as covariates to minimize confounding.  An additional analysis 

identifying apoE-by-disease interaction effects was performed by adding the interaction term: 

apoE4 carrier status:case/control status to the previous model. Significant modules were 
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characterized by performing functional gene enrichment using the KEGG database of biological 

pathways31.  

Hub Gene Analysis: 

To identify central regulators of gene expression, we identified hub genes within 

significant modules, as described previously47. Hub genes were defined as genes with gene 

significance (the correlation between the gene expression and case/control status) greater than 0.2 

and module membership (the correlation between gene expression and module eigengene) greater 

than 0.8, as previously described47. We also restricted hub genes to those that were differentially 

expressed in AD vs control. Network visualization using the STRING v1151 database was used 

to assess evidence for protein‐protein interactions between hub genes. 

Cell-type Deconvolution  

CIBERSORT52 was applied to the transcriptomic signatures generated in the blood meta-

analysis to deconvolve gene expression data into cell type composition and identify sex-specific 

dysregulation of immune cell types between cases and controls. CIBERSORT applies a linear 

support vector regression method to solve the problem: m= f x B where m is an input mixture of 

gene expression data for a given sample, f is a vector consisting of fractions of each cell type in 

the mixture and B is a matrix of reference gene expression profiles. A gene expression profile of 

22 reference cell populations was built using differential gene expression of purified or enriched 

cell populations from the authors of CIBERSORT.  

CIBERSORT was used to deconvolve gene expression data from pooled male and female 

data, male only samples, and female only samples. In each condition, differences in cell type 

proportions between cases and controls were compared using a linear regression model adjusting 
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for age, sex (in the pooled male female analysis), and apoE4 carrier status. An additional analysis 

identifying apoE4-by-disease interaction effects was performed by adding the interaction term: 

apoE4 carrier status:case/control status to the previous model. A cutoff FDR of 0.05 was deemed 

significant.  

Classification of Healthy and Alzheimer’s Disease Patients 

 A linear support vector machine (SVM) model with l1 regularization to enforce feature 

sparsity was used to classify Alzheimer’s patients and healthy controls based on blood gene 

expression data. To assess the relative value of stratifying by sex in increasing model performance, 

we compared the performance of three models built using pooled male and female samples, male 

samples only, and female samples only.  We also compared the performance of a ‘clinical model’ 

with age, sex (for male and female pooled samples), and apoE4 carrier status information to a 

‘clinical + molecular model’ which included age, sex (for male and female pooled samples), 

apoE4 carrier status, and transcriptomic data from the blood meta-analysis.  

 For each model, data were split into 75% training/validation and 25% test sets using a 

class balancing procedure to maintain a constant case/control ratio across training/validation and 

test sets. A random search over the space 10-4 to 104 with five-fold cross validation was used to 

optimize the C hyper-parameter, or the degree of regularization penalty applied for misclassified 

points. Receiver operating characteristic (ROC) curves were generated from the test set. Model 

performance was assessed using the area under the ROC curves. Feature importance was 

determined using the absolute value of the model coefficients corresponding to the vector 

coordinates orthogonal to the model hyperplane. 

RESULTS 

Study Cohort Characteristics 
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We obtained four publicly available RNA-seq data sets (Allen Brain Institute Aging 

Dementia and TBI study, Mayo Clinic RNA-seq, MSBB, and ROSMAP) from the brain 

(temporal cortex, parietal cortex, prefrontal cortex, and hippocampus) and three microarray 

datasets from whole blood (AddNeuroMed cohort 1, AddNeuroMed cohort 2 and ADNI).  After 

outlier removal, we included a total of 1,084 brain samples (58% female; 26% apoE4 carriers) 

and 645 blood samples (58% female; 38% apoE4 carriers) in our analysis. Table 1 shows a 

summary of sample annotations including number of cases and controls, apoE carrier status, and 

number of males and females for brain datasets and blood datasets. 

  In the brain datasets, compared to controls, AD patients were significantly older (mean ± 

SD for AD: 86.5 ± 6.0 years and controls: 84.8 ± 7.4 years; two sample t-test, P < 0.001), more 

likely to be apoE4 carriers (AD: 38% carriers vs controls: 15% carriers; Chi-squared test, P < 

0.001), and more likely to be females (AD: 65% female vs controls: 51% female; Chi-squared 

test, P < 0.001). 

 In the blood datasets, compared to controls, AD patients were significantly older (mean ± 

SD for AD: 77.0 ± 7.1 years and controls: 74.7 ± 5.7 years; two sample t-test, P < 0.001), more 

likely to be apoE4 carriers (AD: 60% carriers vs controls: 27% carriers; Chi-squared test, P < 

0.001), more likely to be females (AD: 64% female vs controls: 55% female; Chi-squared test, P 

< 0.001), and had more years of education (mean ± SD for AD: 9.4 ± 4.8 years and controls: 13.9 

± 4.7 years; two sample t-test, P < 0.001).  

 Studies were merged and batch corrected using ComBat resulting in 13,500 common 

genes across 1,084 samples for brain studies and 3,371 common genes across 645 samples for 

blood studies. Supplementary Figure S1 and S2 show PCA plots before and after batch correction, 

demonstrating successful data merging and batch effect removal.   
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Differential Gene Expression in the Brain Identifies a Distinct Sex-Specific Signature of AD 

We observed distinct AD-associated transcriptomic signatures in the brain in males and 

females. A total of 981 genes were differentially expressed in females, including 583 upregulated 

genes and 398 downregulated genes (FC > 1.2, q < 0.05; Figures 2A-B; Supplementary Table 1). 

In males, 513 genes were differentially expressed, including 415 upregulated genes and 98 

downregulated genes (FC > 1.2, q < 0.05; Figures 2A-B; Supplementary Table 1). Altogether, 

Table 1: Meta-analysis Study Characteristics 

    AD CN 

Study Accession Total 
participants  

AD, no. 
(%) 

Female 
/Male 
(% Female) 

apoE4 Yes 
/No 
(% Yes) 

Female 
/Male 
(% Female) 

apoE4 
Yes /No 
(% Yes) 

Brain Transcriptomic Studies 

Allen https://aging.brain-
map.org/ 212 72 

(34) 
29/43 
(40) 

22/50 
(31) 

54/86 
(39) 

19/121 
(14) 

Mayo Clinic RNA-
Seq syn5550404 154 80 

(52) 
49/31 
(61) 

42/38 
(53) 

36/38 
(49) 

9/65 
(12) 

MSBB GSE52564 301 185 
(62) 

131/54 
(71) 

63/122 
(34) 

57/59 
(49) 

16/100 
(13) 

ROSMAP syn3219045 417 218 
(52) 

151/67 
(70) 

83/135 
(38) 

122/77 
(61) 

33/166 
(17) 

Sum  1084 555 
(52) 

360/195 
(65) 

210/345 
(38) 

269/260 
(51) 

77/452 
(15) 

Whole Blood Transcriptomic Studies 

ADNI http://adni.loni.usc.edu/ 301 43 
(14) 

17/26 
(40) 

32/11 
(74) 

 
135/125 
(52) 

71/189 
(27) 

AddNeuroMed1 GSE63060 182 91 
(50) 

65/26 
(71)  

52/39 
(57)  

55/36 
(60) 

30/61 
(33) 

AddNeuroMed2 GSE63061 160 86 
(43) 

59/27 
(69)  

47/39 
(55)  

45/29 
(61) 

 
15/59 
(20) 

Sum  645 220 
(34) 

141/79 
(64) 

131/89 
(60) 

235/190 
(55) 

116/309 
(27) 
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631 genes were uniquely dysregulated in females, including 309 upregulated genes and 327 

downregulated genes. In males, 166 genes were uniquely dysregulated, including 141 upregulated 

genes and 27 downregulated genes. There was a significant overlap of dysregulated genes across 

males and females (P < 0.05; hypergeometric test).  

 Next, we characterized the transcriptomic signatures observed in the brains of male and 

female AD patients. In females, among upregulated AD genes, we found 69 enriched pathways, 

many of them relating to components of the innate and adaptive immune system (Table 2; 

Supplementary Table 2). Several upregulated HLA system genes including HLA-DPB1, HPA-

DRA, HLA-DOA, HLA-DRB5, HLA-DMA, HLA-DPA1 contributed to enrichment of a number 

of pathways relating to response to infection (Table 3). Components of the complement system 

including C1QA, C4B, and C4A were also uniquely dysregulated in females (Table 4; 

Supplementary Table 2). We also observed an enrichment of genes in the MAPK signaling 

pathway including MRAS, MK2, and MK3. Downregulated AD genes in females were enriched 

for a number of neurological signaling pathways including synaptic vesicle exocytosis, 

neuroactive ligand-receptor activation, and GnRH signaling (Table 2; Supplementary Table 3).   

 Strikingly, we observed an enrichment of fewer immune-related pathways in males with 

AD. Among upregulated genes in male AD patients, we found 12 enriched pathways, including 

amoebiasis and cytokine-cytokine receptor interaction, suggestive of adaptive and innate immune 

activation (Table 2; Supplementary Table 4). Similar to females, we also observed an enrichment 

of the MAPK signaling pathway, including MAP4K4 and MK2, in males. Among downregulated 

genes in male AD patients, we did not identify significantly enriched pathways. For a full list of 

enriched pathways, refer to Supplementary Tables S2-S4. 
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Lastly, we performed a non-stratified analysis comparing gene expression between AD 

and control samples irrespective of sex. Statistical models were adjusted for sex, apoE4 carrier 

status, and age. A total of 662 genes were upregulated and 430 genes were downregulated in 

patients with AD compared to controls (Figure S3, Table 2; Supplementary Table 1. Upregulated 

genes were enriched for several pathways previously implicated in AD including PI3K-Akt 

signaling and MAPK signaling as well as a number of immune related pathways including 

Staphylococcus aureus infection, human papillomavirus infection, and malaria (Supplementary 

Table S5).  Several components of the complement system, including C4B, C4A, C1R, C3AR1, 

and C5AR1 also contributed to this enrichment (Supplementary Table S6).  In our analysis of  

downregulated genes, we found several pathways related to neuroreceptor signaling and 

GABAergic transmission were enriched including the genes GABRA1, GNG3, GNG2, SLC32A1, 

GABRD, and GABRG2 (Supplementary Table S6).  
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Table 2: Enriched Pathways in Brain 
Term Adjusted P Genes 

Female Upregulated Genes (n= 583) 
Staphylococcus 
aureus infection <0.001 C1QB;C1QA;HLA-DRB5;CFH;CFI;PTAFR;C4B;C4A;HLA-DMA;HLA-DMB;FCGR2A;HLA-

DPB1;HLA-DRA;MASP1;HLA-DOA;HLA-DPA1;C1QC 

MAPK signaling 
pathway <0.001 

CSF1;FLT4;HSPB1;FGF1;FGF2;EGFR;RASGRP3;MECOM;RPS6KA1;GNA12;MAP3K20;CD14;
MAP3K6;PDGFRB;TGFB2;ANGPT2;IL1R1;DUSP1;HGF;GNG12;NFKB1;TGFBR1;GADD45G;TG
FBR2;EFNA1;MRAS;MAPKAPK3;MAPKAPK2;TAB2;MYD88;EPHA2;HSPA1A 

PI3K-Akt signaling 
pathway <0.001 

CDKN1A;CSF1;ITGB5;FLT4;TNC;LPAR3;FGF1;THBS2;FGF2;EGFR;SPP1;ITGB8;IL6R;MCL1;P
DGFRB;ANGPT2;SYK;LAMB2;NOS3;HGF;FN1;GNG12;OSMR;GNG11;NFKB1;EFNA1;COL1A2;
ITGA10;ITGA6;SGK1;TLR4;EPHA2;TLR2 

Leishmaniasis <0.001 TGFB2;HLA-DRB5;NFKB1;HLA-DMA;HLA-DMB;FCGR2A;HLA-DPB1;HLA-DRA;TAB2;HLA-
DOA;TLR4;MYD88;HLA-DPA1;TLR2 

Inflammatory bowel 
disease (IBD) <0.001 TGFB2;HLA-DRB5;NFKB1;HLA-DMA;HLA-DMB;HLA-DPB1;HLA-DRA;HLA-

DOA;TLR5;TLR4;IL18R1;HLA-DPA1;TLR2 

Toxoplasmosis <0.001 TGFB2;HLA-DRB5;LAMB2;NFKB1;HLA-DMA;HLA-DMB;HLA-DPB1;HLA-
DRA;TAB2;ITGA6;HLA-DOA;TLR4;MYD88;HLA-DPA1;TLR2;HSPA1A 

Cell adhesion 
molecules (CAMs) <0.001 HLA-DRB5;SDC2;HLA-E;CLDN11;OCLN;VCAN;HLA-DMA;PTPRC;HLA-DMB;CLDN15;HLA-

DPB1;HLA-DRA;ITGB8;ITGA6;CD58;HLA-DOA;CD34;HLA-DPA1 
Epstein-Barr virus 
infection <0.001 LYN;HLA-DRB5;CDKN1A;SYK;DDX58;TAP1;TNFAIP3;NFKB1;HLA-E;GADD45G;HLA-

DMA;HLA-DMB;HLA-DPB1;HLA-DRA;TAB2;HES1;CD58;HLA-DOA;MYD88;HLA-DPA1;TLR2 

Pathways in cancer <0.001 
NOTCH2;CDKN1A;NOTCH4;FLT4;LEF1;SLC2A1;CXCR4;LPAR3;FGF1;FGF2;DLL1;GLI3;EGFR
;GLI2;RASGRP3;MECOM;GNA12;HES1;RXRG;IL6R;PDGFRB;CDKN2B;TGFB2;LAMB2;FZD7;H
GF;FN1;MITF;GNG12;GNG11;NFKB1;TGFBR1;GADD45G;TGFBR2;HEYL;SMO;ITGA6 

Systemic lupus 
erythematosus 
 

<0.001 
C1QB;C1QA;HLA-DRB5;C4B;C4A;HLA-DMA;HLA-DMB;FCGR2A;HLA-DPB1;HIST1H4H;HLA-
DRA;HLA-DOA;HIST1H2AC;HIST1H2BD;HLA-DPA1;C1QC 
 

69 more..   

Female Downregulated Genes (n= 398) 
Neuroactive ligand-
receptor interaction 0.001 CHRNB2;GABRB2;GABRA1;CHRNA2;GABRA4;PTH2R;CCK;GRIK2;HTR5A;RXFP1;GABRG2;

MCHR2;MAS1;GLRA3;GLRB;CNR1;SST;NPY;TAC1;VIP;GABRD 
Retrograde 
endocannabinoid 
signaling 

0.01 RIMS1;GABRB2;MAPK9;GABRA1;NDUFA5;CNR1;GABRA4;ITPR1;ADCY1;GABRD;GABRG2 

Synaptic vesicle 
cycle 0.01 RIMS1;SLC6A7;ATP6V1G2;ATP6V1B2;ATP6V1H;ATP6V0E2;CPLX1;STX1A 

Aldosterone 
synthesis and 
secretion 

0.01 CAMK2D;STAR;PRKCE;CAMK4;CAMK2A;ITPR1;ADCY1;ATP1B1;CAMK1G 

Nicotine addiction 0.02 CHRNB2;GABRB2;GABRA1;GABRA4;GABRD;GABRG2 
GnRH signaling 
pathway 0.03 MAPK9;EGR1;CAMK2D;PRKCD;CAMK2A;ITPR1;PTK2B;ADCY1 

   
Male Upregulated Genes (n= 415) 
PI3K-Akt signaling 
pathway  

0.009 PDGFRB;CSF3R;CSF1;ITGB5;IRS1;LAMB2;FLT4;FN1;LAMC1;GNG12;OSMR;FGF2;NFKB1;BC
L2L11;ITGA10;KDR;SPP1;ITGA6;EPHA2;TLR2 

MAPK signaling 
pathway 0.01 PDGFRB;TGFB2;CSF1;IL1R1;DUSP1;FLT4;GNG12;FGF2;NFKB1;TGFBR2;MRAS;MECOM;MA

PKAPK2;KDR;CD14;MYD88;EPHA2;MAP4K4 
NOD-like receptor 
signaling pathway 0.03 NEK7;CARD6;ERBIN;ANTXR2;GBP2;ANTXR1;IKBKE;GBP1;NFKB1;MYD88;GBP4;GBP3 

ECM-receptor 
interaction 0.03 ITGB5;LAMB2;ITGA10;SPP1;FN1;ITGA6;LAMC1;HSPG2 

Proteoglycans in 
cancer 0.04 TGFB2;MRAS;ITGB5;FZD7;KDR;FN1;GAB1;HCLS1;WNT7A;HSPG2;FGF2;TLR2 

Focal adhesion 0.04 VAV3;PDGFRB;ITGB5;LAMB2;ITGA10;FLT4;KDR;FN1;SPP1;CAPN2;ITGA6;LAMC1 
Fc gamma R-
mediated 
phagocytosis 

0.04 VAV3;PTPRC;FCGR2A;MYO10;INPP5D;DOCK2;WASF2;PLPP1 

Amoebiasis 0.04 TGFB2;IL1R1;LAMB2;FN1;LAMC1;CD14;NFKB1;TLR2 

Pathways in cancer 0.04 NOTCH2;PDGFRB;TGFB2;CSF3R;LAMB2;FZD7;FLT4;LEF1;FN1;SLC2A1;WNT7A;CXCR4;MIT
F;LAMC1;GNG12;FGF2;NFKB1;GLI2;TGFBR2;BCL2L11;MECOM;ITGA6;NFE2L2 

Cytokine-cytokine 
receptor interaction 0.04 TGFB2;CSF3R;CSF1;IL1R1;CXCR4;LIFR;INHBB;OSMR;TNFRSF1B;IL17RB;TGFBR2;IL1RL1;A

CKR3;TNFRSF25;IL18R1 
2 more..   
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Male Downregulated Genes (n= 98) 
No enriched pathways 

 

Network Analysis in the Brain Identifies a Stronger Disease Signature in Females 

To assess transcriptomic changes on a gene network level, we utilized WGCNA. Gene 

networks were derived separately for male and female samples and compared using network 

preservation methods, as previously described48.  We identified two AD-associated modules in 

males and 11 AD-associated modules in females (Figure 3A) that met the significance threshold 

(FDR < 0.05) and were either positively or negatively correlated with case/control status. Among 

the male modules, a 463-gene module (termed black) was upregulated in AD, and a 151-gene 

module (termed tan) was downregulated in AD. The black module in males had significant 

overlap with two modules in females (termed yellow and pink) (P < 0.001; hypergeometric test) 

as indicated by asterisks in Figure 3B. The black module also had strong preservation in the 

female network (Z-summary score > 10). Among the female-specific disease associated modules, 

four modules (termed green, red, black and turquoise) were downregulated in AD, while seven 

were upregulated (Figure 3A).  

 Enrichment analysis of disease-associated modules using the 2019 KEGG Human 

pathway database revealed pathways relevant to AD that were consistent with those identified in 

the single gene analysis (Figure 3A). For example, in both males and females, an upregulated 

module was enriched for Akt signaling related pathways and downregulated modules were 

enriched for oxidative phosphorylation and thermogenesis related pathways, consistent with 

single gene level analyses.  

 Notably, several additional pathways not seen through single gene analysis were observed 

in the network analyses. An upregulated module in both males and females was highly enriched 
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for zinc finger nuclease genes related to Herpes simplex viral infection, consistent with recent 

work demonstrating Herpes virus infection in AD brains53. 

  Consistent with the single gene analysis, we observed greater number of disease 

associated modules in females with AD than in males. For example, an upregulated female 

module was enriched for cell structural processes related to adherens junctions, actin cytoskeleton 

and axonal guidance. An additional downregulated female module was enriched for neurological 

signaling pathways including synaptic vesicle exocytosis, aldosterone synthesis and secretion and 

morphine addiction. Interestingly, an additional female downregulated module was enriched for 

autophagy and proteolysis pathways, consistent with molecular studies demonstrating decreased 

autophagy in AD, particularly in females55 (Figure 3A).  

 We also conducted an analysis identifying modules with apoE4:disease interactive effect 

to understand differential penetrance of the apoE e4 allele in males and females. In the male gene 

network, we were unable to identify modules with significant apoE4:disease interactive effect. 

Interestingly, in the female network, we identified one module that was downregulated (2211 

genes) in AD, and two modules (329 genes and 439 genes) that were upregulated in AD and 

exhibited a significant apoE4:disease interactive effect (Figure 3A). The two upregulated modules 

(termed pink and purple) were significantly enriched for several zinc finger nuclease genes related 

to Herpes simplex viral infection. The downregulated module was enriched for metabolic 

pathways including oxidative phosphorylation and the TCA cycle. Together these results suggest 

a female-specific network dysregulation involving zinc finger nucleases and metabolic alteration 

supporting differential apoE4 penetrance in males and females. 

 There were 102 hub genes among disease associated modules in the female network 

identified as module membership greater than 0.8, gene significance greater than 0.2, and 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 25, 2020. ; https://doi.org/10.1101/2020.04.24.060558doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.24.060558
http://creativecommons.org/licenses/by-nc-nd/4.0/


differentially expressed between AD and controls (Figure 3C; Supplementary Table S7). In 

contrast, zero hub genes were identified in the male gene network. Protein-protein interaction 

maps generated by STRING v11 suggest several Ca+2- and G protein-dependent interconnected 

genes including ITPKB, PDGFRB, GNG12, and GNA12 among the female disease associated 

modules (Figure 3C). Among modules with apoE4:disease interactive effect in females, 35 hub 

genes were identified, including ITPKB as a highly connected regulator (Figure 3D). For a full 

list of genes in each module, including hub genes, please refer to Supplementary Table S7). 
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Differential Gene Expression in Whole Blood Identifies Stronger Disease Signatures in 

Females with AD in Comparison to Males 

Similar to the brain, we observed distinct AD-associated transcriptomic signatures 

between males and females with AD in whole blood. We observed a total of 599 differentially 

expressed genes in females with AD, including 294 upregulated genes and 305 downregulated 

genes (q < 0.05; Figures 2C-D; Supplementary Table 8). In males, 98 genes were differentially 

expressed in AD, including 38 upregulated genes and 50 downregulated genes (q < 0.05; Figures 

2C-D; Supplementary Table 8). Altogether, 542 genes were uniquely dysregulated in females, 

including 271 upregulated genes and 271 downregulated genes. In males, 31 genes were uniquely 

dysregulated, including 15 upregulated genes and 16 downregulated genes. There was a 

significant overlap of dysregulated genes across males and females with AD (P < 0.05; 

hypergeometric test).  

 Next, we characterized the transcriptomic signatures observed in the blood of male and 

female AD patients. Among upregulated genes in female AD patients, we found 14 enriched 

pathways, many of them relating to components of the innate and adaptive immune system (Table 

3; Supplementary Table S9). Several cytokine response elements including STAT5B, STAT6, 

and IL10RB contributed to enrichment of a number of pathways relating to response to infection 

(Table 3). Similar to the brain, components of actin cytoskeleton regulation were also 

dysregulated in females. (Table 3; Supplementary Table S9). Downregulated genes in female AD 

patients were enriched for a number of metabolism related processes including oxidative 

phosphorylation and thermogenesis, consistent with the single-gene and network analysis in the 

brain (Supplementary Table S10).  
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 Similar to the brain analysis, we observed dramatically fewer enriched pathways in males 

with AD. Among upregulated genes in male AD patients, we did not identify any enriched 

pathways. Among downregulated genes in male AD patients, components of the proteasome were 

enriched including PSMD4 and PSMC3 (Table 3; Supplementary Table S11). For a full list of 

enriched pathways, refer to Supplementary Tables S9-S11.  

 Lastly, we performed a non-stratified analysis comparing gene expression between AD 

and control samples irrespective of sex in whole blood. Analyses were adjusted for sex, apoE4 

carrier status, age and education. A total of 339 genes were upregulated and 360 genes were 

downregulated in patients with AD compared to controls (Figure S3B, Supplementary Table S8). 

Upregulated genes were enriched for several pathways previously implicated in AD, including 

MAPK signaling, autophagy and NFkB signaling (Supplementary Table S12). In addition, a 

number of immune related pathways were enriched including tuberculosis, Escherichia coli 

infection, salmonella infection, and inflammatory bowel disease. Several components of the 

NFkB cascade and antigen presentation system including NFKBIA, ITGAM, STAT5B, TLR5, 

TLR4, CD14 and C4A, contributed to this enrichment (Supplementary Table S12).  Among 

downregulated genes, pathways related to protein synthesis and metabolism, including ribosome, 

proteasome, protein export, thermogenesis, and oxidative phosphorylation were enriched. 

Included in these pathways were several oxidation phosphorylation related genes including 

NDUFA9, NDUFA8, COX4I2 (Supplementary Table S13).  

Table 3: Enriched Pathways in Blood 
Term Adjusted P Genes 

Female Upregulated Genes (n= 294) 

Tuberculosis <0.001 ATP6V0B;CEBPB;ITGAM;IL10RB;IFNGR2;TCIRG1;CTSS;
CREB1;IRAK1;LAMP2;ITGAX;RAF1;CAMK2G 

Necroptosis 0.004 PYCARD;STAT5B;MLKL;H2AFJ;IFNGR2;STAT6;TYK2;CF
LAR;CAMK2G;HIST1H2AC;HIST2H2AC 
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Fc gamma R-
mediated 

phagocytosis 
0.006 HCK;PTPRC;ARPC1A;PRKCD;RAC2;ASAP1;ARPC5;RAF

1 

Pathogenic 
Escherichia coli 

infection 
0.01 ARPC1A;NCK2;ARHGEF2;ARPC5;TLR5;TUBA4A 

TNF signaling 
pathway 0.01 CEBPB;RPS6KA5;CREB1;MLKL;MAP3K8;FOS;CFLAR;C

REB5 
Regulation of actin 

cytoskeleton 0.02 FGD3;ITGAM;SPATA13;ARPC1A;RAC2;ITGAX;IQGAP1;A
RPC5;RAF1;SSH2;PAK2 

Lysosome 0.02 GNPTG;CD63;ATP6V0B;LAMP2;IDS;TCIRG1;GNS;CTSS 

Phagosome 0.02 ATP6V0B;ITGAM;LAMP2;CANX;TAP1;TCIRG1;TUBA4A;C
TSS;ATP6V1F 

JAK-STAT 
signaling pathway 0.02 STAT5B;CCND3;CSF3R;IL10RB;IFNGR2;STAT6;TYK2;R

AF1;MCL1 
Estrogen signaling 

pathway 0.03 CREB1;PRKCD;FOS;KRT10;RAF1;ADCY7;FKBP5;CREB5 

4 more..   

Female Downregulated Genes (n= 305) 

Ribosome <0.001 

RPL4;RPL5;RPL30;RPL41;RPL32;RPL12;RPL22;RPL11;R
PL35A;MRPL36;MRPL24;RPL6;MRPL33;RPS25;RPL36AL
;RPL35;RPL24;RPS20;RPL26;RPS27A;RPL39;RPS24;RP

S12 

Proteasome <0.001 PSMB6;PSMA5;PSMB7;PSMA3;PSMD4;PSMC3;PSMC1;
POMP;PSMB1;PSMC2;PSMD1;PSMF1 

Spliceosome <0.001 
ISY1;HSPA8;SF3B5;CCDC12;BUD31;DDX42;PLRG1;PQB
P1;SNRPD2;ZMAT2;SYF2;SNRPG;PPIH;SNRPA1;SNRPB

2;SLU7;CTNNBL1 
Protein export <0.001 SRP19;SEC61G;SRPRB;SRP68;SRP14;SEC11A 

Oxidative 
phosphorylation <0.001 NDUFA9;NDUFA8;NDUFS5;COX17;NDUFB2;NDUFA1;C

OX6A1;ATP6V1E1;NDUFV2;COX6C;ATP6V1D;UQCRH 

Huntington disease <0.001 NDUFA9;NDUFA8;NDUFB2;NDUFA1;CLTA;COX6C;COX
6A1;UQCRH;SOD1;SIN3A;NDUFS5;VDAC3;BAX;NDUFV2 

Non-alcoholic fatty 
liver disease 

(NAFLD) 
<0.001 NDUFA9;NDUFA8;NDUFS5;NDUFB2;NDUFA1;BAX;PIK3

R1;COX6A1;NDUFV2;COX6C;ADIPOR2;UQCRH 

Protein processing 
in endoplasmic 

reticulum 
0.002 DNAJA1;ATXN3;HSPA8;HSP90AA1;HSPH1;HSP90AB1;E

IF2AK1;SEC61G;ERP29;BAX;UBXN6 

Parkinson disease 0.002 NDUFA9;NDUFA8;NDUFS5;VDAC3;NDUFB2;NDUFA1;C
OX6A1;NDUFV2;COX6C;UQCRH 

Thermogenesis 0.007 NDUFA9;COA3;NDUFA8;SMARCC1;NDUFS5;COX17;ND
UFB2;NDUFA1;COX6C;COX6A1;NDUFV2;UQCRH 

3 more…   
Male Upregulated Genes (n=38) 

No enriched pathways 
Male Downregulated Genes (n=50) 

Proteasome 
 

0.06 
 

PSMD4;PSMC3;POMP 
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Network Analysis in Whole Blood Identifies a Stronger Disease Signature in Females 

We identified five AD-associated modules in females and zero AD-associated modules in 

males (Figure 4) that met the significance threshold (FDR < 0.05) and were either positively or 

negatively correlated with case/control status. Among the modules in female samples, three 

modules including a 483-gene module (termed turquoise), a 129-gene module (termed pink) and 

153-gene module (termed black) were upregulated in AD. Two modules including a 270-gene 

module (termed blue) and 119-gene module (termed magenta) were downregulated in AD (Figure 

4A). No modules with significant apoE4:disease interaction effect were found in female or male 

network analyses from the blood datasets. 

 Enrichment analysis of disease-associated modules using the 2019 KEGG Human 

pathway database revealed pathways relevant to AD that were consistent with those identified in 

the single gene analysis (Figures 4A and 3A). For example, upregulated modules in females were 

strongly enriched for innate immune system activity, neutrophil degranulation, CSF signaling, 

IL2 signaling, and cytokine signaling. Consistent with single gene analyses, downregulated 

modules in females were enriched for metabolic processes including metabolism of RNA and 

metabolism of amino acids (Figure 4A).   

 There were 35 hub genes among disease associated modules in the female-specific 

network identified as module membership greater than 0.8, gene significance greater than 0.2 and 

differentially expressed between AD and controls (Figure 4B). In contrast, zero hub genes were 

identified in the male-specific gene network. Protein-protein interaction maps generated by 

STRING v11 suggest several interconnected genes including the B cell development related 

protein, IGLL1, and ribosomal proteins RPS20, RPS25, RPL4, and RPL35A (Figure 4B).  
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For a full list of genes in each module, including hub genes, please refer to Supplementary Table 

S14). 

Comparison of Brain and Blood Transcriptomic Signatures Reveals Common Immune 

Related Signals in Females 

We next identified genes that were commonly dysregulated in both blood and brain 

(Figure 2E). In females, a total of 23 genes were dysregulated in the brain and blood in the same 

direction (two downregulated and 21 upregulated). Several genes among the commonly 

upregulated genes have roles in antigen presentation including TAP1, CTSS, and PTPRC. 

Enrichment analysis of commonly upregulated genes revealed an enrichment of the KEGG terms 

primary immunodeficiency, phagosome, and cell adhesion molecules (adjusted P < 0.1; Figure 

2F). In addition, eight genes were dysregulated but in different directions in the brain and blood 

including PRKCD, VAMP8, GIMAP7, LAPTM5, HLA-DOA, TNS1, DBI, GIMAP7, TUbA4A 
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(Figure 2E). In contrast, in males we found one upregulated gene, VCAN encoding vesican, 

dysregulated in both the blood and brain (Figure 2E).  

Cell-type Deconvolution Identifies Sex-specific Immune Cell Dysregulation in Females with 

AD 

Differences in 22 immune blood cell types (Figures 5A-B) were evaluated by 

deconvolving the transcriptomic signature obtained via meta-analysis of blood studies. Analysis 

of cell type proportions adjusting for age, sex, and apoE4 status revealed an increase in 

neutrophils and naïve B cells, and a decrease in M2 macrophages and CD8+ T cells in AD patients 

compared to controls in pooled male and female samples (Figure 5C, FDR P <0.05). Among 

females with AD, relative to controls, we observed an increase in neutrophils and naïve B cells 

and a decrease in M2 macrophages, memory B cells, and CD8+ T cells in AD samples (Figure 

5C, FDR P <0.05). Interestingly, among males with AD, we did not find any significant 

differences in immune cell proportions compared to controls.  
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Sex-specific Transcriptomic Data Improves AD Classification Accuracy 

To assess the value of sex-specific transcriptomic data in developing a blood-based 

classifier in AD, we trained a linear SVM model to classify AD patients controls using the 

transcriptomic signature obtained via meta-analysis of blood studies. We trained a ‘clinical model’ 

with age, sex, education, and apoE4 status and a ‘clinical + molecular model’ with age, sex, 

education, apoE4 status, and blood transcriptomic data. Using pooled male and female samples, 

the ‘clinical + molecular model’ achieved a higher AUROC compared to the ‘clinical model’ 

(AUROC = 0.88 for ‘clinical + molecular model’; AUROC = 0.77 for ‘clinical model’) on a test 

set composed of 25% of samples (Figures 6A and S4A). 

 Interestingly, a model trained with only female data achieved a higher AUROC (‘clinical 

+ molecular model’:  0.90 and ‘clinical model’: 0.86; Figures 6B and S4B) than the pooled male 

and female model. In contrast, a model trained with only male data obtained a lower AUROC 

(‘clinical + molecular’ model 0.81 and ‘clinical model’ 0.83; Figures 6C and S4C) than the pooled 

male and female model.  

 Figures 6G-H summarizes shared features between models.  In all simple models (pooled 

male and female, female only, and male only), age and apoE4 status had a positive feature 

importance while education had a negative feature importance. A positive feature importance 

means that the expression of that feature increases the likelihood of being classified as AD 

(termed risk factor). A negative feature importance means that expression of the feature 

expression reduces the likelihood of being classified as AD (termed protective factor). In the 

female ‘clinical + molecular model’, 57 features, including known risk factors including apoE4 

and age, had a positive feature importance (Supplementary Table S15). In addition, 50 features 

had negative feature importance. Among these were education and previously implicated AD risk 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 25, 2020. ; https://doi.org/10.1101/2020.04.24.060558doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.24.060558
http://creativecommons.org/licenses/by-nc-nd/4.0/


genes including CETN2 (Supplementary Table S15). In the male ‘clinical + molecular model’, 

103 features, including apoE4, had positive feature importance. (Supplementary Table S16). In 

addition, 105 features, including education, had negative feature importance (Supplementary 

Table S16). 

 Altogether, we observed a significant overlap (P < 0.001, hypergeometric test) in features 

with non-zero feature importance between the pooled male and female ‘clinical + molecular 

model’ and female ‘clinical + molecular model’; female ‘clinical + molecular model’ and male 

‘clinical + molecular model’; and pooled male and female ‘clinical + molecular model’ and male 

‘clinical + molecular model’ (Figure 6G).  

 Functional annotation of features with a non-zero feature importance was performed via 

enrichment analysis using the 2019 KEGG database of human pathways. Among features with 

non-zero feature importance, we did not identify any enriched biological pathways in the male 

only and female only complex models. In the male and female pooled complex model, features 

with positive feature importance (risk factors), were enriched for staphylococcus aureus infection, 

graft-vs-host disease, and antigen presentation and processing KEGG pathways (adjusted P < 

0.05; Figure 6H). The HLA genes HLA-DRB4 and HLA-DQA1 contributed to this enrichment. 

In addition, the P-selection glycoprotein ligand-1 gene (SELPLG) and killer cell 

immunoglobulin-like receptor (KIR2DL3) also contributed to enrichment, suggesting a role for 

leukocyte recruitment and natural killer cell activity in AD pathology.  
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DISCUSSION 

 In this study, through computational analysis of publicly available gene expression 

datasets from brain and blood samples, we evaluated AD at the transcriptome level using single 

gene and network approaches to gain insight into the mechanisms underlying sex and apoE4-

genotype based differences in AD. We also evaluated how including sex-specific transcriptomic 

data from blood samples with clinical data would affect the performance of a machine learning 

classifier for AD diagnostics. 

 Our characterization of brain transcriptomic signatures revealed, among upregulated 

genes in the brains of both females and males with AD, an enrichment of pathways related to 

components of the innate and adaptive immune systems as well as the MAPK signaling pathway. 

This result is consistent with past findings where the brain’s immune system has been indicated 

as a major component of AD pathogenesis60,61. Additionally, MAPKs, enzymes that play critical 

roles in cellular signaling, have also been implicated as accelerators of AD development62. 

Overall, findings from our brain transcriptome analysis provide supporting evidence for 

therapeutics currently being explored for AD, such as p38 MAPK inhibitors67, and suggest that 

possible treatments targeting the MAPK pathway may have a greater effect in females with AD. 

 Interestingly, from our differential expression analysis, we found a nearly two-fold greater 

total number of dysregulated genes in the brain transcriptome that met our significance cutoff for 

females with AD compared to males with AD (974 vs 509, respectively). Many of these genes 

are in pathways related to antigen presentation and processing, complement activation, suggesting 

a female-specific role of neuroinflammation in the pathogenesis of AD. Additionally, for 

downregulated genes in AD patients, we observed enrichment of neurological signaling pathways 

in females only and no enriched pathways in males.   
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 Through network analysis, we identified more AD-associated modules in the brain 

transcriptome of females than males. Enrichment analysis of AD-associated modules also 

revealed some pathways that were enriched in both sexes, including an upregulated module for a 

PI3/Akt signaling related pathway and downregulated modules for oxidative phosphorylation and 

thermogenesis related pathways. Unique to females, we observed upregulated modules associated 

with cell structural processes (adherens junctions, actin cytoskeleton and axonal guidance) and 

HSV infection-related zinc finger nuclease genes, as well as a downregulated module for 

neurological signaling pathways, autophagy and proteolysis.   

 Upon performing hub gene analysis, we identified hub genes in female disease-associated 

modules but were unable to identify male disease associated hub genes. These female hub genes 

consisted of several potentially interconnected genes including ITPKB, PDGFRB, GNG12, and 

GNA12. In our subsequent analysis to assess an apoE4:disease interaction effect, we identified 

three modules, one of which was significantly enriched for HSV infection-related zinc finger 

nuclease genes as well as containing the ITPKB hub gene as a highly connected regulator. These 

results suggest zinc finger nucleases as a potential mechanism underlying sex-associated 

differential penetrance of apoE4 in AD.   

 Our findings suggest a neuroinflammatory model of AD pathogenesis in females with 

dysregulation in components of the adaptive and innate immune system including antigen 

presentation and processing and complement activation and genes including MAPK and ITPKB. 

It has been postulated that accumulation of damage from HSV infection and major 

neuroinflammatory effects can lead to the development of AD, and that apoE4 carriers suffer 

either greater viral damage or have poorer repair of such damage54. Previous studies have 

demonstrated that ITPKB expression is increased in human AD brains and exacerbates AD 
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pathology in an animal model64. Our brain transcriptome findings for females with AD, including 

downregulation of autophagy and proteolysis pathways, upregulation of pathways related to the 

immune system and HSV infection, as well as ITPKB as a hub gene, particularly in female apoE4 

carriers, highlight specific gene-encoded processes in the brain that may be more involved in AD 

for women than for men. 

 Similar to our brain findings, in analysis of blood transcriptomes, we observed more 

dysregulated genes in the blood of females with AD than in males with AD.  Further 

characterization of these transcriptomic signatures revealed, among upregulated genes, 

enrichment in only females with AD of pathways related to components of the innate and adaptive 

immune systems as well as actin cytoskeleton regulation; however, for downregulated AD genes, 

we observed enriched metabolic pathways (oxidative phosphorylation and thermogenesis) in 

females and enriched pathways for protein homeostasis in males. 

 Through network analysis, we identified AD-associated modules and hub genes in the 

female blood transcriptome but not in males.  In the blood of females with AD, upregulated 

modules were strongly enriched for innate immune system activity (neutrophil degranulation, 

CSF signaling, IL2 signaling, and cytokine signaling). Consistent with single gene analyses, 

female downregulated modules were enriched for metabolic processes (e.g. metabolism of RNA 

and amino acids). Hub genes identified in the blood of females with AD include those related to 

immunity (the B cell development related protein, IGLL1) and viral RNA translation (ribosomal 

proteins RPS20, RPS25, RPL4, and RPL35A).  

 In addition to neuroinflammation’s role in AD, dysregulation of the immune system 

outside of the brain has also been noted to be a factor in AD65. Our findings feature specific gene-

encoded processes in peripheral blood cells that may be more involved in AD for women than for 
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men. Furthermore, our cell-type deconvolution analysis revealed dysregulation of peripheral 

immune cells uniquely in females with AD and not males with AD.  

 When including blood transcriptomic features with clinical features (age, sex, education, 

and apoE4 status) to train a machine learning prediction model of AD, our model performed better 

with these additional molecular features than without (AUROC: 0.88 vs 0.77, respectively).  The 

performance of this model also improved when trained with only female data (clinical + molecular 

model AUROC: 0.90 and clinical model AUROC: 0.86) and worsened when trained with only 

male data (molecular model AUROC: 0.81 and clinical model AUROC: 0.83) than with pooled 

male and female model. This finding suggests that the molecular changes in females compared to 

males are better able to model AD-related changes.  Further, given the distinct transcriptomic 

signature observed in males and females, stratifying by sex may aid future efforts to identify 

biomarkers in AD.  

 Diagnostic tests currently available for AD, including  Aβ position emission tomography 

(PET), lack accuracy or are implemented through invasive and painful procedures such as lumbar 

puncture56–59. Diagnostic tests for AD that are more accurate and less invasive are worthwhile for 

preventing undue uncertainty and physical discomfort experienced by patients. Our machine 

learning AD prediction model based on clinical and blood transcriptomic features has the 

potential to complement currently available clinical AD diagnostic tests, and improve the 

accuracy of these tests, particularly for women, with minimal additional discomfort for patients.  

 Based on the nature of our analyses, there are a number of limitations to note. We analyzed 

publicly available datasets, which were limited in sample size and contained annotation 

differences. This provided challenges in selecting cases from controls and restricted our ability to 

answer certain questions. For instance, the Allen Brain Atlas dataset provided only a binary 
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classification for apoE (apoE4: Y/N). This confined our analysis to only look at the presence of 

apoE4, instead of looking at difference across different genotype combinations. Next, we did not 

stratify our analysis by age or disease stage, so we cannot describe whether these transcriptomic 

signatures differ with age or disease severity. Additionally, since we aggregated bulk tissue from 

different brain regions in our analysis, we cannot infer sex differences across brain region. 

Consequently, using bulk tissue transcriptomics reduces our resolution of the more complex 

interactions and contributions of different brain cell types in AD. Future approaches to better 

characterize sex-specific changes in AD would involve stratification by brain regions, age and 

disease stage, apoE genotype, as well as an analysis of single cell AD datasets.  

 In conclusion, the major finding of this study is a distinct, sex-specific transcriptomic 

signature in the brains and whole blood of patients with AD. Gene expression meta-analysis and 

network-based analyses revealed an immune signature in the brains and whole blood of females 

with AD that was absent in males. Our analyses also revealed more pronounced neurosignaling 

and metabolism signatures in the brains whole blood of females with AD than in males with AD. 

Stratification by sex improved machine-learned based classification of AD using whole-blood 

transcriptomic data. Results from this work will help to better understand molecular etiologies 

underlying sex differences in AD and pave the way for sex-specific biomarker and therapeutic 

development in AD.   
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Figure Legends 
 
Figure 1: Meta-analysis Overview 
Diagram depicting the study overview including all datasets used and analyses performed. Data 
sets were obtained via searching GEO or PubMed for the keyword Alzheimer’s Disease. Samples 
with neurological conditions other Alzheimer’s, including Parkinson’s Disease and  Huntington’s 
Disease, and single cell preparations were excluded from analysis. Datasets were merged using 
the ComBat package in R. WGCNA was used for network analyses. CIBERSORT was used for 
cell type deconvolution. The linear SVM was trained to classify AD and control patients using 
the transcriptomic signature obtained via meta-analysis of blood studies. The performance of a 
molecular model consisting of gene expression, age, sex and apoE4 status was compared to that 
clinical model with age, sex and apoE4 status as features.  
 
Figure 2: Cross-Tissue Sex Specific Differential Gene Expression 
A. Four-way plot with fold change in males vs fold change in females depicting differentially 
expressed genes in the brain. Differential expression was defined using a fold change > 1.2 and 
FDR P < 0.05. Covariates of age and sex were included in statistical analyses. B. In the brain, a 
total of 631 genes were uniquely dysregulated in females with AD while 166 genes were uniquely 
dysregulated in males with AD. Common to both males and females in the brain were 343 genes. 
C. Four-way plot with fold change in males vs fold change in females depicting differentially 
expressed genes in the blood. Differential expression was defined using a fold change > 1.2. 
Covariates of age, sex, and education were included in statistical analyses D. A total of 542 genes 
were uniquely dysregulated in females with AD while 31 genes were uniquely dysregulated in 
males with AD in blood. Common to both males and females in the brain were 55 genes. E Fold 
change plot depicting genes that are dysregulated in both blood and brain tissues. Genes are 
colored by sex indicating if the gene is dysregulated in male samples (1 gene; red) or female 
samples (31 genes; blue). F. Enrichment analysis of the commonly dysregulated genes depicted 
in E. An adjusted P -value cutoff of 0.1 was used for significance to increase power.  
 
Figure 3: Network Analysis in the Brain. 
WGCNA was used to construct gene network separately for males and females in the brain. 
Networks were randomly assigned colors. A. A description of the disease-associated gene 
networks (termed modules) produced using WGCNA. Significant disease-associated modules 
were identified by associating module eigengene to case/control status adjusting for age and 
apoE4 status (P < 0.05). KEGG enrichment analysis of significant was conducted using an 
adjusted P value threshold of 0.05. The direction in AD is computed using the case/control 
coefficient of the model associating module eigengene to case/control status. Modules with 
significant apoE4:disease interaction effect were identified by adding the interaction term 
apoE4:disease to the previous model (P < 0.05) B. Heatmap depicting the degree of module 
overlap assessed using a hypergeometric test between male and female disease-associated 
modules. The black module in males had significant overlap (P < 0.05) with the pink and yellow 
modules. Estimate refers to the case/control coefficient in the model module eigengene ~ age + 
apoE4 + case/control status. C. Hub genes from female disease-associated modules. Hub genes 
were defined as genes with gene significance (the correlation between the gene expression and 
case/control status) greater than 0.2 and module membership (the correlation between gene 
expression and module eigengene) greater than 0.8. Hub genes were restricted to those that were 
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differentially expressed in AD vs control. Protein-protein interactions between hub gene 
visualization was performed using the STRING v11 database. Edge color represents the type of 
interaction evidence for protein-protein interaction (cyan: known interaction from curated 
databases; turquoise: experimentally determined; green: gene-neighborhood predicted interaction; 
red: gene-fusions predicted interaction; blue: gene co-occurrence predicted interaction; green-
yellow: text mining;  black: co-expression; light purple: protein homology. D. Hub genes among 
modules with significant apoE4:disease interaction effect. Protein-protein interaction between 
hub genes was visualized using STRING v11 with edge colors representing the same as in C. 
 
Figure 4: Network Analysis in Whole Blood. 
WGCNA was used to construct gene network separately for males and females in whole blood. 
Networks were randomly assigned colors. A. A description of the disease-associated gene 
networks (termed modules) produced using WGCNA. Significant disease-associated modules 
were identified by associating module eigengene to case/control status adjusting for age and 
apoE4 status and education (P < 0.05). KEGG enrichment analysis of significant was conducted 
using an adjusted P value threshold of 0.05. The direction in AD is computed using the 
case/control coefficient of the model associating module eigengene to case/control status. 
Modules with significant apoE4:disease interaction effect were identified by adding the 
interaction term apoE4:disease to the previous model (P < 0.05) B. Hub genes from female 
disease-associated modules. Hub genes were defined as genes with gene significance (the 
correlation between the gene expression and case/control status) greater than 0.2 and module 
membership (the correlation between gene expression and module eigengene) greater than 0.8. 
Hub genes were restricted to those that were differentially expressed in AD vs control. Protein-
protein interactions between hub gene visualization was performed using the STRING v11 
database. Edge color represents the type of interaction evidence for protein-protein interaction 
(cyan: known interaction from curated databases; turquoise: experimentally determined; green: 
gene-neighborhood predicted interaction; red: gene-fusions predicted interaction; blue: gene co-
occurrence predicted interaction; green-yellow: text mining;  black: co-expression; light purple: 
protein homology. 
 
Figure 5: Cell Type Analysis in Whole Blood. 
A. Cell types included in the panel of 22 reference cell types in CIBERSORT. B. Heatmap 
depicting cell type expression between cases and controls. apoE4 carrier status, sex, and 
case/control status is annotated for each sample. Only cell types that are significantly different 
between cases and controls in pooled male and female, male-only or female-only analyses are 
shown. C. Bar charts depicting cell type expression for individual cell types that are significantly 
between cases and controls in pooled male and female, male-only or female-only analyses are 
shown. Significance was assessed by associated cell type proportion to case/control status, 
adjusting for age, sex (in the pooled male and female model) and apoE4 status. P < 0.05 was 
deemed significant.  
 
Figure 6: Linear SVM Clinical + Molecular Model in Whole Blood.  
A-C. Receiver operating characteristic (ROC) curves depicting performance of each linear SVM 
model on a test set composed of 25% of samples. Features include gene expression data obtained 
via meta-analysis, age, sex, education, and apoE4 status. Three models were fit for male and 
female pooled samples (A), female samples only (B), and male samples only (C).   
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D-F. Feature importance plots for features with non-zero importance in the combined male and 
female model (D), female model (E), and male model (F). A positive feature importance means 
that the expression of that feature increases the likelihood of being classified as AD (risk factor). 
A negative feature importance means that expression of the feature expression reduces the 
likelihood of being classified as AD (protective factor). G. Comparison of non-zero features 
between combined male and female model, female model and male model.  
 
Supplementary Figure Legends: 
 
Figure S1: Brain Data PCA 
Principal component plots (PCA) of brain samples before (top) and after batch (bottom) 
correction. PCA plots depict principal component 1 and 2 and are colored by study (left), sex 
(middle) and apoE4 status (right). 
 
Figure S2: Blood Data PCA 
Principal component plots (PCA) of blood samples before (top) and after batch (bottom) 
correction. PCA plots depict principal component 1 and 2 and are colored by study (left), sex 
(middle) and apoE4 status (right). 
 
Figure S3: Non-stratified Differential Gene Expression 
A. Volcano plot depicting fold changes and p values from samples in the brain. Analyses were 
adjusted for sex, apoE4 status, and age.  An adjusted P value < 0.05 and log FC > 1.2 was deemed 
significant. In the brain, a total of 662 genes were upregulated and 430 genes were downregulated 
in patients with AD compared to controls. B. Volcano plot depicting fold changes and P values 
from samples in the blood. Analyses were adjusted for sex, apoE4 status, age, and education.  An 
adjusted P value < 0.05 was deemed significant. In blood, 339 genes were upregulated and 360 
genes were downregulated in patients with AD compared to controls.  
 
Figure S4: Linear SVM Clinical Model 
A-C. Receiver operating characteristic (ROC) curves depicting performance of each linear SVM 
model on a test set composed of 25% of samples. Features include  age, sex, education, and apoE4 
status. Three models were fit for male and female pooled samples (A), female samples only (B), 
and male samples only (C).  D-F. Feature importance plots for features with non-zero importance 
in the combined male and female model (D), female model (E), and male model (F). A positive 
feature importance means that the expression of that feature increases the likelihood of being 
classified as AD (risk factor). A negative feature importance means that expression of the feature 
expression reduces the likelihood of being classified as AD (protective factor). 
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