Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Chronic environmental or genetic elevation of galanin in noradrenergic neurons confers stress resilience in mice

Rachel P. Tillage, Genevieve E. Wilson, L. Cameron Liles, Philip V. Holmes, David Weinshenker
doi: https://doi.org/10.1101/2020.04.24.060608
Rachel P. Tillage
1Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Genevieve E. Wilson
1Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
L. Cameron Liles
1Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Philip V. Holmes
2Department of Psychology, University of Georgia, Athens, GA 30602, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David Weinshenker
1Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: dweinsh@emory.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

ABSTRACT

The neuropeptide galanin has been implicated in stress-related neuropsychiatric disorders in both humans and rodent models. While pharmacological treatments for these disorders are ineffective for many individuals, physical activity is beneficial for stress-related symptoms. Galanin is highly expressed in the noradrenergic system, particularly the locus coeruleus (LC), which is dysregulated in stress-related disorders and activated by exercise. Galanin expression is elevated in the LC by chronic exercise, and blockade of galanin transmission attenuates exercise-induced stress resilience. However, most research on this topic has been done in rats, so it is unclear whether the relationship between exercise and galanin is species-specific. Moreover, use of intracerebroventricular galanin receptor antagonists in prior studies precluded defining a causal role for LC-derived galanin specifically. Therefore, the goals of this study were twofold. First, we investigated whether physical activity (chronic voluntary wheel running) increases stress resilience and galanin expression in the LC of mice. Next, we used transgenic mice that overexpress galanin in noradrenergic neurons (Gal OX) to determine how chronically elevated noradrenergic-derived galanin, alone, alters anxiogenic-like responses to stress. We found that three weeks of ad libitum access to a running wheel in their home cage increased galanin mRNA in the LC of mice and conferred resilience to a stressor. The effects of exercise were phenocopied by galanin overexpression in noradrenergic neurons, and Gal OX mice were resistant to the anxiogenic effect of optogenetic LC activation. Together, these findings support a role for chronically increased noradrenergic galanin in mediating resilience to stress.

Significance statement Understanding the neurobiological mechanisms underlying behavioral responses to stress is necessary to improve treatments for stress-related neuropsychiatric disorders. Increased physical activity is associated with stress resilience in humans, but the neurobiological mechanisms underlying this effect are not clear. Here we investigate the anxiolytic potential of the neuropeptide galanin from the main noradrenergic nucleus, the locus coeruleus (LC). We show that chronic voluntary wheel running in mice galanin expression in the LC and stress resilience. Furthermore, we show that genetic overexpression of galanin in noradrenergic neurons confers resilience to the anxiogenic effects of foot shock and optogenetic LC activation. These findings support a role for chronically increased noradrenergic galanin in mediating resilience to stress.

Competing Interest Statement

The authors have declared no competing interest.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted April 25, 2020.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Chronic environmental or genetic elevation of galanin in noradrenergic neurons confers stress resilience in mice
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Chronic environmental or genetic elevation of galanin in noradrenergic neurons confers stress resilience in mice
Rachel P. Tillage, Genevieve E. Wilson, L. Cameron Liles, Philip V. Holmes, David Weinshenker
bioRxiv 2020.04.24.060608; doi: https://doi.org/10.1101/2020.04.24.060608
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Chronic environmental or genetic elevation of galanin in noradrenergic neurons confers stress resilience in mice
Rachel P. Tillage, Genevieve E. Wilson, L. Cameron Liles, Philip V. Holmes, David Weinshenker
bioRxiv 2020.04.24.060608; doi: https://doi.org/10.1101/2020.04.24.060608

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Neuroscience
Subject Areas
All Articles
  • Animal Behavior and Cognition (4227)
  • Biochemistry (9105)
  • Bioengineering (6751)
  • Bioinformatics (23944)
  • Biophysics (12088)
  • Cancer Biology (9493)
  • Cell Biology (13739)
  • Clinical Trials (138)
  • Developmental Biology (7616)
  • Ecology (11661)
  • Epidemiology (2066)
  • Evolutionary Biology (15479)
  • Genetics (10616)
  • Genomics (14296)
  • Immunology (9462)
  • Microbiology (22789)
  • Molecular Biology (9078)
  • Neuroscience (48884)
  • Paleontology (355)
  • Pathology (1479)
  • Pharmacology and Toxicology (2565)
  • Physiology (3823)
  • Plant Biology (8308)
  • Scientific Communication and Education (1467)
  • Synthetic Biology (2290)
  • Systems Biology (6171)
  • Zoology (1297)