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Abstract

Motivation: Conceptually, epitope-based vaccine design poses two distinct problems: (1) selecting the best epitopes eliciting
the strongest possible immune response, and (2) arranging and linking the selected epitopes through short spacer sequences
to string-of-beads vaccines so as to increase the recovery likelihood of each epitope during antigen processing. Current
state-of-the-art approaches solve this design problem sequentially. Consequently, such approaches are unable to capture
the inter-dependencies between the two design steps, usually emphasizing theoretical immunogenicity over correct vaccine
processing and resulting in vaccines with less effective immunogencity.
Results: In this work, we present a computational approach based on linear programming that solves both design steps
simultaneously, allowing to weigh the selection of a set of epitopes that have great immunogenic potential against their
assembly into a string-of-beads construct that provides a high chance of recovery. We conducted Monte-Carlo cleavage
simulations to show that, indeed, a fixed set of epitopes often cannot be assembled adequately, whereas selecting epitopes
to accommodate proper cleavage requirements substantially improves their recovery probability and thus the effective
immunogenicity, pathogen, and population coverage of the resulting vaccines by at least two fold.
Availability: The software and the data analyzed are available at https://github.com/SchubertLab/JessEV

Introduction

One of the most prominent approaches to rational vaccine
design against cancer (Sahin and Türeci, 2018; Ott et al.,
2017; Hu et al., 2017) and infectious diseases (Barouch et al.,
2018; Audran et al., 2005) are so-called epitope-based vaccines
(EVs). EVs consist of short immunogenic peptides, called epi-
topes, that are presented on human leukocyte antigen (HLA)
molecules and elicit a T-cell response. Such vaccines can be
produced quickly and cheaply with proven technologies and
easily preserved. They also eliminate the risk of reversion to
virulence present in regular attenuated vaccines, and can be
engineered to reduce potential toxicity and inflammatory reac-
tions (Liu, 2019).

The design process of EVs is composed of three stages: dis-
covery of potential epitopes, selection of a subset to be included
in the vaccine, and the actual design of the vaccine. As it has
become clear that delivery of mixtures of separate epitopes is
not effective in inducing a strong immune response, delivery
strategies have been developed that assemble the selected epi-
topes into concatenated polypeptide vaccines, so-called string-
of-beads vaccine, thereby increasing their resulting immuno-
genicity considerably (Yang et al., 1996). In a string-of-beads
construct, the epitopes are linked by short sequences of few
amino acids, called spacers, designed to elicit correct proteaso-
mal cleavage at the N- and C- termini of the epitopes thereby
increasing their recovery likelihood and the effective immuno-
gencity of the vaccine.

Current state-of-the-art methods for string-of-beads design
approach epitope selection and vaccine assembly indepen-
dently. First, epitopes are selected to maximize the the the-
oretical immunogenicity of the vaccine subject to additional
design constraints (Lundegaard et al., 2010; Toussaint et al.,
2008) completely disregarding the assembly and processing of
the vaccine. Only in a second step, the selected epitopes are
assembled into a string-of-beads vaccine optimizing their recov-
ery likelihood either using pre-determined, hand-design spacer
sequences (Velders et al., 2001) or spacers specifically designed
for each epitope pair (Schubert and Kohlbacher, 2016).

Although the immunogenicity of the selected epitopes and

the cleavage likelihood of the assembled vaccine strongly in-
fluence each other (Sébastien Corneta et al., 2006), existing
approaches cannot adequately captures and exploit this trade-
off due to their sequential nature. This often leads to string-
of-beads vaccines with theoretically high immunogenicity but
undesirable cleavage patterns where many epitopes cannot be
recovered during vaccine processing, fundamentally reducing
the vaccine’s effective immunogenicity.

Our main contribution is therefore an approach that con-
siders these two steps together using mixed integer linear pro-
gramming (MILP). Our mathematical framework is able to se-
lect and assemble a subset of maximally immunogenic epitopes
conforming to pre-specified design constraints regarding their
conservation, coverage of pathogens and HLA alleles, as well as
cleavage probabilities of their N- and C- termini and in their in-
terior. Through extensive Monte Carlo cleavage simulations we
show that the resulting vaccines provide a much greater epitope
recovery rates compared to vaccines designed with a sequential
approach. As a consequence, the effective immunogenicity, as
well as the effective pathogen and population coverage are sig-
nificantly increased, demonstrating the necessity of modeling
both design steps simultaneously.

Materials and Methods

A unifying framework for epitope selection and
assembly of string-of-bead vaccines

An epitope is effective only if it is recovered from the vaccine
polypeptide (i.e., cleavage occurs at its terminals and not in its
inside). Hence, epitopes should not only be selected based on
their theoretical immunogencity but also based on their protea-
somal cleavage likelihood and therefore their recovery probabil-
ity. By controlling the cleavage likelihood through optimized
arrangement of epitopes and specifically designing spacer se-
quences, we can increase the probability that the epitopes of
a vaccine are recovered correctly. Other quantities, besides
cleavage and immunogenicity, such as coverage of HLA and
pathogenic variability, as well as epitope conservation might
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Figure 1: Conceptual steps in epitope-based vaccine design with the proposed framework. (1) Epitopes are extracted from a
given set of antigens, and properties such as immunogenicity, coverage and conservation are computed. (2) We formulate a mixed integer
linear program that creates a string-of-beads vaccine by simultaneously selecting which epitopes to include and assembling them into
the final construct. This formulation maximizes the immunogenicity of the selected epitopes subject to constraints related to patient
and pathogen coverage of the resulting vaccine and cleavage probability of specific residues. To connect the selected epitopes, spacers
are designed to provide a high change of cleavage at the terminals of the epitopes. The vaccine will be subject to proteolytic digestion,
which has strong effects on its efficacy. To quantify these effects, (3) we perform repeated stochastic simulations of proteasomal cleavage
and estimate the probability that each epitope is correctly recovered from the string-of-beads construct. (4) Based on the recovered
epitopes, the vaccine is evaluated in terms of the average immunogenicity of the recovered epitopes, as well as coverage and conservation
with respect to the original antigens and/or the target population. We show that approaching the selection and assembly together
increases the number of epitopes correctly recovered from the vaccine, making the vaccine itself more effective.

be of interest as well to make the vaccine robust and broadly
applicable.

Therefore, the design problem can be described as finding the
optimal set of epitopes E ⊂ E of given size k that maximizes the
immunogencity I(E) while conforming with other pre-specified
design criteria, and simultaneously assembling the epitopes into
a string-of-beads vaccine with optimal spacer sequences Sij of
bounded (above and below) length for each pair of connected
epitopes (ei, ej) ∈ E×E maximizing their cleavage likelihood.

We formulate this optimization problem as a mixed inte-
ger linear program (MILP), which guarantees a global optimal
string-of-beads vaccine. The MILP is conceptually divided into
two blocks. The base linear program (Table 1) contains the
basic constraints needed to encode the vaccine design problem,
ensuring consistency of the resulting solution, reconstructing
the amino acid sequence of the selected epitopes and spacers,
and computing the cleavage scores for each position. The cleav-
age score is proportional to the cleavage probability in a specific
position, and is computed as a sum of offset-dependent scores
of the surrounding amino acids. As we allow spacers of vari-
able length, it is not possible to directly calculate the offsets
used to query the cleavage contributions of surrounding amino
acids for a specific position in a MILP. Instead we reformu-
late the cleavage calculation by linearizing a bivariate function
Z × Z → R mapping offset and amino acid to their individual
score contribution.

The second building block contains optional constraints re-
lated to the selection of epitopes in the vaccine and to bound
cleavage scores in certain locations of the string-of-beads con-
struct. The epitope selection constraints force the vaccine to
cover a given minimum amount of pathogens and/or HLA al-
leles. Furthermore, they can restrict the epitopes selected to
have a certain minimum average conservation. As most epi-
topes have extremely low conservation, we found it preferable

to focus on the average, rather than the minimum. The cleav-
age constraints are applied to certain critical locations: the N-
and C- terminals of the epitopes, their interior, and the interior
of the spacers. We will later give suggestions of broadly appli-
cable values for the cleavage site thresholds. A full description
of the MILP can be found in Supplementary Table S1.

Immunogenicity model

As in Toussaint et al. (2008), we define the overall contribution
of an epitope e to the vaccine immunogenicity as the weighted
average of the log-transformed HLA binding strengths ιea over
a specified set of HLA alleles A:

I(e) :=
∑
a∈A

pa · (1− log50k ιea) (1)

where pa is the probability of the allele a occurring in an in-
dividual of the target population. The set A of alleles has to
be chosen carefully beforehand to target a specific population.
We chose HLA binding affinity as proxy of immunogenicity as
it has been show to be strongly correlated with epitope im-
munogenicity (Sette et al., 1994; Paul et al., 2013). A variety
of models have been developed predicting HLA binding affinity
with high accuracy (Peters et al., 2020). We chose NetMHC-
pan (Jurtz et al., 2017) as it is considered state-of-art and most
widely used, however the framework and results presented here
hold for any HLA binding affinity model.

Cleavage site model

Through data-driven models, we can assign a proteasomal
cleavage probability to each position within a peptide sequence.
State-of-art cleavage site prediction models take the amino
acids of neighboring positions into account and assume their
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Maximize:

(OBJ)
∑
e∈E

∑
p∈P

xep · I(e)

Subject to: (consistency constraints)

(C1)
∑
e∈E

xep = 1 ∀p ∈ P

(C2)
∑
p∈P

xep ≤ 1 ∀e ∈ E

(C3)
∑
a∈A

yats ≤ 1 ∀s ∈ S, t ∈ T

(C4) xep, yaqs ∈ {0, 1} ∀a, e, p, q, s
Subject to: (cleavage computation constraints)

(C5)
∑
a∈A

spa = fp ∀p ∈ Q

(C6)

q∑
r=p+1

fr = opq ∀p, q ∈ Q : p ≤ q

(C7) −
p−1∑
r=q

fr = opq ∀p, q ∈ Q : p > q

(C8) fp ·
∑
q∈P

ppq = cp ∀p ∈ Q

(C9) fp ∈ {0, 1} ∀p ∈ Q
Subject to: (PSSM matrix access constraints)

(C10)
m∑
i=1

∑
j∈A

φijλpqisqj = ppq ∀p, q ∈ Q

(C11) λpq0opq +

6∑
i=1

Oiλpqi = opq ∀p, q ∈ Q

(C12)

n∑
i=1

λpqi = αpqβpq ∀p, q ∈ Q

(C13) λpq0 = 1− αpqβpq ∀p, q ∈ Q
(C14) opq − (L+ 5) · αpq ≤ −4.5 ∀p, q ∈ Q
(C15) opq + (L+ 2) · βpq ≥ 1.5 ∀p, q ∈ Q

(C16) αpq , βpq , λpqi ∈ {0, 1}
∀p, q ∈ Q
0 ≤ i ≤ 6

1 ≤ j ≤ 20

Where:
A, E,P Indices of amino acids, epitopes, and epitope po-

sitions.
Q,S, T Indices for sequence positions, spacers, and posi-

tions inside spacers.
I(e) The immunogenicity of epitope e.
xep Equals one if epitope e is in position p of the

vaccine.
yats Equals one if amino acid a is in position t of

spacer s.
spa Equals one if amino acid a is in position s of the

whole sequence (computation not shown in this
table).

φij Content of the PSSM for amino acid Aj at offset
Oi. Zero if i is out of bounds.

L Maximum length of the vaccine sequence.

Table 1: The base linear program that selects epitopes and spac-
ers (consistency constraints), reconstructs the amino acid sequence
(not shown), and computes the cleavage score for each position of
the sequence (cleavage computation constraints and PSSM access
constraints).

influence to be independent (Dönnes and Kohlbacher, 2005;
Tenzer et al., 2005; Kuttler et al., 2000). Using observational
data, these models estimate p(Ao = ak+o|Ck = 1), the prob-
ability that an amino acid o positions away from the cleavage
site k is ak+o, and p(Ao = ak+o), the probability of amino
acid ak+o occurring in a protein. Assuming independence, the
cleavage probability is then expressed as:

p(Ck = 1|ak−Nc , . . . , ak+Nt )

p(Ck = 1)
= exp

 Nt∑
o=−Nc

φ(o, ak+o)


(2)

where φ(o, ak+o) is the content of a position-specific scoring
matrix (PSSM) for amino acid ak+o at offset o from the cleav-
age point k, and represents the log-ratio of the probabilities
which are multiplied in Eq. 2. These model implicitly assume
that Ck−Nc = . . . = Ck+Nt = 0, therefore we complement Eq.
2 with the following additional condition:

p(Ck = 1|Ck+o = 1) = 0 ∀o ∈ {−Nc, . . . , Nt} (3)

Note that the resulting score is still relative to the prior prob-
ability p(Ck = 1) = pc of cleavage, which may vary according
to the host organism. Given that the average length of the
peptides cleaved by the proteasome is between seven and nine
amino acids (Nussbaum et al., 1998), a reasonable value for this
prior probability could be between 0.15 and 0.20, but as it is
not clear how to set this parameter, we will investigate the in-
fluence of the prior probability ranging from zero to one. Here,
we applied PCM, a PSSM proposed by Dönes and Kohlbacher
that uses four C-terminal amino acids (Nc = 4) and two N-
terminal amino acids (Nt = 1) to predict a cleavage site. It
has been shown to give robust and generalizable predictions
(Dönnes and Kohlbacher, 2005).

Given this model, the recovery event of an epitope e can then
be simply computed as:

Re = CNt(e) · CCt(e) ·
∏

p∈In(e)
(1− Cp) (4)

where Nt(e) and Ct(e) are the positions of e’s terminals, and
In(e) are the residues inside e.

Linearizing PSSM Indexing

The difficulty in querying a PSSM within the specified MILP
arises from the necessity of dynamically calculating the index-
ing position due to the variable length of each spacer sequence.
We solve this issue by bounding the spacer length from above
and below, which gives us a fixed reference frame in which we
can specify the amino acid sequence of the spacer while allow-
ing some position to be empty.

Formally, the cleavage score cp at position p can be computed
as follows:

cp = fp ·
L∑

q=1

(
fq · φ (opq , aq)

)
(5)

where fk = 1 if there is an amino acid in position k, L is the
maximum length of the vaccine sequence, φ(o, a) is the entry
of the PSSM, aq is the amino acid in position q, and opq is the
number of amino acids between positions p and q including the
one at q. Eq. 5 corresponds to constraint C8 in Table 1.

The position-specific indicators f can be computed easily
from the position-amino acid indicators (Table 1 C5) and the
offset opq can be computed as the sum of the indicators for the
positions between p (not included) and q (included). As opq
is used to index the PSSM, we define opq to be negative when
q < p and use two constraints for the positive and negative
cases (Table 1 C6 and C7 respectively).

Indexing into the PSSM can then be expressed as:

φ(opq , aq) =


φij if opq = Oi ∧ aq = Aj

0 if L ≤ o < −4

0 if 1 < o ≤ U
(6)
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with the pivots Oi ∈ {−4, . . . , 1} and Aj ∈ {1, . . . , 20} indi-
cating the offset and the amino acid, and φij the entry of the
PSSM. We also require to specify a lower L and upper bound
U for o; the maximum length of the sequence suffices. All the
quantities involved in Eq. 6 are integers, except for φij which
is a real number.

Eq. 6 can be linearized similarly to how piece-wise linear
functions are (Vielma et al., 2010), with a few adaptations
for our specific case. In particular, we associate an indicator
variable to each pivot, sqj = 1[aq = Aj ] and λpqi = 1[opq =
Oi], and retrieve the cleavage score from the PSSM as a linear
combination of these indicators with the respective pivot in
constraint C10 (Table 1).

The indicators sqj can be computed easily from x and y (Sup-
plementary Table S1). The appropriate λ can be computed by
comparing every pivot Oi to the actual offset opq (Table 1
C11), but require a default value of zero if opq is out of the
bounds of the PSSM (i.e., -4 and 1). To this end, we introduce
a new indicator λpq0 that is not used to compute cleavage.
Constraint C11 (Table 1) can always be satisfied by choosing
λpq0 = 1, therefore further constraints were added to force this
to happen only if the offset is actually out of the PSSM bounds.
Consequently, we introduce two additional indicator variables
αpq = 1[opq > 1] (Table 1 C14) and βpq = 1[opq < −4] (Table
1 C15), and set λpq0 = 1− αpqβpq (Table 1 C13).

Monte Carlo simulations

Given the cleavage scores, we are interested in estimating the
probability that an epitope e of the string-of-beads vaccine is re-
covered, which happens when CNt(e) = CCt(e) = 1 and Cp = 0
for p ∈ In(e) (i.e., cleavage happens at e’s terminals and not
inside it). Eq. 2 defines the probability of cleavage at a certain
position conditioned on the surrounding amino acids. To cal-
culate Ck for each position within the string-of-beads vaccine,
we assume that the proteasome cleaves the vaccine from N- to
C-terminus and define p(Ck = 1|ak−4, . . . , ak+1) = 0 if any of
Ck−4, . . . , Ck−1 have been cleaved before (i.e., ∃Ck−i = 1, i ∈
[1, 4]). In this case we assume that Ck = 0 instead. Based on
this, we can define the cleavage event as a stochastic process
indexed by the position k in the sequence:

Ck =

{
0 if k < 5 ∨

∑−1
i=−4 Ck+i > 0

1 with probability p(Ck = 1|ak−4, . . . , ak−1)
(7)

We can now estimate the recovery probability of each epitope
p(Re = 1) by sampling from this stochastic process through
Monte Carlo simulations and computing the ratio of successful
recoveries, as defined in Eq. 4, over the number of simulations
performed.

Using the epitope recovery probability p(Re = 1), we can
then estimate quantities of interest such as the effective im-
munogenicity and effective coverage of the vaccine as the ex-
pectation of the respective metric under the recovery probabil-
ity of each epitope in the vaccine. For example, the effective
immunogenicity is computed as:

Ie(E) =
∑
e∈E

I(e) · p(Re = 1) (8)

We use these simulations to evaluate the vaccines after they
have been designed by solving the linear program.

Dataset

Ninemer epitopes were extracted from 275 randomly selected
sequences of the Nef gene of HIV-1 subtypes B and C, down-
loaded from the HIV Sequence Database (Foley et al., 2018;
Los Alamos National Laboratory, 2019), for a total of 13,668

epitopes. We considered the same 27 HLA alleles and their
frequencies as Toussaint et al. (2011), that together provide a
theoretical coverage of 91.3% of the world population.

Implementation

The software was implemented in Python (van Rossum, 2001),
using Pyomo (Hart et al., 2011, 2017) to formulate the lin-
ear program and Gurobi (Gurobi Optimization, 2020) to solve
it. The implementation of OptiTope (Toussaint et al., 2008)
for epitope selection and OptiVac (Schubert and Kohlbacher,
2016) for spacer design of the sequential approach was provided
by FRED2 (Schubert et al., 2016). NumPy (van der Walt et al.,
2011), Scipy (Virtanen et al., 2020), Pandas (McKinney, 2010),
statsmodels (Seabold and Perktold, 2010), Matplotlib (Hunter,
2007) and Seaborn (Waskom et al., 2017) were used to analyze
and visualize the results in the IPython environment (Pérez
and Granger, 2007)

Results

Our vaccines are compared against a vaccine designed by first
selecting the optimal set of epitopes using OptiTope (Tous-
saint et al., 2008) and then finding the optimal ordering and
spacer sequences using OptiVac (Schubert and Kohlbacher,
2016), while our approach considers all 13,668 epitopes at
once when designing the string-of-beads vaccine. We refer to
this procedure as the sequential approach/design. In contrast,
the method we proposed is referred to as simultaneous ap-
proach/design. Due to the large number of experiments re-
quired, we limited the length of all vaccines to five epitopes
and at most four-amino acids spacers.

Smaller cleavage likelihood inside epitopes and
larger cleavage likelihood at their terminals is
possible

We created 30 sets of 5,000 epitopes extracted without replace-
ment from the complete set of 13,668 epitopes and designed a
vaccine for each set with both sequential and simultaneous ap-
proaches.

Both approaches can reach similar cleavage likelihoods at the
epitope junction sites (Fig. 2), yet the sequentially designed
vaccines often exhibit less favorable cleavage patterns within
epitopes (Fig. 2a). As the sequential epitope selection method
cannot consider vaccine processing during epitope selection, the
subsequent epitope assembly model has limited opportunity to
generate a favorable cleavage pattern. Even though only 4% of
epitope residues have larger cleavage than a terminal residue,
44% of them have a score larger than zero, (i.e., cleavage more
likely than the prior). This leads to frequent cleavage within
epitopes, which nullfies their therapeutic effected in vivo.

With our framework, we can take this into account and en-
force negative cleavage score inside the epitopes, scores larger
than two at the terminals, and smaller than negative two inside
the spacers. This caused the average score of residues inside
the epitopes to decrease significantly (t = −9.40, p-value =
9 × 10−21) from -0.40 for the sequential design to -1.01 for
the simultaneous designs, with an effect size of -0.50. Simi-
larly, the average scores at the terminals significantly increased
(t = 16.36, p-value = 1×10−47) from 1.70 to 2.16, for an effect
size of 1.17. The largest difference was inside the spacers, where
the average score decreased from -0.25 to -5.22 (t = −47.74,
p-value = 9× 10−220, effect size of -3.62).

We then used NetChop Cterm (Nielsen et al., 2005) to ob-
tain an independent prediction of the cleavage sites for every
bootstrap, counting how many cleavage events happened in the
spacers, terminals, and epitopes for each bootstrap (Fig. 2b).
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Figure 2: Cleavage score comparison of sequential and simultaneous approaches. (a) Shows the cleavage scores of residues
at the terminals, inside the epitopes, and inside the spacers for thirty vaccines designed on random subsets of 5000 epitopes. We are
able to enforce a strict separation between the scores of residues inside the epitopes and at the terminals, with a clear gap between the
cleavage scores at the terminals and inside the epitopes. (b) Shows how many cleavage events, as predicted by NetChop, happened at
the terminals, inside the epitopes, and inside the spacers in the same bootstraps used in (a). The marked differences are statistically
significant (∗ ∗ ∗ < 0.001). (c) Shows the cleavage scores for each residue of a string-of-beads vaccine designed on the complete set
of epitopes with a sequential approach and (d) with our simultaneous approach. The spacers are highlighted in green, and the gray
vertical lines represent cleavage frequencies as computed by Monte Carlo simulations with a prior of 0.1, with darker shades being more
likely. The title reports both theoretical and effective immunogenicity. Thanks to higher minimum cleavage at the terminals and lower
maximum cleavage inside the epitopes and spacers, the effective immunogenicity of our vaccine is about twice that of the sequential
approach, even though the individual epitopes are less immunogenic.

On average, there were 6.07, 1.73, and 9.40 cleavage events
for the sequential design, and 6.44, 4.37, and 6.81 for the si-
multaneous design. The effect sizes were 0.37, 1.90 and -1.99
respectively. We then fitted a Poisson regression model con-
sidering the choice of algorithmic design as the independent
variable, finding that the difference between cleavage events
inside the spacers was not significant (0.06±1.06, z = 0.57 and
p-value = 0.57), but the difference in terminals and epitopes
were (0.92±0.17, z = 5.56, p-value = 3×10−8 and −0.32±0.09,
z = −3.39, p-value = 7× 10−4).

The bounds we imposed on the cleavage scores forced the
solver to pick epitopes with lower immunogenicity, but thanks
to the improved recovery rates the effective immunogenicity
was 0.10 ± 0.15 larger than for the sequential approach (t =
6.69, p-value = 1 × 10−8 for an effect size of 1.86). However,
due to this restriction on the available epitopes, the problem
proved infeasible in three cases out of 30. Relaxing the bounds
on the cleavage scores could prevent infeasibility.

Comparing vaccines designed with the same procedure on the
complete set of epitopes reveals that the epitopes selected in the
simultaneous solution have a combined immunogenicity of 0.87
(Fig. 2c), only 55% of the immunogenicity of the sequential
approach (Fig. 2d), but the resulting effective immunogenicity
was 0.54, 240% larger than that of the sequential approach
(using a prior cleavage probability of 0.1). For this and all
subsequent experiments, we relaxed the negative cleavage score
constraint on the first three residues after the N-terminal of
the epitopes. Under our cleavage model, these three residues
cannot be cleaved when the N-terminal is, therefore their score
is uninfluential as long as the N-terminal is cleaved frequently.
This resulted in a 79% increase in immunogenicity and 68%
increase in effective immunogencity.

Increased epitope recovery rates improve ef-
fective immunogenicity and coverage

We designed string-of-bead vaccines using several thresholds
for minimum termini cleavage ν and γ (ranging from 1.5 to

2.5) and maximum epitopes’ interior cleavage score thresholds
η (from -1 to 1). To optimize for effective coverage, we ad-
ditionally performed a grid search on pathogen conservation
(from 5% to 20%) while keeping pathogen coverage at 99%
and allowing larger values of η (between 1 and 2). We then
performed 1,000 Monte Carlo cleavage simulations using dif-
ferent prior cleavage probabilities pc, and selected the values
for ν, γ, and η that resulted in the largest average effective
immunogenicity or coverage for each pc. Finally, we compared
the best simultaneous solution with the fixed vaccine produced
by the sequential approach (Fig. 3).

The effective immunogenicity of vaccines designed with the
simultaneous method was consistently larger by at least 97%
than that resulting from a sequential designs across all settings
of pc; often, the 25-th percentile of was larger than the 75-th
percentile of the sequential design (Fig. 3a). The number of re-
covered epitopes was also at least 315% larger (Fig. 3b). How-
ever, the higher epitope recovery rates were partly offset by the
lower immunogenicity of the selected epitopes, as forcing low
cleavage likelihoods inside of the selected epitopes restricted
the set of candidates. A qualitatively similar result could be
observed for effective pathogen (Fig. 3c) and HLA coverage
(Fig. 3d). The simultaneous string-of-beads designs outper-
formed the sequentially designs by a margin of at least 140%
and 27% for effective pathogen and allele coverage respectively.
We were able to design vaccines such that 2.13 epitopes were
recovered on average even with pc = 1 by enforcing the interior
epitope cleavage score to be smaller than -1, corresponding to
a cleavage probability below e−1 ≈ 0.37. In practice, however,
half of the residues inside the epitopes of such a vaccine had a
cleavage score smaller than -3.91 (e−3.91 ≈ 0.02), showing that
favorable cleavage can be achieved even in the most adverse
conditions.

We then bootstrapped the Monte Carlo trials to quantify the
probability that simultaneous designs had worse immunogenic-
ity and HLA/pathogen coverage across different prior recovery
probabilities. On average, they were worse 12%, 7%, and 1% of
the times for effective immunogenicity, pathogen coverage and
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Figure 3: Evaluation of string-of-beads designed with our simultaneous approach and a sequential approach across differ-
ent prior cleavage probabilities. Figures (a), (b), (c), and (d) show mean, 25-th and 75-th percentile of the Monte Carlo simulations
for effective immunogenicity, recovered epitopes, pathogen coverage, and HLA coverage respectively. Our solution is better under all
metrics across all choices of prior cleavage probabilities. Note that both vaccines optimize for immunogenicity in figures (a) and (b),
and for coverage in figure (c) and (d), which means that different constraints are used to produce them. Figures (e) and (f) show the
probability of worsening and expected improvement of effective immunogenicity, effective pathogen coverage, and effective HLA cover-
age. Both were estimated through five thousand bootstrap of the outcomes of the thousand Monte Carlo simulations. String-of-bead
vaccines produced by our simultaneous approach are very frequently not worse than the sequential approach, and on average between
three to five times better across a realistic range of prior probabilities. At cleavage probabilities larger than 0.7, no epitopes are ever
recovered for the sequential approach, hence the expected improvement approaches infinity.

HLA coverage respectively (Fig. 3e). Given the low number
of HLA alleles, there was a significant probability that both
methods could cover the same number of alleles (62% on av-
erage, and 42% that both effectively covered zero alleles). For
pathogens this probability was lower but still considerable (av-
erage 24%), while the effective immunogenicity was equal only
5% of the times.

We also quantified the expected improvement for each pc
(i.e., the ratio between the average effective immunogenicity of
the two solutions) and found that simultaneous designs consis-
tently outperformed the state of the art by two- to three-fold,
with greater improvement as pc approached one (Fig. 3f).

The same constraints are effective across a re-
alistic range of prior cleavage probabilities

Different settings of ν, γ, and η were needed to obtain the
largest possible effective immunogenicity depending on the
prior cleavage probability pc. As pc increased, ν, γ, and η de-
creased, as the smaller cleavage score was offset by the larger
prior probability. Fig. 4c traces the evolution of these param-
eters and shows that for 0.15 ≤ pc < 0.5 the optimal settings
were ν = γ = 1.95 and η = −0.1. A prior between 0.15 and
0.20 resulted in fragments of length between 7 and 10 on our
dataset, consistent with what was observed in vitro (Nussbaum
et al., 1998), suggesting that these are promising values for ex-
perimental testing. Additionally, Fig. 4a shows that for these
prior probabilities the effective immunogenicity of the second,
third, and fourth best settings was within 5% of the best design
for that prior, meaning that the effective immunogenicity for
these priors was not overly sensitive to the settings of ν, γ and
η.

In general, η was more critical than ν and γ, since it had a
considerable effect on the set of epitopes that could be selected
(Fig. 4d). In fact, according to our cleavage model, a spacer
affects cleavage only in the first four residues of the following
epitope, while the score in the following five residues cannot be
altered. For prior cleavage probabilities in a reasonable range,
the largest effective immunogenicity was obtained with η close
to zero, whereas larger absolute values caused a reduction in
the effective immunogencity. For very high (low) prior proba-
bilities, the best results were obtained with low (high) values
for η (Fig. 4b).

This also explained why optimizing for effective coverage
required larger values for η as very few epitopes were con-
served across a sufficient number of pathogens and were ex-
cluded when η was too small. In fact, the epitopes with the
highest pathogenic coverage raking in the top 1%, 2% and 5%
percentile covered 21%, 13% and 5% of the pathogenic antigens
respectively. This illustrates that including conserved epitopes
is fundamental even if they are recovered less frequently.

Optimized spacers are necessary but few vari-
ants are used

Inspecting the vaccines with largest effective immunogenicity
for each of the 10 prior cleavage probabilities revealed that
only nine different spacer sequences were used. Two sequences,
MWQW and MWRW, were used in 19 out of 40 spacers. These
spacer sequences increased the C-terminal cleavage score by
2.37 and 2.32 respectively, corresponding to a 10-fold likelihood
increase. Only five of the possible 204 sequences induce a larger
increase. However, they all end in K, which reduces the N-
terminal score by 1.4 and greatly limits the number of viable
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Figure 4: The effects of cleavage constraints on the immunogenicity objective and effective immunogenicity. (a) for each
prior probability, we plot the effective immunogenicity relative to the best obtained for that prior (y axis) for different parameter
settings ranked by effective immunogenicity (x axis). There is a range of prior probabilities, from 0.1 to 0.3, where four or five different
parameter settings are within 5% of the largest effective immunogenicity. (b) effective immunogenicity (y-axis) as a function of the
inner epitope cleavage (x-axis) for different cleavage at the termini (lighter lines for larger constraints) and nine different prior cleavage
probabilities (in each sub-figure). For prior cleavage probabilities in a reasonable range, the best effective immunogenicity is obtained
with an inner epitope cleavage around zero, while lower settings work best for high priors and larger ones for low priors. (c) the effect
of prior cleavage probability (annotated close to each data point) on parameters (x and y axes) that result in the largest effective
immunogenicity (blue) or effective pathogen coverage (orange). Only transitions are displayed, meaning that several prior probabilities
between, for example, 0.15 and 0.5 (not included) have the same optimal settings for the effective immunogenicity. As the prior cleavage
probability increases, constraints on cleavage at the termini can be relaxed, while the score inside the epitopes must be kept lower.
Optimizing for effective coverage requires larger possible cleavage likelihoods inside the epitopes, but similar cleavage likelihoods at the
termini. (d) immunogenicity objective for different cleavage constraints, with light background for infeasible settings. Enforcing low
cleavage likelihoods inside the epitopes greatly reduces the immunogenicity objective, as many epitopes are not eligible due to higher
cleavage likelihoods in the residues of their second half, which cannot be reduced through the preceding spacer.

epitopes after the spacer.
Designing vaccines with fixed MWQW spacer results in a

reduction in immunogenicity, both theoretical and effective, of
35-45% compared to the optimized spacers. Similarly, using
the popular spacer AAY causes a decrease of 85-95%, and re-
quired to relax the cleavage constraints on ν and γ from 1.95
to 1.6, and η from 0 to 1.0. This highlights the need for spacers
designed ad hoc.

Discussion and Conclusions

No current state-of-art design approach is able to simultane-
ously select epitopes and assemble them into a string-of-beads
vaccine construct. Our work fills this gap through a linear pro-
gramming formulation that guarantees optimality of the de-
sign. This linear program finds a set of epitopes of maximal
immunogenicity, as well as their arrangement and spacers link-
ing them, ensuring that the vaccine simultaneously satisfies
constraints related to pathogen, HLA coverage, conservation,
and cleavage likelihood in critical positions of the construct.

Being based on mixed-integer linear programming renders
the simultaneous epitope selection and assembly problem of
string-of-beads vaccines NP-hard. In most cases, this does not
prevent the solver to find a solution in a reasonable time, in part
because of the many heuristics (Fischetti and Lodi, 2011; Bixby
et al., 2000; Berthold, 2006) that can be employed. Though,
certain constraint configurations can make the solving process
slower. In these rare cases most time is usually spent on im-

proving a solution whose objective value is already within at
most a few percent of the optimum. As this gap is known dur-
ing the process, the solver can be interrupted early, obtaining
an almost-optimal solution with formal guarantees on its qual-
ity. Indexing the position-specific scoring matrix to compute
cleavage scores contributes a great deal to the overall complex-
ity of the linear program, as its size in terms of variables and
constraints scales quadratically with the maximum number of
residues in the vaccine. Using spacers of fixed length can there-
fore significantly reduce the computational resources needed to
find a vaccine, at the price of slightly longer polypeptides.

We assumed a simple stochastic model of proteasomal cleav-
age and used Monte Carlo simulations to estimate the recovery
probability of each epitope in a vaccine to show that approach-
ing the epitope selection and epitope assembly problems to-
gether results in increased recovery probability of the vaccine’s
epitopes. We also verified our results with NetChop Cterm
(Nielsen et al., 2005), an independent proteasomal cleavage pre-
diction tool, to confirm that, in spite of the simplistic nature of
the cleavage predictor we used in the linear program, our ap-
proach significantly reduces cleavage sites inside the epitopes
and increases cleavage frequency at the terminals. This, in
turn, translated to improved effective immunogenicity, cover-
age, and conservation. The main reason for this improvement
can be traced to the ability of our framework to select epitopes
that have a small cleavage probability in their interior, thus
preventing unwanted cleavage in these locations. We also ar-
gued that this constraint should be relaxed in order to include
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highly conserved epitopes, as the gains in coverage offset the
reduction in recovery frequency.

Our framework depends on the ability to express the com-
putation of the cleavage score in a linear form. Non-linear
functions can be approximated by piece-wise linear approxima-
tions, and lookup tables can be used in the worst case, but this
could make solving even small instances of the linear program
impractical due to extremely long runtimes. As a precaution
against the possibility that our cleavage model is too simplistic,
stricter cleavage constraints than what our simultations suggest
could be enforced. Moreover, finding the right bounds for the
cleavage scores requires an outer optimization loop where the
vaccines are evaluated using the Monte Carlo simulations. In
this work we performed a grid search to study the influence of
the parameters on the effective immunogenicity, but more com-
plicated optimization strategies such as Bayesian optimization
(Brochu et al., 2010; Shahriari et al., 2016) can be used to re-
duce the computational requirements needed to find solutions
with good effective immunogenicity or coverage.

In conclusion, our approach allows precise control of the
cleavage probability of every residue in a string-of-beads con-
struct through simultaneously approaching epitope selection
and vaccine assembly. This allows us to greatly improve the
recovery probability of the epitopes in the construct, which
translates to increased effectiveness of the vaccine as a whole.
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