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Abstract. Regulatory molecules such as transcription factors are often
present at relatively small copy numbers in living cells. The copy number
of a particular molecule fluctuates in time due to the random occurrence
of production and degradation reactions. Here we consider a stochastic
model for a self-regulating transcription factor whose lifespan (or time
till degradation) follows a general distribution modelled as per a multi-
dimensional phase-type process. We show that at steady state the protein
copy-number distribution is the same as in a one-dimensional model with
exponentially distributed lifetimes. This invariance result holds only if
molecules are produced one at a time: we provide explicit counterexam-
ples in the bursty production regime. Additionally, we consider the case
of a bistable genetic switch constituted by a positively autoregulating
transcription factor. The switch alternately resides in states of up- and
downregulation and generates bimodal protein distributions. In the con-
text of our invariance result, we investigate how the choice of lifetime
distribution affects the rates of metastable transitions between the two
modes of the distribution. The phase-type model, being non-linear and
multi-dimensional whilst possessing an explicit stationary distribution,
provides a valuable test example for exploring dynamics in complex bi-
ological systems.

Keywords: stochastic gene expression · master equation · stationary
distribution · metastable systems

1 Introduction

Biochemical processes at the single-cell level involve molecules such as tran-
scription factors that are present at low copy numbers [6, 46]. The dynamics
of these processes is therefore well described by stochastic Markov processes in
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continuous time with discrete state space [15, 22, 42]. While few-component or
linear-kinetics systems [16] allow for exact analysis, in more complex system one
often uses approximative methods [12], such as moment closure [4], linear-noise
approximation [3, 9], hybrid formulations [25, 26, 33], and multi-scale techniques
[38, 39].

In simplest Markovian formulations, the lifetime of a regulatory molecule is
memoryless, i.e. exponentially distributed [10, 47]. However, transcription fac-
tors are complex macromolecules, which can be present in various molecular
conformations, and whose removal can require a complex interplay of multiple
pathways [13, 37]. Therefore, their lifetime distributions can assume far more
complex forms than the simple exponential.

In Section 2, we formulate, both in the deterministic and stochastic settings,
a one-dimensional model for the abundance of a transcription factor with a
memoryless lifetime. Since many transcription factors regulate their own gene
expression [2], we allow the production rate to vary with the copy number. We
show that the deterministic solutions tend to the fixed points of the feedback
response function; in the stochastic framework, we provide the stationary distri-
bution of the protein copy number.

In Section 3, we proceed to characterise the steady-state behaviour of a
structured model that accounts for complex lifetime pathways. The model is
multidimensional, each dimension corresponding to a different class and stage
of a molecule’s lifetime; the chosen structure accounts for a wide class of phase-
type lifetime distributions [34, 45]. We demonstrate that the deterministic fixed
points and the stochastic stationary distribution that were found for the one-
dimensional framework remain valid for the total protein amount in the multi-
dimensional setting.

We emphasise that the distribution invariance result rests on the assumption
of non-bursty production of protein. The case of bursty production is briefly
discussed in Section 4, where explicit counter-examples are constructed by means
of referring to explicit mean and variance formulae available from literature for
systems without feedback [28, 36].

In the final Section 5, we approximate the stochastic protein distribution
by a mixture of Gaussians with means at deterministic fixed points and vari-
ances given by the linear-noise approximation [8, 30]. Additionally, we study
the rates of metastable transitions [40, 43] between the Gaussian modes in the
one-dimensional and structured settings.

2 One-dimensional model

Deterministic framework. The dynamics of the abundance of protein X at time
t can be modelled deterministically by an ordinary differential equation

dX

dt
= τ−1 (f(X)−X) , (1)

which states that the rate of change in X is equal to the difference of production
and decay rates. The decay rate is proportional to X; the factor of proportion-
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Fig. 1: A diagram of the one-dimensional model. The number of molecules X
can decrease by one or increase by one. The stochastic rates (or propensities) of
these transitions are indicated above the transition edges.

ality is the reciprocal of the expected lifetime τ . The rate of production per unit
protein lifetime is denoted by f(X) in (1); the dependence of the production
rate on the protein amount X implements the feedback in the model. Equating
the right-hand side of (1) to zero yields

f(X) = X, (2)

meaning that steady states of (1) are given by the fixed point of the production
response function f(X).

Stochastic framework. The stochastic counterpart of (1) is the Markov process
with discrete states X ∈ N0 in continuous time with transitions X → X − 1 or
X → X+1, occurring with rates X/τ and f(X)/τ respectively (see the schematic
in Figure 1). Note that in case of a constant production rate, i.e. f(X) ≡ λ, the
model turns into the immigration-and-death process [32]; in queueing theory
this is also known as M/M/∞ queue [21]. The stationary distribution of the
immigration–death process is known to be Poissonian with mean equal to λ [32].

For a system with feedback, the probability P (X, t) of having X molecules
at time t satisfies the master equation

dP (X, t)

dt
= τ−1

(
E−1 − 1

)
f(X)P (X, t) + τ−1 (E− 1)XP (X, t), (3)

in which E is the van-Kampen step operator [30]. Inserting P (X, t) = π(X)
into (3) and solving the resulting difference equation, one finds a steady-state
distribution in the explicit form

π(X) = π(0)

∏X−1
k=0 f(k)

X!
. (4)

The probability π(0) of having zero molecules plays the role of the normalisation
constant in (4), which can be uniquely determined by imposing the normalisation
condition π(0) + π(1) + . . . = 1. Note that inserting f(X) ≡ λ into (4) results in
the aforementioned Poissonian distribution with π(0) = e−λ.

3 Multiclass–multistage model

In this section, we introduce a structured multiclass–multistage model which is
an extension of one-dimensional model introduced in the previous section. The
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fundamentals of the multidimensional model are as shown in Figure 2. A newly
produced molecule is assigned into one of K distinct classes. Which class is
selected is chosen randomly according to a discrete distribution p1, . . . , pK . The
lifetime of a molecule in the i-th class consists of Si stages. The holding time in
any of these stages is memoryless (exponential), and parametrised by its mean
τij , where i indicates which class and j indicates which stage. Note that

τ =
K∑
i=1

Si∑
j=1

piτij (5)

gives the expected lifetime of a newly produced molecule. After the last (Si-th)
stage, the molecule is degraded. The total distribution of a molecule lifetime is
a mixture, with weights pi, of the lifetime distributions of the individual classes,
each of which is a convolution of exponential distributions of the durations of
the individual stages; such distributions are referred to as phase-type distribu-
tion and provide a wide family of distribution to approximate practically any
distribution of a positive random variable [45].

We denote by Xij the number of molecules in the i-th class and the j-th
stage of their lifetime, by

X = (X11, . . . , X1S1 , X21, . . . , X2S2 , . . . , XK1, . . . , XKSK )

the
∑K
i=1 Si-dimensional copy-number vector, and by

‖X‖ =
K∑
i=1

Si∑
j=1

Xij (6)

the total number of molecules across all classes and stages.

Deterministic framework. The deterministic description of the structured model
is given by a system of coupled ordinary differential equations

dXi1

dt
=
pif (‖X‖)

τ
− Xi1

τi1
, i = 1, . . . ,K, (7)

dXij

dt
=
Xij−1

τij−1
− Xij

τij
, i = 1, . . . ,K and j = 2, . . . , Si. (8)

The right-hand sides of (7)–(8) are each equal to the difference of appropriate
arrival and departure rates at/from a particular compartment of the structured
model. The departure rates are proportional to the number of molecules in the
compartment, with the reciprocal of the holding time giving the factor of pro-
portionality. The arrival rate takes a different form for the first stages (7) and
for the other stages (8). For the first stage, the arrival is obtained by the prod-
uct of the production rate f(‖X‖)/τ and the probability pi of selecting the i-th
class. For the latter stages, the arrival rate is equal to the departure rate of the
previous stage.

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 25, 2020. ; https://doi.org/10.1101/2020.04.25.061101doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.25.061101
http://creativecommons.org/licenses/by-nc-nd/4.0/


Stationary distributions for self-regulating proteins 5

∅

© © ©

©

. . .

. . .

. . .

. . .

© ©

© ©

©©

©

©

∅...
...

...
...

...

f(‖X‖)
τ

p1
1
τ11

1
τ12

1
τ21

1
τ22p2

pK

pK−1

1
τK−1,1

1
τK−1,2

1
τK1

1
τK2

1
τK−1,SK−1

1
τK,SK

1
τ1Si

1
τ2S2

Fig. 2: A schematic representation of multiclass–multistage model. A newly pro-
duced molecule is randomly assigned, according to a prescribed distribution
p1, . . . , pK , into one of K distinct classes. The lifetime of a molecule in the i-th
class consists of Si consecutive memoryless stages, and ends in the degradation
of the molecule. The expected holding time in the j-th stage of the i-th class
is τij . The production rate is a function of the total number ‖X‖ of molecules
across all stages and classes.
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Equating (7)–(8) to zero, we find that

pif (‖X‖)
τ

=
Xi1

τi1
=
Xi2

τi2
= . . . =

Xij

τij
(9)

hold at steady state, from which it follows that

Xij =
piτijf (‖X‖)

τ
. (10)

Summing (10) over i = 1, . . . ,K and j = 2, . . . , Si, and using (5) and (6), yield

‖X‖ = f (‖X‖) (11)

for the total protein amount (6). Thus, the protein amount at steady state is
obtained, like in the one-dimensional model, by calculating the fixed points of
the feedback response function.

Combining (11) and (9) we find

Xij =
piτij‖X‖

τ
, (12)

which means that at steady state the total protein amount is distributed among
the compartments proportionally to the product of class assignment probability
and the mean holding time of the particular compartment.

Stochastic framework. Having shown that the stationary behaviour of the one-
dimensional and the structured multi-dimensional models are the same in the
deterministic framework, we next aim to demonstrate that the same is also true
in the stochastic context. Prior to turning our attention to the feedback system,
it is again instructive to discuss the case without regulation, i.e. f(‖X‖) ≡ λ;
the new molecule arrivals are then exponentially distributed. In the language of
queueing theory, the process can be reinterpreted as the M/G/∞ queue with
exponential arrivals of customers, a general phase-type distribution of service
times, and an infinite number of servers. It is well known that the steady-state
distribution of an M/G/∞ queue is Poisson with mean equal to λ [41]. Thus,
without feedback, we obtain the very same Poisson(λ) distribution that applies
in the one-dimensional case.

In the feedback case, the probability P (X, t) of having X = (X11, . . . , XK,SK )
copy numbers in the individual compartments at any time t satisfies the master
equation

dP (X, t)

dt
= τ−1

K∑
i=1

pi
(
E−1i1 − 1

)
f(‖X‖)P (X, t) (13)

+
K∑
i=1

Si−1∑
j=1

τ−1ij
(
EijE−1ij+1 − 1

)
XijP (X, t) (14)

+
K∑
i=1

τ−1iSi (EiSi − 1)XiSiP (X, t). (15)
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The right-hand-side terms (13), (14), and (15) stand for the change in probability
mass function due to the production, moving to next stage, and decay reactions,
respectively. Note that Eij is a step operator which increases the copy number of
molecules in the i-th class at the j-th stage by one [30]. Likewise, E−1ij decreases
the same copy number by one. Rearrangement of terms in the master equation
yields

dP (X, t)

dt
=

K∑
i=1

(
τ−1piE−1i1 f(‖X‖)P (X, t)− τ−1i1 Xi1P (X, t)

)
+

K∑
i=1

Si−1∑
j=1

(
τ−1ij EijE−1ij+1XijP (X, t)− τ−1ij+1Xij+1P (X, t)

)
+

K∑
i=1

τ−1iSiEiSiXiSiP (X, t) − τ−1f(‖X‖)P (X, t).

Equating the derivative to zero, we derive for the stationary distribution π(X)
an algebraic system

0 =
K∑
i=1

(
τ−1piE−1i1 f(‖X‖)π(X)− τ−1i1 Xi1π(X)

)
+

K∑
i=1

Si−1∑
j=1

(
τ−1ij EijE−1ij+1Xijπ(X)− τ−1ij+1Xij+1π(X)

)
+

K∑
i=1

τ−1iSiEiSiXiSiπ(X) − τ−1f(‖X‖)π(X).

(16)

Clearly, it is sufficient that

τ−1piE−1i1 f(‖X‖)π(X) = τ−1i1 Xi1π(X),

τ−1ij EijE−1ij+1Xijπ(X) = τ−1ij+1Xij+1π(X),

K∑
i=1

τ−1iSiEiSiXiSiπ(X) = τ−1f(‖X‖)π(X)

(17)

hold for π(X) in order that (16) be satisfied. One checks by direct substitution
that

π(X) ∝
‖X‖−1∏
k=0

f(k)×
K∏
i=1

Si∏
j=1

(piτij/τ)Xij

Xij !
(18)

satisfies (17); therefore, (18) represents the stationary distribution of the struc-
tured model. In order to interpret (18), we condition the joint distribution on
the total protein copy number, writing

π(X) = πcond(X | ‖X‖)πtot(‖X‖), (19)
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in which the conditional distribution is recognised as the multinomial [29]

πcond(X | ‖X‖) =

(
‖X‖
X

) K∏
i=1

Si∏
j=1

(piτij/τ)Xij , (20)

and the total copy number distribution is given by

πtot(‖X‖) = πtot(0)

∏‖X‖−1
k=0 f(k)

‖X‖!
. (21)

By (20), the conditional means of Xij coincide with the deterministic parti-
tioning of the total copy number (12). Importantly, comparing (21) to (4), we
conclude that the one-dimensional and multi-dimensional models generate the
same (total) copy number distributions.

4 Bursting

The independence of stationary distribution on the lifetime distribution relies
on the assumption of non-bursty production of protein that has implicitly been
made in our model. In this section, we allow for the synthesis of protein in
bursts of multiple molecules at a single time [14, 17]. Referring to previously
published results [28, 36], we provide an counterexample that demonstrates that
in the bursty case different protein lifetime distributions can lead to different
stationary copy-number distributions. The counterexample can be found even in
the absence of feedback.

Let G(t) = Prob[T > t] denote the survival function of an individual molecule
and let

τ = −
∫ ∞
0

tG′(t)dt =

∫ ∞
0

G(t)dt (22)

be the mean lifetime. Bursty production means that the number of molecules
can change within an infinitesimally small time interval of length dt from X to
X+ j, where j ≥ 1, with probability λτ−1bjdt, in which λ is the burst frequency
and bj = Prob[B = j] is the probability mass function of the random burst size
B variable.

In queueing theory, bursty increases in the state variable are referred to as
batch customer arrivals. Specifically, a bursty gene-expression model without
feedback and with general lifetime distribution corresponds to the MX/G/∞
queue with memoryless (exponential) batch arrivals, general service distribution,
and an infinite number of servers.

Previous analyses [28, 36] show that the steady-state protein mean 〈X〉 and
the Fano factor F = Var(X)/〈X〉 are given by

〈X〉 = λ〈B〉, F = 1 +Ks

(
〈B2〉
〈B〉

− 1

)
, (23)
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where

Ks =

∫∞
0
G2(t)dt

τ
(24)

is referred to as the senescence factor. Elementary calculation shows that Ks =
1/2 if the lifetime distribution is exponential with survival function G(t) =
e−t/τ and that Ks = 1 if the lifetime distribution is deterministic with survival
function G(t) = 1 for t < τ and G(t) = 0 for t ≥ τ . Thus, although two
lifetime distributions result in the same value of the stationary mean protein
copy number, they give a different value of the noise (the Fano factor); therefore
the copy-number distributions are different.

5 Metastable transitioning

Transcription factors that self-sustain their gene expression by means of a posi-
tive feedback loop can act as a simple genetic switch [5, 20]. A positive-feedback
switch can be in two states, one in which the gene is fully activated through
its feedback loop, while in the other the gene is expressed at a basal level. The
switch serves as a basic memory unit, retaining the information on its initial
state on long timescales, and very slowly relaxing towards an equilibrium dis-
tribution. It is therefore important to investigate not only the stationary, but
also transient distributions, which are generated by a positively autoregulating
transcription factor.

Following previous studies [7, 11, 19], we model positive feedback by the Hill
function response curve

f(X) = Ω

(
a0 +

a1X
H

ΩH +XH

)
, (25)

in which a0 and a1 represent the basal and regulable production rates, H is the
cooperativity coefficient, and Ω gives the critical amount of protein required for
half-stimulation of feedback. Provided that H > 1, one can find a0 and a1 such
that (25) possesses three distinct fixed points X− < X0 < X+, of which the
central is unstable and the other two are stable (Figure 3, left). The two stable
fixed points provide alternative large-time outcomes of the deterministic models
(1) and (7)–(8).

Bistability of deterministic models translates into bimodal distributions in
the stochastic framework. For large values of Ω, the bimodal protein distribution
can be approximated by a mixture of Gaussian modes which are located at the
stable fixed points X± (see Figure 4),

P (X, t) ∼ p−(t)
e
− (X−X−)2

2σ2−
√

2πσ−
+ p+(t)

e
− (X−X+)2

2σ2
+

√
2πσ+

. (26)

The mixture approximation (26) is determined not only by the locations X±,
but also on the variances σ2

± and the weights p±(t) of the two modes (which
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Fig. 3: Left: A sigmoid feedback response function (blue curve) intersects the
diagonal (orange line) in multiple fixed points. Ones that are stable to the rate
equation (1) (full circles) are interspersed by unstable ones (empty circle). Right:
The potential u(x), defined by (33), is a Lyapunov function of the rate equation
(1). The local minima, or the troughs/wells, of the potential are situated at its
stable fixed points; the local maximum, or the barrier, of the potential coincides
with the unstable fixed point. Parameter values for both panels: We use the
Hill-type response (25) with a0 = 0.3, a1 = 1.6, H = 4, Ω = 50.

are given below). The weights in (26) are allowed to vary with time in order to
account for the slow, metastable transitions that occur between the distribution
modes.

The invariance result for stationary distributions derived in the preceding sec-
tions implies that, in the limit of t→∞, the protein distribution (26) becomes
independent of the choice of the protein lifetime distribution. In particular, the
same variances σ2

± and the same limit values p±(∞) of the weights will apply
for exponentially distributed and phase-type decay processes. In what follows,
we first consult literature to provide results σ2

± and p±(t) that apply for the
one-dimensional model with exponential decay. Next, we use stochastic simula-
tion to investigate the effect of phase-type lifespan distributions on metastable
dynamics.

The variances of the modes are obtained by the linear-noise approximation
[35, 44] of the master equation (3), which yields

σ2
± =

X±
1− f ′(X±)

; (27)

the right-hand side of (27) is equal to the ratio of a fluctuation term (equal to
the number of molecules) to a dissipation term (obtained by linearising the rate
equation (1) around a stable fixed point).

The metastable transitions between the distribution modes can be described
by a random telegraph process (cf. Figure 5, left)

	
1/T−−−−⇀↽−−−
1/T+

⊕, (28)
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Fig. 4: Exact stationary protein distribution (4) and the Gaussian-mixture ap-
proximation (26) in varying system-size conditions. The means of the Gaus-
sians are given by the stable fixed points of f(X); the variances are given by
linear-noise approximation (27). The mixture weights are given by p+(∞) =
T+/(T+ + T−), p−(∞) = T−/(T+ + T−), where the residence times are given by
the Arrhenius-type formula (32). We use a Hill-type response (25) with a0 = 0.3,
a1 = 1.6, H = 4, and Ω shown in panel captions.

in which the lumped states 	 and ⊕ correspond to the basins of attractions of
the two stable fixed points; T− and T+ are the respective residence times. The
mixture weights p−(t) and p+(t) in (26) are identified with the probabilities of
the lumped states in (28); these satisfy the Chapman–Kolmogorov equations

dp−
dt

= − p−
T−

+
p+
T+

,
dp+
dt

=
p−
T−
− p+
T+

, (29)

which admit an explicit solution

p+(t) =
T+

T+ + T−
+

(
p+(0)− T+

T+ + T−

)
exp

(
−
(

1

T+
+

1

T−

)
t

)
, (30)

p−(t) =
T−

T+ + T−
+

(
p−(0)− T−

T+ + T−

)
exp

(
−
(

1

T+
+

1

T−

)
t

)
. (31)
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Fig. 5: Left: Large-time stochastic trajectories of a structured two-class model
with parameters as given below. The horizontal lines represent deterministic
fixed points as given by (11)–(12). Right: The number of trajectories, out of
104 simulation repeats, that reside in the basin of attraction of the upper stable
fixed point as function of time. Simulation is initiated at the upper stable fixed
point (the decreasing function) or at the lower stable fixed point (the increasing
function). The dashed black curve gives the theoretical probability (30) with
initial condition p+(0) = 1 (the decreasing solution) or p+(0) = 0 (the increasing
solution). Parameter values: The Hill-function parameters are: Ω = 50, H = 4,
a0 = 0.3, a1 = 1.6. The mean lifetime is τ = 1. The two-stage model parameters
are: K = 1, p1 = 1, S1 = 2, τ11 = τ12 = 0.5. The two-class model parameters
are: K = 2, p1 = 1/6, p2 = 5/6, S1 = S2 = 1, τ11 = 3, τ21 = 3/5.

The initial probability p+(0) = 1 − p−(0) is set to one or zero in (30)–(31)
depending on whether the model is initialised in the neighbourhood of the upper
or the lower stable fixed point.

With (30)–(31) at hand, the problem of determining the mixture weights in
(26) is reduced to that of determining the residence times T±. Previous large-
deviation and WKB analyses of the one-dimensional model [18, 23, 24] provide
an Arrhenius-type formula

T± = 2πτX−1± σ±

√
−σ2

0 exp(u(X0)− u(X±)). (32)

Formula (32) features, on top of the familiar symbols (the mean lifetime τ ,
fixed points X± and X0, linearised variances σ±, and the Ludolph-van-Ceulen
constant π), two new symbols: a value σ2

0 and a function u(X). The value σ2
0

is readily calculated by inserting 0 instead of ± into the fluctuation–dissipation
relation (27); note that for the unstable fixed point X0, the denominator in (27)
is negative (cf. Figure 3, left), which renders the whole fraction also negative.

In analogy with the Arrhenius law, the function u(X) represents an “energy”
of state X, and is given here explicitly by an indefinite integral [18, 23, 24]

u(X) =

∫
ln

(
X

f(X)

)
dX. (33)
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Note that the derivative of (33),

u′(X) = ln

(
X

f(X)

)
, (34)

is zero if f(X) = X, i.e. at the fixed points of the feedback response function,
is negative if f(X) > X and positive if f(X) < X. Substituting into (33) the
solution X = X(t) to the deterministic rate equation (1) and evaluating the
time derivative, we find

du(X(t))

dt
= u′(X(t))

dX(t)

dt
= τ−1(f(X)−X) ln

(
X

f(X)

)∣∣∣∣
X=X(t)

≤ 0, (35)

with equality in (35) holding if and only if X is a fixed point of the feedback
response function f(X). Therefore, the energy function u(X) is a Lyapunov
function of the ordinary differential equation (1) (Figure 3, right). The expo-
nentiation in (32) dramatically amplifies the potential difference between the
stable and the unstable fixed points. For example, a moderately large potential
barrier, say 5 (which is about the height of the potential barrier in Figure 3,
right), introduces a large factor e5 ≈ 150 in (32). This confirms an intuition that
metastable transitions between the distribution modes are very (exponentially)
slow.

The random telegraph solution (30) is compared in Figure 5 to the resi-
dence of stochastically generated trajectories in the basin of attraction of the
upper fixed point. The agreement is close for simulations of the one-dimensional
model (with an exponential lifetime) and for a structured model with one class
and two stages (with an Erlangian lifetime). For a two-class model (with an
exponential mixture lifetime), the transitioning also occurs on the exponentially
slow timescale, but is perceptibly slower. Sample trajectories were generated in
Python’s package for stochastic simulation of biochemical systems GillesPy2 [1].
The one-dimensional model was initiated with bX+c molecules. The two species
in the two-stage and two-class models were initiated to S and bX+c − S, where
S was drawn from the binomial distribution Binom(bX+c, 0.5).

6 Discussion

In this paper we studied a stochastic chemical reaction system for a self-regulating
protein molecule with exponential and phase-type lifetimes. We demonstrated
that the exponential and phase-type models support the same stationary dis-
tribution of the protein copy number. While stationary distributions of simi-
lar forms have previously been formulated in the context of queueing theory
[21, 27, 31], our paper provides a self-contained and concise treatment of the one-
dimensional model and the multi-dimensional structured model that is specifi-
cally tailored for applications in systems biology.

We showed that the invariance result rests on the assumption of non-bursty
production of protein. We demonstrated that, in the presence of bursts, expo-
nential and deterministic lifetimes generate stationary protein-level distributions
with different variances.
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Deterministic modelling approaches are used in systems biology as widely
as stochastic ones. Therefore, we complemented the stationary analysis of the
stochastic Markov-chain models by a fixed-point analysis of deterministic models
based on differential equations. The result is that, irrespective of lifetime distri-
bution, the deterministic protein level is attracted, for large times, to the stable
fixed points of the feedback response function. Connecting the stochastic and de-
terministic frameworks, we demonstrated that the stationary distribution of the
Markovian model is sharply peaked around the fixed points of the deterministic
equation. We showed that the distribution can be approximated by a mixture of
Gaussian modes with means given by the deterministic fixed points and variances
that are consistent with the traditional linear-noise analysis results.

Next, we focused on the transitions between the distribution modes. These
occur rarely with rates that are exponentially small. We compared an asymptotic
result, derived in previous literature for the one-dimensional model, to stochastic
simulation results of the one-dimensional model and two specific structured mod-
els: we chose a model with one class and two stages and a model with two classes
each with one stage. The simulation results of the one-dimensional and two-stage
models agreed closely to the theoretical prediction; intriguingly, the agreement
with theory was closer for the two-stage model. On the other hand, a two-class
model showed slower transitioning rates. The theoretical asymptotic results have
been derived in [18, 23, 24] only for the one-dimensional model. Large deviations
in multi-dimensional models are much harder to quantify that one-variable ones.
We believe that the current model, being multi-dimensional while possessing a
tractable steady-state distribution, provides a convenient framework on which
such methodologies can be developed.

In summary, our study provides an invariance-on-lifetime-distribution result
in the deterministic and stochastic contexts for a non-bursty regulatory protein.
While the main results concern the stationary behaviour, our study also performs
simulation, and opens avenue for future enquiries, into the transient transitioning
dynamics.
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