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1. Abstract 24 

This study aims to understand the cause of the recent observation that humans with a 25 

higher diversity of virulence genes in their metagenomes tend to be precisely those with 26 

higher diversity of antibiotic-resistance genes. We simulated the transferring of 27 

virulence and antibiotic-resistance genes in a community of interacting people where 28 

some take antibiotics. The diversities of the two genes types became positively 29 

correlated whenever the contagion probability between two people was higher than the 30 

probability of losing resistant genes. However, no such positive correlations arise if no 31 

one takes antibiotics. This finding holds even under changes of several simulations’ 32 

parameters, such as the relative or total diversity of virulence and resistance genes, the 33 

contagion probability between individuals, the loss rate of resistance genes, or the social 34 

network type. Because the loss rate of resistance genes may be shallow, we conclude 35 

that the contagion between people and antibiotic usage is the leading cause of 36 

establishing the positive correlation mentioned above. Therefore, antibiotic use and 37 

something as prosaic as the contagion between people may facilitate the emergence of 38 

virulent and multi-resistant bacteria in people’s metagenomes with a high diversity of 39 

both gene types. These superbugs may then circulate in the community. 40 

 41 

 42 

 43 
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2.  Introduction 45 

Since the 1940s, antibiotics have been used in health contexts in medicine and 46 

veterinary and as growth promoters in livestock and agriculture (Castanon, 2007). As an 47 

incredible example of Darwinian selection, bacteria worldwide have gradually become 48 

resistant to several antibiotics. Such spread of resistance has had terrible consequences. 49 

For example, there were about 875 500 disability-adjusted life-years and more than 33 50 

000 deaths in European Economic Area due to antibiotic resistance in 2015 (Cassini et 51 

al., 2019). 52 

Bacterial communities are often very complex, eventually comprising both pathogenic 53 

and non-pathogenic bacteria. The human microbiome, defined as the set of 54 

microorganisms that colonize humans (body’s surfaces and biofluids, including tissues 55 

such as skin, mucosa, and, most importantly, the gastrointestinal tract) comprises about 56 

3.8�×�1013 bacterial cells (Sender et al., 2016), spanning thousands of taxa.  57 

Virulence factors are proteins that help bacteria in colonizing a host or biome. These 58 

traits are easily spread in bacterial populations or microbiomes by horizontal gene 59 

transfer, which can potentially convert mutualistic or commensal bacteria into 60 

pathogens able to progress into new tissues, triggering an infectious disease. We 61 

recently found a positive correlation between antibiotic resistance genes’ diversity and 62 

virulence genes’ diversity across human gut microbiomes (Escudeiro et al., 2019). 63 

Could this positive correlation result from administering antibiotics in sick people due 64 

to bacterial infections, eventually selecting bacteria encoding virulence and resistance 65 

determinants simultaneously? This hypothesis is unlikely to be adequate because, even 66 

when the objective of taking antibiotics is to kill or inhibit the growth of pathogenic 67 

bacteria, many non-pathogenic (mutualistic or commensal) strains and species are 68 

undoubtedly affected. Therefore, an explanation for the positive correlation mentioned 69 

above is still missing.  70 

Both virulence and resistance genes present in commensal bacteria and pathogenic 71 

bacteria spread between people’s metagenomes. This dissemination may contribute to 72 

the accumulation of virulence and resistance genes in some people when themselves or 73 

their contacts take antibiotics. Meanwhile, pathogenic bacteria’s presence triggers the 74 
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administration of antibiotics. Therefore, contagion (the dissemination of bacteria and 75 

their genes) between people should play a role in keeping the correlation between 76 

resistance and virulence genes’ diversity. Microbes’ transmission from mother to child 77 

is already well documented (Blaser and Falkow, 2009; Nayfach et al., 2016; Ferretti et 78 

al., 2018; Yassour et al., 2018; Nogueira et al., 2019). A recent study highlighted that 79 

the oral and gut microbiomes of people belonging to the same household share 80 

similarities in bacterial strains, regardless of these people’s genetic relationship (Brito et 81 

al., 2019). These studies suggest that bacteria in human microbiomes can have a shared 82 

exposure or result from person to person transfer on the social network. This suggestion 83 

is supported by a study that showed that social interactions shape the chimpanzee’s 84 

microbiomes (Moeller et al., 2016).  85 

This work aims to find the key factors leading to the positive correlation between the 86 

diversity of virulence and antibiotic resistance genes observed across human 87 

metagenomes (Escudeiro et al., 2019). To this end, we simulated the transfer of 88 

bacterial pathogens and antibiotic resistance and virulence genes in a human-to-human 89 

transmission network. We show that a positive correlation between the diversity of 90 

antibiotic resistance coding genes and those coding for virulence emerges whenever the 91 

contagion rate between individuals is higher than the probability that metagenomes lose 92 

resistant genes, independently of all the other parameters of the simulations. This simple 93 

rule explains the positive correlation between virulence genes’ diversity and antibiotic 94 

resistance genes’ diversity.  95 

 96 

 97 

  98 
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3. Methods 99 

2.1 Building the human network   100 

We simulated a network where each node represents a person or, more precisely, a 101 

person’s metagenome. To simplify language, sometimes we use the words person or 102 

people, meaning a person’s metagenome or people’s metagenomes, respectively. The 103 

edges represent possible transmission avenues of microorganisms.  104 

We built the social contact network following the Watts and Strogatz method (Watts 105 

and Strogatz, 1998). In a regular network, each node links to the n nearest nodes. In 106 

non-regular networks, each node’s link has a certain probability p of being reconnected 107 

to another randomly chosen node. The parameter p represents the probability of each 108 

connection to be modified. We defined the network type by the value assigned to the 109 

parameter p (for example, a regular network when p = 0, whereas p = 1 results in a 110 

random network). Unless noted, we performed simulations with p = 0.5. 111 

  112 

2.2 The metagenome, pathogenic bacteria, and antibiotic administration 113 

The model considers the transmission of bacterial pathogens (capable of causing 114 

infections), as well as virulence and antibiotic resistance genes, between people. These 115 

non-housekeeping genes are present in the metagenome. We focused on the presence or 116 

absence of genes encoding different functions, irrespectively of its copy-number in the 117 

metagenome. In the simulations, each gene represents a gene family (with similar 118 

functions). We divided resistance genes into groups, each group having the same 119 

number of families. Each group represents genes associated with resistance to an 120 

antibiotic. Of note, we did not consider resistance to multiple drugs in our simulations. 121 

Therefore, there will be as many groups as there are antibiotics accounted for in the 122 

simulations.  We define the diversity of a specific gene kind as the number of genes of 123 

that type present in a human metagenome.  124 

To simulate the migration of bacteria from individuals outside the network or the 125 

contagion from sources such as food or contaminated water, we inserted five different 126 
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bacterial pathogenic species into random individuals per cycle. To simplify language, 127 

we assume that pathogenic bacteria belong to different species, but, in reality, some of 128 

them may constitute different strains of the same species. In this model, the only 129 

difference between species is the antibiotic to which they are susceptible, as explained 130 

below.  131 

Individuals infected by pathogenic bacteria feel sick and take an antibiotic. The 132 

antibiotic administered is specific for the bacteria that caused the illness. The antibiotic 133 

selects cells carrying resistance genes by eliminating the remaining susceptible bacteria. 134 

In this work, we assume that all families of resistance genes are present in all 135 

metagenomes, but in two different possible states: in some metagenomes, they are 136 

present in low copy number, so they are not transmissible to other individuals in the 137 

network; in other metagenomes, the copy number of resistance genes is high due to the 138 

selective pressure of antibiotics to which they were previously submitted. In the latter 139 

case, resistance genes are transmissible from person to person.  140 

Moreover, upon antibiotic consumption, the following events can occur: (i) elimination 141 

of a pathogenic bacterial species; (ii) selection in the metagenome of resistance genes 142 

belonging to the same group of resistance to an antibiotic, which means their copy 143 

number gets so high that they become transferable; (iii) loss of resistance genes 144 

associated with other antibiotics with a given probability (becoming non-transferable 145 

but still present in minute copy number); (iv) virulence genes disappear from the 146 

metagenome with a given probability.  147 

Several processes lead to gene loss. Genes are lost because of the selective pressure by 148 

antibiotics and because we assume that resistance determinants impose a fitness cost (in 149 

the absence of antibiotics). To include this cost in the simulations, we consider that each 150 

metagenome may lose specific resistance genes according to a “loss rate” (with this 151 

process, these genes become non-transferable).  152 

 153 
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2.3 Algorithm of the program 154 

Each simulation is composed of several cycles. In each cycle, we considered all 155 

procedures described in the pseudocode (Table 1; see also the flowchart in Fig. 1). We 156 

performed exploratory simulations to parameterize our model. We fixed a set of 157 

parameters as default (Table 2). The main steps of the program in each cycle are: 158 

i) Transfer of pathogenic bacteria, virulence and resistance genes between people (i.e., 159 

between linked nodes), according to specific contagion probabilities of pathogens and 160 

virulence and resistance genes of the metagenome. With this process, the diversity of 161 

genes present in the recipient metagenome increases. 162 

ii) To look for people infected by at least one pathogenic bacterial species. These people 163 

take antibiotics (chosen according to the pathogen). The antibiotic eliminates the 164 

pathogenic species and selects the resistance genes associated with the antibiotic used. 165 

According to a certain probability, the antibiotic also eliminates virulence genes and 166 

resistance genes unrelated to the administered antibiotic. Finally, the metagenome loses 167 

a few more resistance genes not associated with the antibiotic, according to the loss rate 168 

probability. The cause of this loss is the fitness cost of resistance genes. 169 

iii) The metagenomes of people that did not take an antibiotic in this cycle lose 170 

resistance genes according to the loss rate probability. This loss is a consequence of the 171 

fitness cost imposed by resistance genes on their hosts, which is not happening with 172 

virulence genes.  173 

iv) Insert the five bacterial pathogenic species in five individuals randomly chosen from 174 

the population. 175 

 176 

2.4 Statistical analysis 177 

We considered that � (diversity of resistance genes) correlates with � (diversity of 178 

virulence genes), according to: 179 

� = a.� + b  180 
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In this equation, the parameter a represents the linear regression slope, while b 181 

represents the point at which the line crosses the y-axis. 182 

Given the complexity of human interactions, it is paramount to simplify the computer 183 

simulations. A simplified model allows us to comprehend the effect of specific factors 184 

in our simulations, which would otherwise be extremely difficult to detect. As these 185 

simplifications do not allow us to make quantitative inferences, we make qualitative 186 

analyses. The focus is always on the correlation or linear regression slope signal 187 

between the diversity of virulence and antibiotic resistance genes and whether the 188 

correlation is significantly different from zero. Accordingly, the null hypothesis is that 189 

there is no correlation between antibiotic resistance genes’ diversity and virulence 190 

genes’ diversity. The alternative hypothesis is that there is a correlation between 191 

antibiotic resistance genes’ diversity and virulence genes. We define � = 1x10-6, 192 

rejecting the null hypothesis if P-value < �. 193 

We performed the data analyses described above, and the Student’s t-tests (see 194 

Supplementary Information) with R – version 3.5.1 (R Core Team, 2015).  195 

  196 
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4.  Results  197 

4.1 The number of diseases and the probability of contagion 198 

This work aims to understand the positive correlation between antibiotic resistance 199 

genes’ diversity and virulence genes in metagenomes across human populations 200 

observed by Escudeiro et al. (2019). As explained in the Methods section, we assumed 201 

that people establish a fixed network of contacts between them and that there is the 202 

transmission of pathogenic bacteria along with antibiotic-resistance and virulence genes 203 

between connected people. In the simulations, five different pathogenic bacteria, 204 

belonging to distinct species, circulate between linked people. When pathogenic 205 

bacteria infect an individual, that person takes an antibiotic. The antibiotic eliminates 206 

only the pathogenic species associated with the administered antibiotic, even if more 207 

than one species infects that individual. The antibiotic also removes a certain percentage 208 

of virulence and resistance genes.  209 

In principle, the bacterial pathogen contagion probability parameter could have any 210 

value in the simulations. Given the importance of this parameter, we must calibrate its 211 

value according to the model’s other conditions. We assumed that individuals are not 212 

affected by more than two infectious diseases at the same time. Therefore, we started 213 

this study searching for the parameters that led individuals to have a maximum of two 214 

pathogenic bacterial species or strain simultaneously at a given cycle. 215 

We performed simulations with different bacterial pathogen contagion probabilities, and 216 

counted the number of pathogenic bacterial species that each individual has per cycle. 217 

As we can see in Table 3, when the bacteria pathogen contagion probability is 0.2, some 218 

individuals in a specific cycle (out of two million possibilities) became infected by three 219 

pathogenic bacteria. For this reason, we settled the bacterial pathogen contagion 220 

probability to be less than 0.2 in our simulations. 221 

In each cycle of the simulation, we introduced five pathogenic bacterial species into the 222 

population. Then, we counted the total number of pathogenic species present in the 223 

population. If this number is equal to five, then the only pathogenic species in the 224 

population are those that were inserted (simulating immigration into the network), 225 

which means that, before the insertion, all pathogenic bacterial species had disappeared 226 
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in that cycle. As it is unrealistic that all bacterial species disappear simultaneously, we 227 

looked for a contagion value below 0.2 that minimizes the number of times that all 228 

bacteria disappear at the same time. As shown in Table 4, the number of times that 229 

pathogenic species disappear increases with a bacterial pathogen contagion probability 230 

of 0.1 or less. Therefore, we defined that this probability is 0.15 in the simulations. 231 

 232 

4.2 Calibration of the contagion probability 233 

As previously explained, individuals take antibiotics whenever pathogenic bacteria 234 

infect them. However, antibiotics remove other bacteria present in the microbiome 235 

carrying antibiotic-resistance and virulence genes, beyond pathogenic bacteria. 236 

Therefore, it is essential to calibrate the probability of passing these genes by avoiding 237 

their population’s loss. These genes disappeared from the community when the number 238 

of eliminated genes was higher than the number of genes passed between individuals. 239 

To better understand the impact of the gene contagion probability parameter, we then 240 

studied the simpler case: only antibiotics can eliminate genes, and there is no fitness 241 

cost for harboring resistance genes (hence, loss rate = 0). 242 

As we can see in Fig. 2, when the gene contagion probability was less than 0.005 (Figs 243 

2A and 2B), virulence genes disappeared from the population. On the other hand, when 244 

the contagion probability of genes was higher than 0.01 (Figs 2E and 2F), several 245 

individuals had the maximum diversity of genes in their metagenome, which does not 246 

correspond to the observation in (Escudeiro et al., 2019). Following our results, we 247 

assumed that the gene contagion probability must be 0.005 or 0.01 (Figs 2C and 2D). 248 

 249 

4.3 Correlation between diversities is positive if gene contagion probability is 250 

higher than the resistance gene loss rate 251 

 252 
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We studied the correlation between virulence genes’ diversity and the diversity of 253 

resistance genes effect for different combinations of gene contagion probability and 254 

resistance gene loss rate. For that, we fixed all the other parameters (see Table 2). Fig. 3 255 

shows that if the gene contagion probability is higher, the same or only slightly lower 256 

than the loss rate, the correlation between the diversity of virulence genes and the 257 

diversity of resistance genes is positive (Supp. Table 1, Fig. 3).  258 

 259 

 260 

4.4 Correlations maintain signal even when people take antibiotics randomly 261 

Until now, we have studied the correlations when people take antibiotics because 262 

bacterial pathogens infected them through their contacts in the network.  Here we 263 

examine what happens if individuals take antibiotics at random, not because pathogens 264 

infected them. We chose these individuals randomly from the population in each cycle. 265 

In the previous simulations, there were 13/1000 individuals, on average, taking 266 

antibiotics in each cycle. Thus, in this section, we considered that the probability that a 267 

random individual takes antibiotics is 0.013. At the end of simulations, we obtained the 268 

same correlations’ signals when assuming that people take antibiotics randomly or 269 

because pathogens infected them through their contacts in the network (compare Supp. 270 

Table 1 and Fig. 3C with Supp. Table 2.1 and Supp. Fig. 2.1 respectively). In other 271 

words, whatever are the reasons for taking antibiotics, the correlation between 272 

diversities is positive if gene contagion probability is higher than the resistance gene 273 

loss rate. 274 

 275 

4.5 Taking antibiotics is crucial for a positive correlation between virulence and 276 

resistance genes’ diversity 277 

In the previous sections, we showed that if the gene contagion probability is higher than 278 

the loss rate, the outcome is a positive correlation between virulence and resistance 279 
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genes’ diversity. Here we show that taking antibiotics is crucial for this outcome (Supp. 280 

Fig. 3.1).  281 

If no one takes antibiotics, there is no counter-selective pressure on commensal bacteria 282 

encoding virulence genes. The result is that virulence genes’ diversity gets the 283 

maximum possible value in everyone’s metagenome in the community (in Supp. Fig. 284 

3.1 A, B and C, all the dots converge to the right). If the loss rate is null (if there is no 285 

fitness cost of resistance), all metagenomes accumulate every possible virulence and 286 

resistance gene families, so their diversity attains the maximum achievable value (in 287 

Supp. Fig. 3.1 A, all the dots congregate to a single point at the top right corner). If the 288 

loss rate is low, there is some diversity of resistance genes in the population (in Supp. 289 

Fig. 3.1 B, all the dots distribute in a vertical line on the right side). Finally, if the loss 290 

rate is high, more resistance genes are lost than those that accumulate through 291 

contagion, so all metagenomes lose all virulence genes (see Suppl. Fig 3.1 C, where all 292 

the dots congregate to a single point at the bottom right corner). 293 

 294 

4.6 Positive correlations are robust under changes in the main simulated system’s 295 

properties. 296 

We have seen that the positive correlation between virulence and resistance genes’ 297 

diversity is positive if the gene contagion probability is higher than the loss rate (Fig. 298 

3C). We then analyzed the robustness of this result. The next five subsections show the 299 

impact of changing the simulations’ parameters or changing the network itself. We 300 

studied the following parameters: population size, the ratio between virulence genes and 301 

antibiotic resistance genes, the elimination probability under antibiotic intake, the 302 

proportion of the population harboring antibiotic-resistance genes in their metagenome, 303 

and the network type.  304 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2020. ; https://doi.org/10.1101/2020.04.25.061853doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.25.061853
http://creativecommons.org/licenses/by-nd/4.0/


 

13 

 

 305 

4.6.1 Population size has no impact on the correlations’ signal 306 

Due to computer power constraints, we had to assume that the population has just a 307 

thousand people.  Therefore, it is essential to understand whether population size 308 

impacts the correlations’ signals.  We performed simulations with a population size of 309 

3000 individuals, instead of 1000 individuals, for the 14 conditions shown in Fig. 3C. 310 

Although there were significant differences between the slopes in three cases, we didn’t 311 

observe a change of the correlation’s signal from the cases where the population size 312 

was 1000 individuals (Supp. Table 4.1 and Supp. Fig. 4.1). An increase in the 313 

population size leads to a rise in the number of intermediaries between two distant 314 

individuals. Therefore, for virulence genes and antibiotic resistance genes to be 315 

transferred between these two faraway individuals, more contacts are needed and, 316 

consequently, more time is required to achieve a stable correlation.  317 

 318 

4.6.2 The ratios between virulence and antibiotic resistance genes diversities have 319 

no impact on correlations’ signal 320 

In all the other sections, we considered that virulence and resistance genes have the 321 

same total diversity. Here, we studied the effect of assuming that the diversity of 322 

virulence genes is different from that of resistance genes for the same 14 conditions of 323 

gene contagion probability and loss rate studied in the previous section. For that, we 324 

performed simulations similar to the previous ones, but with the following ratios 325 

between virulence and antibiotic resistance genes: 1:2, 1:4, 2:1, 4:1. Although there 326 

were significant differences between the slopes in 48 out of 56 cases, we didn’t observe 327 

a change of the correlation’s signal (Supp. Tables 5.1 to 5.4 and Supp. Figs 5.1 to 5.4). 328 

 329 
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4.6.3 The correlation’s signal is robust under changes in the gene elimination 330 

probability when people take antibiotics 331 

When an individual takes an antibiotic, virulence genes and resistance genes are 332 

eliminated from the metagenome with a probability of 0.7 (except for resistance genes 333 

corresponding to the antibiotic used, which are selected, not eliminated). In this section, 334 

we analyzed the impact of using other elimination probabilities when an individual 335 

takes an antibiotic. For that, we performed simulations similar to the previous ones, for 336 

the same 14 conditions of gene contagion probability and loss rate, but where the 337 

probability of eliminating genes under antibiotic intake is 0.3 and 0.5 for all gene types 338 

(instead of 0.7). In 19 out of 28 cases, the slopes were not significantly different from 339 

those obtained with a probability of 0.7 (Supp. Tables 6.1 to 6.2). The slopes were 340 

different in the other nine cases, but the signal remained the same (Supp. Tables 6.1 to 341 

6.2 and Supp. Figs 6.1 and 6.2).  342 

We also checked the impact of setting the probability of eliminating antibiotic resistance 343 

genes different from that of eliminating virulence genes. Although the slopes were 344 

significantly different in 51 out of 84 tested cases, the slopes’ signal remained the same 345 

(Supp. Tables 7.1 to 7.6 and Supp. Figs 7.1 to 7.6). Overall, these results show that the 346 

slope’s signal is robust under changes in the elimination probability. 347 

 348 

4.6.4 The initial proportion of metagenomes containing antibiotic-resistance genes 349 

has no impact on correlations’ signal 350 

In the previous sections, we considered that every individual carries all the antibiotic 351 

resistance genes in two alternative states at the beginning of the simulation. Either 352 

resistance genes were present at low copy numbers (hence being unable to be 353 

transmitted to other people) or at high copy numbers because they previously selected 354 

by antibiotic exposure (thus transmitting to other people). In this section, we study the 355 

effect of considering that, initially, only 10% of the metagenomes contain antibiotic-356 

resistance genes. With this parameter changed, the simulations take more time to 357 

stabilize because 90% of the population receives resistance genes only through 358 

contagion. We performed simulations similar to the ones shown in Figure 3, but with 359 
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5000 cycles. The final slopes are not significantly different from the case where all 360 

metagenomes initially contain antibiotic-resistance genes (Supp. Table 8.1 and Supp. 361 

Fig 8.1). 362 

 363 

4.6.5 The network type has no impact on correlations’ signal 364 

The simulations leading to Fig. 3 were performed in a network with a rewiring 365 

probability of p = 0.5 (see Methods). We then performed similar simulations but in a 366 

regular (p = 0) and in a random (p = 1) networks. This parameter did not change the 367 

correlation signals (see Suppl. Tables 9.1 and 9.2). However, the time needed (number 368 

of cycles) to reach a stable distribution was lower for higher values of p (Supp. Fig. 9.3) 369 

 370 

This section 3.5 shows that the simulated system’s main parameters have no impact on 371 

the correlation’s signal between the virulence and resistance genes diversities.  372 

  373 
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5. Discussion 374 

Antibiotics affect hundreds of commensal and mutualist bacterial strains and species, 375 

even if their target is bacterial pathogens. Moreover, healthy animals often take 376 

antibiotics, given the properties of these drugs as growth-promoters. With these two 377 

processes, antibiotic-sensitive bacteria are counter-selected, raising the frequency of 378 

antibiotic resistance cells in metagenomes. Meanwhile, metagenomes, both from sick 379 

and healthy people, harbor virulence genes. This paper aimed to understand why there is 380 

a positive correlation between the diversity of virulence and antibiotic-resistance genes 381 

among human populations’ microbiomes (Escudeiro et al., 2019).  382 

Our simulations’ main result is that a positive correlation emerges if the contagion 383 

probability is higher than the loss rate of antibiotic-resistance genes. We can understand 384 

this result in the following way.  385 

In the absence of infection by bacterial pathogens, people do not take antibiotics (in that 386 

particular cycle), and thus, the diversity of virulence genes increase through contagion 387 

with other people. However, two opposing forces play a role in resistance genes of the 388 

microbiomes of people not taking antibiotics. Contagion from other people in the 389 

network makes the diversity of resistance genes to increase, whereas gene loss 390 

decreases it. At the end of a cycle, the diversity of resistance genes increases exclusively 391 

if the effect of contagion is higher than that of gene loss. The gene loss is just the 392 

consequence of the fitness cost imposed by resistance determinants (chromosomal 393 

mutations or genes) in competition with susceptible cells. However, the contagion effect 394 

has two main contributors: the contagion probability and the number of connections 395 

(which depends on the network type and varies from person to person in non-regular 396 

networks). Figs. 3C and the corresponding figures in Supplementary File (Suppl. Figs. 397 

4.1, 5.1 – 5.4, 6.1, 6.2, 7.1 – 7.6, 8.1, 9.1 and 9.2) show that if the contagion rate is 398 

higher than the loss rate, a positive correlation emerges between the diversity of 399 

antibiotic resistance genes and virulence genes.  400 

At first, one might expect to see a negative correlation whenever the contagion 401 

probability is lower than the loss rate, but that is not always the case. Indeed, when the 402 

contagion probability is only slightly lower than the loss rate, the correlation is positive. 403 
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For example, if the contagion probability is 0.005 and the loss rate is 0.01, the 404 

correlation is still positive (Fig. 3A and 3C, Supp. Table 1). The reason for these 405 

counter-intuitive cases is that, in each cycle, one individual contacts with four other 406 

individuals, and during each of these contacts they share bacteria from its microbiomes. 407 

In turn, each individual can only be medicated with antibiotics once (at the end of a 408 

cycle). That implies that the rate of loss of resistance genes applies only once in a cycle. 409 

Therefore, the impact of the contagion rate is higher than the loss rate of resistance 410 

genes. 411 

Importantly, our conclusion that a positive correlation emerges if the contagion 412 

probability is higher than the loss rate of antibiotic-resistance genes is robust under 413 

changes of the population size (Supp. Tables 4.1), the ratio between virulence and 414 

antibiotic resistance genes (Supp. Tables 5.1 to 5.4), the elimination probability under 415 

antibiotic intake (Supp. Tables 6.1 to 7.6), or the network type (Supp. Tables 9.1 and 416 

9.2). 417 

We assumed that, by default, resistance determinants are already present in little 418 

amounts in all metagenomes because they are a part of the natural bacterial lifestyle, 419 

and human beings have used massive quantities of antibiotics since the 1940s. What is 420 

the impact of this assumption? As shown in Supp. Tables 8.1, if we assumed that, 421 

initially, only 10% of the metagenomes contain antibiotic-resistance genes, the final 422 

correlations between the diversity of resistance genes and the diversity of virulence 423 

genes are the same as in the default case. The only difference is that more cycles are 424 

needed to stabilize the correlation. 425 

The contagion probability between people and the loss rate of antibiotic-resistance 426 

genes are the two critical parameters of our main result, so it is relevant to know their 427 

actual values. Human microbiomes’ interest strongly increased in recent years, yet we 428 

still do not know how much is the contagion probability of non-housekeeping genes. 429 

For example, we know that human microbiomes are more similar among humans living 430 

together, irrespective of the genetic relatedness, suggesting that transmission is a critical 431 

factor of the microbiome constitution (Rothschild et al., 2018).  432 
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Sarowska and colleagues recently reviewed the fate of the so-called extraintestinal 433 

pathogenic Escherichia coli (ExPEC), which are facultative pathogens of the normal 434 

human intestinal microbiome. ExPEC pathogenicity relies on many virulence genes, 435 

and pathogenicity islands, or mobile genetic elements (such as plasmids) encoding some 436 

of them. One of the authors’ conclusions is precisely the difficulty in assigning ExPEC 437 

transmission to people due to the delay between ExPEC colonization and infection: 438 

ExPEC cell can live in human intestines for months or even years before starting an 439 

infection (Sarowska et al., 2019). The same problem applies to the transmission rate of 440 

antibiotic-resistance genes: there is very little data on transmission rates between people 441 

(Andersson and Hughes, 2017). 442 

We have seen that the relationship between the contagion rate and loss rate is paramount 443 

to understand the positive correlation between resistance and virulence genes diversity. 444 

So, we now discuss how much is the loss rate of resistance determinants in human 445 

metagenomes. Several longitudinal studies have shown that antibiotic-resistance genes 446 

often remain tens of days, sometimes months, in human gut microbiomes (Horcajada et 447 

al., 2002; Lautenbach et al., 2006; O’Fallon et al., 2009; Rogers et al., 2012). While still 448 

harboring resistance genes, people most probably contact with several other people. Yet, 449 

it is still unclear what is the relationship between contagion and loss rates. 450 

As explained in the methods section, the loss of antibiotic resistance results from the 451 

fitness cost of resistance determinants on bacterial cells (compared to otherwise 452 

isogenic susceptible cells). Several studies have shown that resistance determinants, 453 

here broadly comprising resistance mutations and resistance genes encoded in the 454 

chromosome or plasmids, impose a fitness cost on their hosts (giving the sensitive 455 

strains a growth advantage) (Andersson and Levin, 1999). However, several 456 

mechanisms decrease or even eliminate it. First, compensatory mutations, which mask 457 

the deleterious effects of resistance mutations, have been observed in several studies 458 

(Levin et al., 1997; Schrag et al., 1997; Bjorkman et al., 2000; Maisnier-Patin and 459 

Andersson, 2004; Nilsson et al., 2006). Second, resistance mutations can even be 460 

beneficial in specific resistance genetic backgrounds(Trindade et al., 2009). Third, 461 

while resistance plasmids often impose a fitness cost to their hosts, it has also been 462 

observed that plasmid and/or cells need just a few hundreds of bacterial generations to 463 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2020. ; https://doi.org/10.1101/2020.04.25.061853doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.25.061853
http://creativecommons.org/licenses/by-nd/4.0/


 

19 

 

adapt to each other (Bouma and Lenski, 1988; Modi and Adams, 1991; Dahlberg and 464 

Chao, 2003; Dionisio et al., 2005; Harrison et al., 2015). Fourth, plasmids sometimes 465 

increase the fitness of bacteria that already harbor a resistance mutation (Silva et al., 466 

2011); likewise, some resistance mutations increase the fitness of plasmid bearing cells 467 

(Silva et al., 2011). The same may happen with two plasmids: one of them 468 

compensating for the fitness-cost of the other (Silva et al., 2011; San Millan et al., 469 

2014). Fifth, plasmids may interact with other plasmids to facilitate their transfer (Gama 470 

et al., 2017c, 2017a, 2017b, 2018). Sixth, a few works suggested that plasmids appear 471 

costly because their fitness effect is often measured a long time after its isolation from 472 

nature (Lau et al., 2013; Gama et al., 2018).  473 

Together, these six factors suggest that the fitness cost of resistance determinants is 474 

often very low or null, allowing the permanence of resistance determinants in 475 

microbiomes for long periods. This stability of resistance determinants implies that their 476 

loss rate, the probability that a metagenome loses a particular resistance gene or 477 

mutation, is undoubtedly lower than the contagion probability. Therefore, antibiotic 478 

consumption and contagion between people lead to a positive correlation between the 479 

diversity of resistance genes and virulence genes. 480 

 481 

6.  Concluding remarks 482 

The simple fact that people contaminate between themselves, and antibiotic use, is chief 483 

to explain the positive correlation between antibiotic resistance gene diversity and 484 

virulence gene diversity across human metagenomes. This result is robust and general 485 

because we made very few assumptions. This result also has worrying health 486 

implications: people with a higher diversity of resistance genes in their metagenomes 487 

have a higher diversity of virulence genes. Such co-presence may potentiate the 488 

appearance of plasmids or bacteria encoding virulence and resistance genes 489 

simultaneously. Meanwhile, the current restrictive measures due to the COVID-19 490 

pandemic may weaken this correlation between the diversity of resistance genes and 491 

antibiotics and virulence factors due to a decrease in the contagion rate (Domingues et 492 

al., 2020). 493 
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12. Figure legends 642 

Figure 1. Flowchart of the program. After the network’s construction, the program 643 

performs several cycles where, eventually, there is gene transfer between nodes 644 

(people). Some individuals get sick and take antibiotics. Some genes are lost due to 645 

antibiotic pressure or the fitness cost imposed by resistance genes. 646 

Figure 2. Effect of the gene transmission probability. A to F: the relationship 647 

between the diversity of resistance genes (vertical axes) and the diversity of virulence 648 

genes (horizontal axes). Each dot represents the case of an individual metagenome. A 649 

and B: disappearance of the diversity of virulence genes; C and D: positive correlation 650 

between the diversity of resistance genes and the diversity of virulence genes; E and F: 651 

positive correlation between the diversity of resistance genes and the diversity of 652 

virulence, with many individuals having a high diversity of the two gene types. 653 

Parameters as follows. In all cases, we set resistance genes loss rate = 0. In A, when the 654 

gene contagion probability is low (0.0005), virulence genes disappeared from the 655 

network. In B, gene contagion probability = 0.0025 (R = 0.309, slope = 11.00, p-value = 656 

1.47x10-23); In C, gene contagion probability = 0.005 (R = 0.934, slope = 0.798, p-value 657 

= ~0); In D, gene contagion probability = 0.01 (R = 0.973, slope = 0.757, p-value = ~0); 658 

In E, gene contagion probability = 0.015 (R = 0.972, slope = 0.754, p-value = ~0); In F, 659 

gene contagion probability = 0.02 (R = 0.976, slope = 0.751, p-value = ~0). 660 

Figure 3. Effect of the relative values of the gene contagion probability and the 661 

resistance genes loss rate. A and B: the relationship between the diversity of virulence 662 

genes (horizontal axes) and the diversity of resistance genes (vertical axes). Each dot 663 

represents the case of an individual metagenome. In both A and B, the gene contagion 664 

probability = 0.005. A: resistance genes loss rate = 0, which is lower than the gene 665 

contagion probability, resulting in a positive slope; (R = 0.929, slope = 0.775, p-value ~ 666 

0). B: resistance genes loss rate = 0.03, which higher than the gene contagion 667 

probability, resulting in a negative slope;  (R = -0.682, slope = -0.174, p-value = 668 

1.19x10-137). C: Slope of the regression between the diversity of virulence and 669 

resistance genes according to the loss rate (horizontal axes) and the gene contagion 670 

probability (vertical axes). Green: positive slopes; Red: negative slopes; Blue: the slope 671 

is not significantly different from zero (p-value ≥ 1x10-6).  672 
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Table 1- Pseudocode of the program*. 

Process Pseudo Code 

Gene transfer For each connection between two individuals do (for each 
individual of the connection do (get the genes present in each 
individual metagenome; transmit genes to the other 
individual of the connection according to the gene contagion 
probability)) 

Transfer of bacterial 
pathogens 

For each connection between two individuals do (for each 
individual of the connection do (get the pathogenic species 
present in each individual; transmit pathogen to the other 
individual of the connection according to the bacterial 
pathogen contagion probability)) 

Screening of 
individuals 

For each individual do (check if the individual has a 
pathogenic bacteria) 

Antibiotic effect Choose an antibiotic randomly.  
Select all resistance genes associated with the chosen 
antibiotic.  
Eliminate resistance genes not associated with the chosen 
antibiotic according to the probability of eliminating genes 
under antibiotic intake. 
Eliminate virulence genes according to the probability of 
eliminating genes under antibiotic intake. 

Loss rate of resistance 
genes under antibiotic 
consumption  

Eliminate resistance genes not associated with the chosen 
antibiotic according to the loss rate probability. 

Loss rate of resistance 
genes without 
antibiotic 
consumption 

Eliminate resistance genes according to the loss rate 
probability. 

Immigration of 
bacterial pathogen 
into the network 

For each bacterial species do (select a random individual; 
insert the bacterial pathogen in the individual) 

*The program code was implemented in the Python programming language. 
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Table 2 - Parameters and default values used in simulations. 

Parameters Default values Changing values 

Rewiring connectivity probability p 0.5 0 or 1 

Number of individuals 1000 3000 

Number of virulence genes 100 200, 400 

Number of resistance genes 100 200, 400 

Number of pathogenic bacterial 

species 
5 NA 

Number of antibiotics 5 NA 

Gene contagion probability 0.005, 0.01 
0.0005, 0.0025, 0.015, 

0.02 

Bacterial pathogen contagion 

probability 
0.15 0.05, 0.1, 0.2, 0.25 

Probability of eliminating genes 

under antibiotic intake 
0.7 0.3, 0.5 

The loss rate of resistance genes 
0, 0.005, 0.01, 0.015, 

0.02, 0.025, 0.03 
NA 
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 676 

Table 3 – Number of pathogenic species according to the bacterial pathogen contagion 

probability. 

 Number of pathogenic species (in 2 000 000 possibilities) 

Bacterial pathogen 

contagion probability 
0 1 2 3 4 5 

0.05 1987473 12496 31 0 0 0 

0.1 1982852 17094 54 0 0 0 

0.15 1973053 26763 184 0 0 0 

0.2 1940458 58759 779 4 0 0 

0.25 104967 262575 527204 705479 399253 522 
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Table 4 - Simultaneous extinction of all pathogenic bacterial species according to the 

bacterial pathogen contagion probability. 

Bacterial pathogen contagion 

probability 

Number of times that all pathogenic bacterial species 

disappeared (in 2 000 possibilities) 

0.05 570 

0.1 70 

0.15 2 

 679 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2020. ; https://doi.org/10.1101/2020.04.25.061853doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.25.061853
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2020. ; https://doi.org/10.1101/2020.04.25.061853doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.25.061853
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2020. ; https://doi.org/10.1101/2020.04.25.061853doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.25.061853
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 31, 2020. ; https://doi.org/10.1101/2020.04.25.061853doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.25.061853
http://creativecommons.org/licenses/by-nd/4.0/

