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Abstract Inferring the complex conformational dynamics of ion channels from ensemble
currents is a daunting task due to limited information in the data leading to poorly determined
model inference and selection. We address this problem with a parallelized Kalman filter for
specifying Hidden Markov Models for current and fluorescence data. We demonstrate the
flexibility of this Bayesian network by including different noises distributions. The accuracy of the
parameter estimation is increased by tenfold compared to fitting Rate Equations. Furthermore,
adding orthogonal fluorescence data increases the accuracy of the model parameters by up to
two orders of magnitude. Additional prior information alleviates parameter unidenfiability for
weakly informative data. We show that with Rate Equations a reliable detection of the true kinetic
scheme requires cross validation. In contrast, our algorithm avoids overfitting by automatically
switching of rates (continuous model expansion), by cross-validation, by applying the ‘widely
applicable information criterion’ or variance-based model selection.

Introduction

lon channels are essential proteins for the homeostasis of an organism. Disturbance of their func-
tion by mutations often causes severe diseases, such as epilepsy Oyrer et al. (2018); Goldschen-
Ohm et al. (2010), sudden cardiac death Clancy and Rudy (2001) or sick sinus syndromeVerkerk and
Wilders (2014) indicating a medical need Goldschen-Ohm et al. (2070) to gain further insight into
the biophysics of ion channels Sakmann (2013). The gating of ion channels is usually interpreted
by kinetic schemes which are inferred from macroscopic currents with rate equations (REs) Sak-
mann (2013) or from single-channel currents using dwell time distributions Neher and Sakmann
(1976); Colquhoun et al. (1981); Horn and Lange (1983); Epstein et al. (2016); Siekmann et al. (2016)
or hidden Markov models (HMMs) Chung et al. (1990); Fredkin and Rice (1992); Qin et al. (2000);
Venkataramanan and Sigworth (2002). 1t is becoming increasingly clear that the use of Bayesian
statistics in HMM estimation constitutes a major advantage Ball F. G. and A. (1999); de Gunst et al.
(2001); Rosales et al. (2001); Rosales (2004); Gin et al. (2009); Siekmann et al. (2011, 2012); Hines
et al. (2015).

In ensemble patches, simultaneous orthogonal fluorescence measurement of either conforma-
tional changes Zheng and Zagotta (2000); Taraska and Zagotta (2007); Taraska et al. (2009); Bruening-
Wright et al. (2007); Kalstrup and Blunck (2013, 2018); Wulf and Pless (2018) or ligand binding itself
Biskup et al. (2007); Kusch et al. (2010, 2011); Wu et al. (20711) has increased insight into the com-
plexity of channel activation.
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Figure 1. HMM used for the simulations. a, The kinetic scheme M, used for simulating the data. The
Markov state model (kinetic scheme) consists of two binding steps and one opening step. The rate matrix K is
parametrized by the absolute rates k; ;, the ratios K; between on and off rates (i.e. equilibrium constants) and
L, the ligand concentration in the solution. The units of the rates are s~! and uM~!s~! respectively. The
liganded states are C,, C3, O,. The open state O, conducts a mean single-channel current i = 1. b-c,
Normalized time traces of simulated relaxation experiments of ligand concentration jumps with N, = 103
channels, 4, = 0.375 mean photons per bound ligand per frame and single-channel currenti = 1. The current
Yeurr @nd fluorescence yy, time courses are calculated from the same simulation run to mimic the experiment.
For visualization, the signals are normalized by the respective median estimates of the KF. The fluctuation of
the current traces is due to gating noise, instrumental noise with the variance ¢2 = i> and open-channel noise
62, = 0.1i. The fluctuation of fluorescence is caused by stochastic binding and Poisson counting noise of
photons. The black lines are the theoretical open probabilities P,(r) and the average binding per channel B(r)
for N, — o« of the used model. The ligand concentrations are 0.125,0.25,0.5, 1, 2,4, 8, 16,64 uM. d, Equilibrium
binding and open probability as function of the ligand concentration L.

Currently, a Bayesian estimator that can collect information from cross-correlations and time cor-
relations inherent in multi-dimensional signals of ensembles of ion channels is still missing. Tra-
ditionally, macroscopic currents are analyzed with solutions of rate equations (REs) which yield
a point estimate of the rate matrix or its eigenvalues Colquhoun et al. (1997); Sakmann (2013);
Alcantara et al. (2002); Wang et al. (2012). The RE approach is based on a deterministic differen-
tial equation derived by averaging the chemical master equation (CME) for the underlying kinetic
scheme Kurtz (1972); Van Kampen (1992); Jahnke and Huisinga (2007a). Its accuracy can be im-
proved by processing the information contained in the intrinsic noise (stochastic gating and bind-
ing) Milescu et al. (2005); Munsky et al. (2009). Nevertheless, all deterministic approaches do not
use the information of the time- and cross-correlations of the intrinsic noise. These deterministic
approaches are asymptotically valid for an infinite number of channels. Thus, a time trace with
a finite number of channels contains, strictly speaking, only one independent data point. Some
rigorous attempts to incorporate the intrinsic noise of current data into the estimation Celentano
and Hawkes (2004) suffer from cubic computational complexity in the amount of data points, ren-
dering the algorithm impractical for real data. Stepanyuk suggested a faster algorithm Stepanyuk
and Borisyuk (2011); Stepanyuk et al. (2014). Advanced approaches to analyze single-molecule
data such as HMMs make use of solutions of the stochastic CME Jahnke and Huisinga (2007b) Qin
et al. (2000); Venkataramanan and Sigworth (2002). AHMM consists of a discrete set of metastable
states. Changes of their occupation occur as random events over time. Each state is characterized
by transition rates in addition to its signal observation probability distribution Rabiner (1989). HMM
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Box 1. lllustration of two statistical problems in patch-clamp
recordings addressed by a Bayesian network
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Box 1 Figure 1. a, Idealized patch-clamp (PC) data in the absence of instrumental noise for either ten
(colored) or an infinite number of channels generating the mean time trace (black). The fluctuations from
the mean time trace (black) reveal autocorrelation, the deviation at one time-point depends on the devi-
ation on the previous time point b, Conceptual idea of the Kalman Filter (KF): the stochastic evolution of
the ensemble signal is predicted and the prediction model updated recursively.

The two major problems for parameter inference for the dynamics of the ion channel ensem-
ble n(z) are: (I) that currents are only low dimensional observations (e.g. one dimension for
patch clamp or two for cPCF) of a high-dimensional process (dimension being the number
of model states) blurred by noise and (Il) the fluctuations from the stochastic gating process
cause autocorrelation in the signal. Traditional analyses for macroscopic PC data (and also
for related fluorescence data) by the RE approach, e.g. Milescu et al. (2005) ignores the long-
lasting autocorrelations of the deviations (see blue and orange curves) from the mean time
trace (black) that occur in real data measured from a finite ensemble. Assuming a white-noise
process is never met in real data due to the Markovian nature of the system. b, In order to
account for the autocorrelation in the signal, an optimal prediction of the signal distribution
P(y) at the future time step ¢, should use the measurement y form the current time step ¢,
to update the belief about the underlying hidden ensemble state n(z,). Based on stochastic
modelling of the time evolution of the channel ensemble, it then predicts P(y(z,)).

approaches are more accurate than fitting dwell time distributions for noisy recordings of rapidly
gating channels Venkataramanan and Sigworth (2002) but the computational complexity limits
this type of analysis in ensemble patches to no more than a few hundred channels per time trace
Moffatt (2007).

To tame the computational complexity Jahnke and Huisinga (2007b), we approximate the so-
lution of the CME with a Kalman filter (KF), thereby remaining in a stochastic framework Kalman
(7960). This allows us to explicitly model the time evolution of the first two moments of the probabil-
ity distribution of the hidden channel states. Notably, the KF is optimal in producing a minimal pre-
diction error for the mean state. KFs have been used previously in several protein expression stud-
ies Komorowski et al. (2009); Finkenstddt et al. (2013), Fearnhead et al. (2014); Folia and Rattray
(2018). Our approach generalizes the work of Moffat Moffatt (2007) by including state-dependent
fluctuations such as open-channel noise and Poisson noise in additional fluorescence data.
Stochastic rather than deterministic modeling is generally preferable for small systems or non-
linear dynamics Van Kampen (1992); Gillespie and Golightly (2012). However, even with simulated
data of 10* channels per time trace, the KF outperforms the deterministic approach in estimating
the model parameters and model selection. Moffatt Moffatt (2007) already demonstrated the ad-
vantage of the KF to learn absolute rates from time traces at equilibrium. Other benefits are the
ability to infer the number of channels N, for each time trace, the single-channel current i and
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Figure 2. KF as Bayesian network. a, Graphical model of the conditional dependencies of the stochastic process. Horizontal black arrows
represent the conditional multivariate normal transition probability M (n,,,|Tn,, Q,) of a continuous state Markov process. Notably, it is n(r)
which is treated as the Markov state by the KF. The transition matrix T and the time-dependent covariance Q, = Q(T, n,) characterise the
single-channel dynamics. The vertical black arrows represent the conditional observation distribution O(y,|n,). The observation distribution
summarizes the noise of the experiment, which in the KF is assumed to be multivariate normal. Given a set of model parameters and a data
point y,, the Bayesian theorem allows to calculate in the correction step P(n,|y,) (red arrow). The posterior is propagated linearly in time by the
model, predicting a state distribution P(n, ;) (orange arrow). The propagated posterior predicts together with the observation distribution the
mean and covariance of the next observation. Thus, it creates a multivariate normal likelihood for each data point in the observation space. b,
Observation space trajectories of the predictions and data of the binding per channel vs. open probability. The curves are normalized by the
median estimates of 4,, i and N, and the ratio of open-channels y“"}‘]‘ which approximates the open probability P,(z). The black crosses
represent Hn,,, the mean of the parameter samples of the predicted signal for each data point of the KF. The green and blue trajectories
represent the part of the time traces with a non-zero ligand concentration and a zero ligand concentration in the bulk, respectively.

102 the mean number 4, of photons from bound ligands per recorded frame. Thus no error-prone
103 normalizations of the signal typical for deterministic (i.e. averaging) approaches is needed. The KF
s provides a likelihood which makes it possible to combine the time trace data during analysis with
105  any other data that admits modelling with a likelihood.

106 T0 select models and to identify parameters, stochastic models are formulated within the frame-
107 work of Bayesian statistics where parameters are assigned uncertainties by treating them as ran-
e domvariables Hines (2015); Ball (2016). In contrast, previous work on ensemble currents combined
100 the KF only with maximum likelihood (ML) estimation Moffatt (2007) and did not derive model se-
1o lection strategies. Difficulties in treating simple stochastic models by ML approaches in combina-
11 tion with the KF Auger-Methe Marie et al. (2016), especially with non-observable dynamics, justify
112 the computational burden of Bayesian statistics. Bayesian inference provides outmatching tools
s for modeling: First, information from other experiments, simulations or from theory can be in-
s tegrated through prior probabilities. Hence, uncertainties in the model parameters prior to the
s experiment are correctly accounted for in the analyses of the new data. For weakly informative
116 data we demonstrate the beneficial effect of incorporating theoretical knowledge such as diffu-
11z sion limited binding by prior distributions onto the posterior. Second, the Bayesian approach is
1s  still applicable in situations where parameters are not identifiable Hines et al. (2014); Middendorf
10 and Aldrich (2017) or posteriors are non-Gaussian, whereas ML fitting ceases to be valid Calder-
120 head et al. (2013); Watanabe (2007). Third, a Bayesian approach provides superior model selection
121 tools for singular models such as HMMs Kienker (1989).

122 The best fitting model will be defined as that one with the highest predictive accuracy, esti-
123 mated either by cross-validation against held-out test data or by information criteria Gelman et al.
122 (2074). Information criteria allow for model testing on training data instead of hold-out data by
125 performing a bias-corrected computation of the predictive accuracy Gelman et al. (2014). We use
126 the recently developed Widely Applicable Information Criterion (WAIC) Watanabe (2010) relying
12z on the Bayesian paradigm. In contrast to its predecessor, the Akaike Information Criterion (AIC),
12 WAIC asymptotically approximates the predictive accuracy of the model correctly, even for singular
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models Watanabe (2010) such as HMMs or KFs. Moreover, we show that fitting current data with
REs, both AIC and WAIC fail to detect overfitting, which demonstrates the importance of correctly
modeling the intrinsic noise. Additionally, we propose a second-moment based model selection
criterion which is enabled by the KF and improved by simultaneous measurement of fluorescence
and current signals using cPCF.

Results and Discussion

Simulation of relaxing cPCF data
As an exemplary HMM we assume a ligand-gated channel with two ligand binding steps and one
open-closed isomerization (see Fig. 1a). We define the ensemble state vector

Nen
n() 1= (ny (0, (0, m (0, my @) = Y 5,(0), (M
i=1

which counts the number of channels in each state s (see Methods). A qualitative description of
two statistical problems inherent in a stochastic a time series with an RE approach and the Basic
idea of the KF is outlined in Box. 1. At first we assume that the fluorescence signal originates only
from bound ligands (Fig. 3). Later also the signal of unbound ligands and the correction using a
reference dye will be included (see Figs. 4-7, Appendix, and Methods section ). Example data are
shown in Figs. 1b-d.

Kalman filter derived from a Bayesian network

Here and in the Methods section, we derive the mathematical tools to account correctly for the
stochastic Markov dynamics of single molecules in the fluctuations of macroscopic signals. The
KF is a Bayesian network (see Methods), i.e. a continuous state HMM with a multivariate normal
transition probability Ghahramani (1997) (Fig. 2a). To make use of the KF, we assume the following
general form of the dynamic model: The evolution of the hidden state vector n(?) is determined by
a linear model that is parametrized by the state evolution matrix T

n,,~ N(-ITn,, Q)=Tn +aw, )

where ~ means sampled from and W is a shorthand for the multivariate normal distribution. The
mean of the hidden state evolves according to the equation E[n,,|n,] = Tn,. It is perturbed by
normally-distributed noise @ with the following properties: The mean value of the noise fulfills
E[e,] = 0 and the variance-covariance matrix determines the noise covle,, ®,] = Q(T,n,_,) (Methods
Eq. 34d). In short, Eq. 1a defines a continuous state Gaussian Markov process. The observationsy,
depend linearly on the hidden state n,. The linear map is determined by an observation matrix H.

y, ~ O(|Hn,) := N'(-|Hn,X,) = Hn, + v, (3)

The noise of the measurement setup (Appendix 3 and Eq. 39) is modeled as a random perturbation
of the mean observation vector. The noise fulfills E[v] = 0 and cov[v,,v,] = X,. Eq. 3 defines the
state-conditioned observation distribution O (Fig. 2a).

For each element in a sequence of hidden states {n, : 0 <7 < T} and for a fixed set of parameters
0, an algorithm based on a Bayesian network (Fig. 2a), exploits the conditional dependencies of
the assumed stochastic process. A Bayesian network recursively predicts (prior) distributions for
the next n,

Ip(nt):/[Fu(ntlnt—l)u:u(nt—]|yt—l)dnr—1' (4)

given what is known at time 7 — 1. The KF as a special Bayesian network assumes that the transition
probability is multivariate normal according to Eq. 2a

P(n,) = / N0,|Tn,_,.Q,_)P®, Iy, )dn, , (5)
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Each prediction of n, (Eq. 5) is followed by a correction step,

O(y,In,)P(n,)
/ O(y,In,)P(n,)dn,’
that allows to incorporate the current data point into the estimate, based on the Bayesian theo-
rem Chen et al. (2003). Additionally, the KF assumes Anderson and Moore (2012); Moffatt (2007) a
multivariate normal observation distribution

N(y,|Hn,, X)P(n,)
[ N(y,|Hn,,Z)P(n,)dn,’

P,ly,) = (6)

(7)

P(“tb’t) =

If the initial prior distribution is multivariate normal then due the mathematical properties of the
normal distributions all priors and posteriors P(-) in Eq. 3b and 4b become multivariate normal
Chen et al. (2003). In this case one can derive algebraic equations for the prediction (Methods
Eqg. 33 and 34d) and correction (Methods Eq. 54 and Eq. 54) of the mean and covariance. Due to
the recursiveness of its equations, the KF has a time complexity that is linear in the number of
data points, allowing a fast algorithm. The denominator of Eq. 7 is the normal distributed marginal
likelihood L(y,|Y,_,, 6) for each data point, which constructs by

Np Ny Ny
L0 = [[roiyo.0 =] / O(y,In)P(n,|¥,_;,0)dn, = [[ Vv, |HE[n,, HLH" + X)), (8)
1=2 t=2 t=2
a product marginal likelihood of normal distributions of the whole time trace Y; = {y, ..., yy,} of
length N for the KF. For the derivation of P, and X, see Methods Eq. 34d and Eq. 39. The likelihood
for the data allows to ascribe a probability to the parameters 9, given the observed data (Methods
Eq. 18). An illustration for the operation of the KF on the observation space (Fig. 2b).The predicted
mean signal HE[n(#)] and the data are plotted as vector trajectories.
For signals with Poisson-distributed photon counting or open-channel noise Eq. 7 becomes in-
tractable. By applying the theorem of total variance decomposition Weiss (2005), we derive the
output statistics that approximate various forms of noise and cast them into the form of Eq. 3
(Methods Eq. 53). The Bayesian posterior distribution

P6|Yr) ~ LYV |0)P(6) 9

encodes all information from model assumptions and experimental data used during model train-
ing (see Methods). Our algorithm reconstructs the posterior (Fig. 3a) by sampling from it with the
Hamiltonian Monte Carlo (HMC) method Hoffman and Gelman (2014); Betancourt (2017) provided
by the STAN software Gelman et al. (2015).

Benchmarking of the KF against REs

For the synthetic time traces the KF samples from the posterior (Fig. 3a,b). For realistic channel
numbers as 10° per patch, the posterior of the KF contains the true parameter values within the
bounds of its 5th and 95th percentile (Fig. 3b). However, for typical experimental settings the
total parameter error of the RE estimates Moffatt (2007); Milescu et al. (2005), calculated as the
Euclidean distance to the true values, is roughly 10 times larger than the corresponding error of
the posterior median of the KF to the true values. (Fig. 3c). It is noteworthy that, even for 10*
channels per patch, the precision of the KF is 4 times higher than that of the RE model on that data
set. Dividing the error of all estimates from the REs approach for N, = 10* by the error of the KF
estimates for N, = 10° gives a ratio 0.97 ~ 1. This means that analysis of the same data with the
KF yields an improvement of model quality that REs could only match with a tenfold increase in
the numbers of channels analysed. This result confirms that the KF approach is superior to the RE
approach as already discovered when comparing the two methods with current data alone Moffatt
(2007). For small N, the ratio of the errors decreases like ~ 1/4/N, (Fig. 3c). Thus the RE
approach scales like ~ 1/N,, and does not simply scale like the inverse square root of the system

6 of 41


https://doi.org/10.1101/2020.04.27.029207
http://creativecommons.org/licenses/by-nc-nd/4.0/

bIORXIV preprlnt d0| https /ldoi. org/lO 1101/2020 04 27.029207; thls verS|on posted September 2, 2020 The copyrlght holder for thls preprlnt

b ky;=1.12%30 a c
o 1 Ratio of Errors A
i i 5oomwmw Cwot N — 181
: ~ e .......................... B) —
| LI g [Imed(6) — 1||
: c ~1/VN
H e — 0.09 2
L ks, = 0.88%55 Sampling iteration © 100F -1
of £ ~1/N
N 8
~ QG’» », i
O \'c'bQ [ @ 2 Rate Equation
Qr E //\\
o b . © 10—1, o \
N Hj"‘xk“ =1.01*992 £ B
O
r[” =
C\\\’A E 6% 105
=X Ncp
d
WS 2 - Yfu
\.% < 0 7
@f ) -2
K =1.03*303 00 02 04 06 08 1.0 1.2
. J—lﬁ t/s
@ :
. ® - Y
) Ks = 0,985 5 —u
[ £ 0.5 Yfiuo
s PR, J"ﬁ S
NS X Hrr’ < 0 10 20 30 40
b Lagtime
A 52, = 1.00+9:01
}
= 1.03+023
e o/8
62 = 1007981
y?:

SO HRE O R P OLPROR G S PP PR SN PLE® PRI L2092 OO H

SO P P @ A o'\oﬁ,@'\quqo PIFPL LSS PO QQQQ\,\/ VPSP
R S A

ENSNINEN omew@\,\/x,» Q7 07 AT RTATATAT (T (97§ NSO - ‘3‘3\?

k2,1 ks,» Ka,3 K> Ka Ks G 62 63

Figure 3. Benchmark of the KF against least squares fitting of REs. By §; we indicate that the samples from the posterior are scaled by their
true value. a, Sample traces of 3 representative parameters from the posterior distribution of the KF algorithm created by Hamiltonian Monte
Carlo sampling. The posterior is constructed by those samples. b, Posterior distribution plotted against the point estimate of a least squares fit
with REs for N, = 10>. The blue lines represent the true values used for simulating the data, the red lines are their estimate from the RE fits. The
dashed black lines show the quantiles (0.025, 0.5, 0.975) of the posterior. All values are normalized by their true value. Parameters which are not
possible to infer from the mean values alone i, N, and 4 are used as fixed input parameters to make both approaches comparable. ¢, Absolute
errors of the median for the rate and equilibrium constants obtained by the KF (orange) and from the REs (blue) are plotted against N, . Error
ratio (red) between both approaches scales according to 1/4/Ny, at least for smaller N, which is the expected scaling since the intrinsic noise
divided by the mean signal scales in the same way. One expects an asymptotic equivalence for large N, between KF and REs since the signal to
noise ratio diverges. The typical experimental situation N, « 10% — 10% is indicated by the area shaded in gray. d, Time trace of median of the
normalized residuals r,, (blue) and r¢,, (red) for one ligand concentration after analyzing with the KF. e, The autocorrelation function of r from
the KF shows the expected white-noise process.
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Figure 4. Benchmark of the KF for patch-clamp versus patch-clamp fluorometry data. a, Posteriors of PC data (blue), cPCF data with
Ap = 0.00375 (orange) and cPCF data with 4, = 0.375 (green) but accounting for the superimposing fluorescence of unbound ligands in solution.
The black lines represent the true values of the simulated data. The posteriors for cPCF P(k, . k3 ) are centered around the true values that are
hardly visible on the scale of the posterior for the PC data. b, Distribution of the absolute error of the median for the parameters of the rate
matrix for 9 different data sets, with 4, = 0.375 and superimposing bulk signal ¢, The 95th percentile of the marginalized posteriors vs. A,
normalised by the true value of each parameter. A regime with /g5 ~ 1/+/4 is shown for ko and Ky, while other parameters show a weaker
dependency on the ligand brightness. d, Histograms of the residuals r of cPCF with 4, = 2.5 - 10~ data and PC data. The randomness of the
normalized residuals of the cPCF or PC data are well described by r; ~ normal(0, "res = 1). The estimated variance is 0' =0.98 + 0.26. Note that
the fluorescence signal per frame of is very low such that it is skewed. e, Posterior of the open-channel noise P(c2 /o‘op wue) fOor PC data with
N, - 103 (green) and N, - 10° (blue) as well as for cPCF data with N, - 10 (red) with A, = 0.375. Adding fluorescence data is roughly equal to five
times more ion channels to estimate agp. We assumed as prior for the instrumental variance P(¢2) = N'(1,0.01).
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Figure 5. Variations of the posterior under different prior assumptions All posterior samples of ¢; are plotted scaled by their true values as
6,. True values are indicated by blue lines. The vertical orange lines represent the median and 2.5 and 15-percentile. a, Posterior P(k ,) of the PC
data from M., as used throughout this article. Posterior derived from different priors. The priors are indicated by dashed curves. The uniform
prior leads to a heavy tail in the posterior (blue). Note that the 97.5—percentile is at k, , = 28.9 and the median is at k, , = 4. In contrast, the
exponential tails of the other priors dominate their posteriors in the tails. Even if we set the prior mean value 4 times smaller then the true rate
(black dashed curve), the posterior (black) is still better centered around the true value than the posterior with the uniform prior. b, Since k| ,
describes the ligand binding, theoretical predictions of a diffusion-limited binding rate can be used as a maximum in an informative prior. A
beta distribution as the prior can be tuned k‘—zo -suM =k, , ~ beta(4,2) to favor ligand binding between k, , € [0.6, 1.4] (black, dashed curve). This
results in a posterior which is likelihood-dominated below k, , = 0.9 while it is dominated by the prior above k; , = 1.1. A uniform prior with the
same support as the beta prior results in a posterior with more weight above the theoretical possible range (red), where it is prior dominated.
Thus, the difference between black and red posteriors indicates the information which is added by the beta prior. In this case it penalizes too
high values and pushes the probability mass towards the true value. A stricter beta dlstrlbutlon -suM = k5 ~ beta(5,2) results in a narrower
posterior (green). The Bayesian update concentrates for both priors the posterior mass towards the true value. ¢, The consequence of the more
informative beta prior (green dashed line in b) on the posterior of the complete rate matrix. Green dots result from this prior, black lines are
from a uniform prior «(30). The inset zooms onto the collapsed posterior.
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size, as one might assume. In Fig. 3d, the normalized residuals of one time trace are shown
which are defined as

. . Y~ (HEmD, (10)

' Vvarly,]

We normalize with respect to the predicted standard deviation for each data point /var[y,] given
by the KF. If the synthetic data are fitted with the true model, one expects to find a white-noise
process for the residuals. Plots of the autocorrelation function of both signal components confirm
our expectation (Fig. 3e). The estimated autocorrelation vanishes after one multiple of the lag
time (the sampling interval), which means that the residuals are indeed a white-noise process.
Estimating the residuals from RE would lead to correlated residuals Moffatt (2007), which is one
reason for less precise parameter estimates.

cPCF versus patch clamp only

To evaluate the advantage of cPCF data Biskup et al. (2007) with respect to PC data only (Fig. 4),
we compare different types of ligands: Idealized ligands with brightness 4,, emitting light only
when bound to the channels, and 'real’ ligands which also produce background fluorescence when
diffusing in the bath solution (Appendix 3). The increased precision for the dissociation rate of the
first ligand, k,,, is that strong that the variance of the posterior P(k,,, k;,) nearly vanishes in the
combined plot with the current data (nearly all probability mass is concentrated in a single point
in Fig. 4a). The effect on the error of the equilibrium constants K; is less strong. Additionally, the
bias is reduced and even the estimation of N, is improved. The brighter the ligands are, the
more the posterior of the rates decorrelates, in particular P(k, ;, k;,) (Fig. 4a). All median estimates
of nine different cPCF data sets (Fig. 4b) differ by less than a factor 1.1 from the true parameter
except k;,, which does not profit as much from the fluorescence data as k,, (Fig. 4c). The 95th
percentiles, Iy; of P(k,,) and P(K) follow 5 ~ 1/4/4,. Thus, with increasing magnitude of ligand
brightness 4, the estimation of k,, becomes increasingly better compared to that of k;, (Fig. 4c).
The posterior of the binding and unbinding rates of the first ligand contracts with increasing 4,. The
lys percentiles of other parameters exhibit a weaker dependency on the brightness (/5 ~ A7%1). For
4, = 0.01 photons per bound ligand and frame, which corresponds to a maximum mean signal of 20
photons per frame, the normal approximation to the Poisson noise hardly captures the asymmetry
of photon counting noise included in the time traces. Nevertheless, /,; decreases about ten times
when cPCF data are included (Fig. 4c). The estimated variance of r, for PC or cPCF data is ¢%(r,) ~ 1
(Fig. 4d) which means that the modeling predicts the stochastic process correctly up to the variance
of the signal. Note that the mean value and covariance of the signal and the state form sufficient
statistics of the process, since all involved distributions are approximately multivariate normal.
The fat tails and skewness of P(k,,) and P(k,,) arises because the true model is too flexible for
current data without further pior information. Nevertheless, we show that for similar data sets the
true underlying process can still be determined (Fig. 6g and Fig. 7b). Remarkably, the KF allows to
determine in a macropatch the variance of the open-channel current noise for o, = 0.1/, i.e. when
the total noise is dominated by the much larger gating noise (HP,H"), , (Fig. 4e): For the saturating
ligand concentration p, ., = 0.833, i.e. the expected open probability of the true process, the ratio
at equilibrium is

(HPH'),, 1-p
22y T s 0, 1)
o2, o2,

Including theoretical limits and vague parameter knowledge into the analysis with
different priors

One advantage of Bayesian statistics is that with prior distributions, one can account for partial
knowledge about parameters and their uncertainties. While it is straightforward to use the pos-
terior of a previous experiment as a prior for the data set, it is less obvious how to model notion
of the plausible magnitude of a parameter into a prior. Here we propose some usable options for
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Figure 6. Model selection by the second moment of the residuals and by continuous model expansion. a-d, Model structures of the
trained models differing from the true process (c.f. Fig. 1a). Red states and transitions have no counterpart in the true model. All models are
nested in the most complex model M; (d). e, Time traces of residuals r of cPCF data from KF-fits for current data (blue) and fluorescence data
(red) at two ligand concentrations L for the incorrect model M,. Left: Jump to the ligand concentration. Right: Jump to zero. Systematic
deviations from zero suggest that model M, is too simple. f, Second non-centralized moment of the residuals for all models. For the true model
the second non-centralized moment becomes the variance with var[r;] = 1 because E[r;] = 0. The inset shows the second non-centralized
moment of PC data for the five different models on a linear scale. While underfitting can be clearly detected, overfitting is not detected. cPCF
Data increase the contrast of current residuals between underfitting and true process by ~ 12.5. g-j, Continuous model expansion by model M,
and M; from c,d. g, Posterior distribution P(k, 5) for a rate into a state which does not exist in the true process obtained by the KF. For current
data only, 10 out of 10 data sets maximise the probability density for k, 5 — 0. For cPCF data, 9 out of 10 data sets yielded the same result and
only one data set has a finite maximum. Hence, the KF suggests to delete Os. h, Same current data (blue) analyzed with a RE approach finds in 4
out of 7 data sets rates into the non-existing state. Adding fluorescence data (red) improves the analysis. Now in 8 out of 10 data sets the
posterior is maximized for k, s = 0. i,j. The KF for various PC and cPCF data sets reduces M; to the true data-generating process M, for most
data sets by maximizing the posterior for a zero rate into Os. For current only data 4 out of 7 data sets show this behavior. For cPCF 9 out 10
data sets maximise P(k, s) for k, s — 0 and P(k, 5) for k5 — 0. Across M, and M (g and i) the posteriors P(k, 5) show a similar shape. j, For cPCF
data there is no probability mass for k, 5 > 10. Hence, for k, 5 cPCF data constrain closer to zero then PC data but k, 5 it is reverse. The dashed
red lines belong to the same cPCF data but with a weakly informative halfnormal prior ks, ~ halfnormal(0, 6 - 10) for one specific rate which we
identified to be not confined by the data. This prior also reduces the magnitude of the peak in k, 5 and thus suggests omitting state Os.
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prior distributions for k| , that are related to the maximum entropy principle using diffusion limited
binding as example.
Binding can not be faster than molecular encounters due to diffusion Smoluchowski (1918). For
the first binding step we used an approximation for small ligand receptor interactions van Holde
(2002)k;p g0 = 600 uM~'s™!. Thus, for two available binding sites the stoichiometry increases the
upper limit to k,, = 1,200 uM~'s™!'. Here we investigate priors with different information content
to model the a priori plausibility for k, , by making use of the mentioned diffusion limit. Traditional
Bayesian or frequentist approaches, using uniform priors u(/) = % if k,, € [0,1], perform well for
the “strong data case”. A uniform prior is @ maximum entropy distribution under the condition
that the only information available about the unknown rate is the interval of possible values, i.e.
their support. A maximum entropy distribution adds the least information (is the most conserva-
tive assumption) to the posterior apart from the explicitly used conditions, which is in this case the
support Jaynes (1957). In the strong data context, the posterior is dominated by the likelihood and
the influence of the prior information is minor van der Vaart (1998). In contrast, for modeling situa-
tions with weakly informative data (Fig. 5 @) an educated prior selection influences the posterior to
centre around the true values. For instance, the PC data are not informative enough to make the
likelihood of k,, contract in a small neighbourhood around the true value (see Fig. 4). Due to the
uniform prior the corresponding posterior behaves accordingly (Fig. 5 a). The data are only weakly
informative because larger k,, can be partially compensated for by a larger k,, and a smaller k;,
(Fig. 5 ). Nevertheless, all probability mass of P(k, ,) above the diffusion limit of binding (Fig. 5 a) is
physically impossible, though plausibly given by the data, since the rates k,, and k, ; are diffusion-
limited or slower. Note that the estimated 15th-percentile is at k, , = 1.47 such that more than 85%
of the probability mass lies in a physically impossible area.
The situation can be improved by supplying more plausible information about &, , using an expo-
nential distribution

Pk ,) = ¢ - exp(—=Ck ). (12)
The parameter ¢ refers to the parameter which scales the statistics, E[k, ,] = 1/¢{ and var([k, ,] = 1/¢2.
Notably, the exponential distribution is a maximum entropy distribution if two conditions are met
McElreath (2018). The parameter has to be positive and the mean of the parameter is known. On
the one side the exponential prior succeeds in penalizing the heavy tails of the likelihood (Fig. 5 b).
On the other side, even if we apply an exponential prior whose mean value is four times smaller
than the true binding rates, the posterior (black) is still more concentrated around the true value
than the posterior with the uniform prior.
Nevertheless, the exponential distribution is not well suited for our problem because it does not
incorporate a hard upper limit. Even with the exponential prior, there is always some probability
mass in areas which are physically impossible and, additionally, the exponential prior does not
include that the response of the ion channel proceeds in a limited amount of time which means
that k,, and k,; cannot be arbitrarily small. Thus it is unlikely that the true k,,, k,; are by orders
of magnitude slower than the diffusion limit. In fact, the exponential prior states the opposite:
binding rates have the highest probability density at zero.
The beta distribution

be(a, b) (1 — 9)*!, (13)

B( ,b)
where B(-,-) defines the beta function, is a maximum entropy distribution derived from three con-
ditions: that the supportis 6, , € [0, 1], that

E[In(8,,)] = ¥(a) — ¥(a + b) (14)

and that
E[In(1 — 61’2)] =¥()—¥(a+b), (15)

where ¥(-) symbolizes the digamma function. Since rescaling k,, = 16, , by I adds only a constant
term to the entropy and the entropy is translation invariant, we remain in the maximum entropy
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Figure 7. Bayesian Model selection Compared is the predictive accuracy of the indicated five models estimated by either the Akaike
Information Criterion (AIC), the Widely Applicable Information Criterion (WAIC), Bayesian cross-validation (BC) or Maximum a posteriori
cross-validation (MPC). We use BC on a single validation data set as an estimator of the predictive accuracy and evaluate the other criteria how
they approximate BC. The solid lines represent the mean quality of the estimators over different data sets (crosses). a, Both information criteria
fail to approximate the predictive accuracy if current-only data are modeled with deterministic REs. WAIC approximates the predictive accuracy
better than AIC, though both information criteria suggest too complex models. Cross-validation (black and green) reveals the correct kinetic
scheme. b, For current data analyzed with the KF, WAIC estimates the predictive accuracy obtained by Bayesian cross-validation (black) with high
accuracy while AIC fails. WAIC predicts the BC value even better than MPC. ¢, Including the fluorescence, the difference in the predictive accuracy
of the true model to the under-complex models increases strongly and all methods identify the right kinetic scheme. At the same time, the
posterior has become multivariate normal by adding the second dimension to the data. Instead of an almost constant region in b for model

M,,. to Ms, there is a unique peak for model M,,,,. To identify this peak, we only needed to score the models by the data on the activation part
of the time series. This is consistent with the observation of Fig. 6 f that the estimation of the decaying part of the fluorescence is very
susceptible to overfitting. The residuals in the decaying part of the fluorescence data are smaller which results in a higher probability of those
data points if fitted with M, or M5. We did not observe this result in PC data. Note that ligand association happens over different trajectories in
the observation space but ligand dissociation relaxes after a quick transition of a few data points onto a single trajectory (Fig. 2b). There is less
diverse information about the deactivation about the rates. The inset shows a part of the diagram at an extended ordinate.

205 Setting for every set of 4, b, 1. Therefore, we use the beta distribution to model the prior plausibility
206 Of k), € [0,/] by setting hard constraints: positive but smaller than /. We then distribute the prob-
207 ability mass with respect to the vague idea of where to expect the binding rate within this interval.
20s  Thereby, we implicitly assume the conditions from above. k,, := k,,/1,800 - suM ~ beta(4,2) con-
200 Strains the posterior such that k,, cannot be larger than 1800 - s~'uM™" and we expect k,, to be
300 between 700 -s~'yM~! and 1,700 - s~!uM~!. Even though this beta prior (Fig. 5 b) is an informative
301 prior, a lot of the information derives from the support of the beta distribution as revealed by com-
sz parisonfork,, < 0.9 with the posterior obtained with the uniform prior having the same support. In
03 this unconstrained area the data are really informative. In contrast, for k, , > 1 the prior is the most
304 important source of information for the posterior. For the green posterior (Fig. 5 b-c) we assume a
o5 little bit stricter limits and plausibility within the possible interval. k,,/1,400 - suM ~ beta(s,2). The
306 data support the a priori plausibility assumptions by concentrating the posterior within the area
30z Which contains most probability mass of the prior (Fig. 5 b). Note, that for the other rates (which
s0s have not been constrained by an informative prior), the beta prior for k, , improves their parameter
300 inference by concentrating the posterior (Fig. 5 ¢) around the true values. That effect is strongest
s10 for k,, due to the strong correlation with k,, induced by the likelihood. The posterior has now
311 areas in the parameter space which are strongly influenced be the shape of the beta distribution
312 Whereas other areas are shaped by the likelihood. Remarkably, despite some arbitrariness of the
313 shape of the beta prior, it provides profit for the inference of all ligand-related rates. Furthermore,
sa  the restricted range speeds up sampling and thus reduces the computation time.
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Bayesian Model selection by continuous model expansion or predictive accuracy
We compare three methods of model selection: continuous model expansion, the statistics of (z),
and the predictive accuracy estimated either by cross-validation or information criteria on a set of
candidate models M|, M,, M., M,, M (Fig. 6a-d).

The KF enables to identify underfitting better by plotting the residuals r(¢) (Fig. 6e) rather than sig-
nal time traces because the large amplitude changes of the mean current obscures the relatively
small amplitude of the systematic errors. The estimated second moment of r(¢) is plotted for the
different models (Fig. 6f). For the true model M,,,. the estimated second moment equals the vari-
ance and, since we normalized the residual traces, the second non-centralized moment should be
close to 1. In fact all variance is explained by M,,,.. Overfitting models M, and M, are detected
by the decrease of the fluorescence variance in the decaying part of the traces. For PC data only,
underfitting can be detected. But as long as the modeler looks out for the simplest model which
does not underfit the detection of the true process is successful.

The conceptional idea of continuous model expansion is to sample from a model structure which
contains the true process and a lot of additional model structure whose rates are set to zero by
the algorithm when the data quality or quantity increases. In other words one assumes a complex
super model M5 which includes all simpler models as a limiting case k, ; — 0. A simpler model can
be chosen if the posterior has a distinctive maximum for k,; = 0. Testing continuous model ex-
pansion by M, with the KF, the posterior for only one out of ten data sets shows a local maximum
for k,5 # 0 (Fig. 68). Thus, the KF switches off non-existing states for most data sets. By contrast,
the corresponding analysis of current-only data by REs reveals a peaking posterior for k, s # 0 in
several cases (Fig. 6h). Additional fluorescence data reduce the occurrence of those peaks.

If the PC or cPCF data are fitted with model M; by using the KF, for most data sets the rates into O;
maximize the posterior if they vanish (Fig. 6i-j). For PC data, the posterior reveals multi-modality
with some data sets (Fig. 6j). Hence, point estimates of the parameters are not reliable while the
posterior of My encodes all model uncertainties. Notably, this multimodality occurs also for cPCF
data though less pronounced. Thus, both experiments share the tendency to create a finite peak
around k, 5 = 10, indicating the false detection of an additional open state if not analyzed with cau-
tion.

Applying a weakly informative prior distribution supports the model determination in the contin-
uous model expansion case. The advantage of continuous model expansion is that it reduces the
risk of finding a local optimum on the discrete model space rather than a global optimum by trans-
lating the model space from a discrete to continuous model space. The disadvantage of having a
lot of possible structure in the model makes the model quickly too flexible to come to a conclusive
posterior with a limited amount of data. Many parameter sets can fit the data roughly equally likely.
Thus, prior distributions are needed to support the algorithm to select simpler base models, which
means concentrating for certain k, ; the posterior around zero Gelman et al. (2017). To exemplify
this, we use a weakly informative prior distribution on ks, (see Appendix 1) to show how prior in-
formation alleviates model pathology due to excessive model flexibility. Heuristically, one should
be sceptical about rates which are faster than the sampling frequency because they could gener-
ate eigenvalues A Sakmann (2013) of the rate matrix, which are smaller than the time between
two sampling points. Here we used a sampling frequency of 10kHz The frequency by which the
KF analysed the data ranged from 83.3 Hz to 500 Hz depending on the kinetics. The weakly infor-
mative half-normal prior ks, ~ half-normal(0, 6 - 10°), which penalizes unrealistic high rates of ks ,,
is necessary because the data are not able to constrain that rate. Applying this prior distribution
suppresses secondary peaks and probability mass in the distribution tails of the other rates &, 5
and k, 5. This further emphasizes to leave out Os in the final model (Fig. i-j).

We use this prior to argue that one loses a lot of descriptive power of a data set if one tries to be
objective by using uniform priors in particular with unrealistic large intervals. The notion of being
unbiased with a flat prior, where the likelihood does not dominate the prior, ends up in paradoxes
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Zwickl and Holder (2004). A uniform prior on chemical rates leads to a non-uniform prior on the
activation energies in the free energy landscape of the protein or any chemical reaction. Hence,
the weakly informative prior acts as a guard against overfitting by suppressing fast rates beyond
the experimental time resolution.

Notably, continuous model expansion fits many candidate models in one attempt with the exhaus-
tive supermodel. This technique reduces the risk of getting into an impasse in a local optimum
in the model space. Nevertheless, one should drop from the supermodel step by step the parts
which are switched off and then refit. Optimally, this process should be accompanied by the esti-
mation of the predictive accuracy Gelman et al. (2014). In particular in ambiguous situations with
either multi-modality in the posterior or no clear maximum in the probability density at k, ; = 0 the
predictive accuracy is a well definied criterion.

Several other statistical approaches to identify the best fitting model have been reported Vehtari
et al. (2012); Piironen and Vehtari (2017); McElreath (2018); Wallace (2005). Those approaches bal-
ance accuracy of the model's predictions with its simplicity. Note, the "simplicity" of a model is
ultimately subjective because it depends on the choice of the (formal) language in which a model
is described. Wallace (2005) Some of them, such as Maximum evidence or BIC, Vehtari et al. (2012)
rely on the assumption that the true data-generating process is included in the set of models to be
tested. This is called the M—closed situation Vehtari et al. (2012). These approaches perform well
in simulation studies Bronson et al. (2009) if one is in fact in an M—closed setting.

Generally, when selecting a kinetic scheme for a protein, one reduces the high-dimensional con-
tinuous dynamics of the true data-generating process F(y) to a few discrete states and transition
rates. The true data-generating process is therefore not included in the set of models from which
the best fitting model is chosen which is the M—open setting Vehtari and Ojanen (2012). For this
setting we define the best fitting model as the model which loses the least information, or adds
the least entropy, if it is used as a proxy for F(y). In this way we are able to rank all models by
their information loss. The information loss (or the increase of entropy) incurred by approximat-
ing one probability distribution (the true data-generating process) by another (the model) can be
measured by the Kullback-Leibler divergence McElreath (20718) which is in principle not accessible.
But the model with the minimum Kullback-Leibler divergence within a set of candidate models can
be found asymptotically by maximizing the predictive accuracy Burnham and Anderson (2004); Gel-
man et al. (2014). The predictive accuracy for a specific data set Y = {7, ... s PNy, 1 Which has not
been used for model training Gelman et al. (2074), is defined as

log P,,.o(Y) = log E,[L(Y]6)] (16)

where E,[L(D|0)] = [ L(Y|0)P(8|Y)dO means the average with regard to the posterior distribution.
The mean predictive accuracy of a model for all possible data sets is the average over the unknown
true data-generating process F(j, 1)

Ndata

£ llog Py (D1 = [ 1ogP, DF ) [ 05, (17)
i=1

Maximizing Eq. 17 is equivalent to minimizing the Kullback-Leibler distance which specifies the
information loss when approximating the unknown F(y) by a model Kullback and Leibler (1957);
Burnham and Anderson (2004). Because F(y) is unknown, one has to estimate Eq. 17 by using the
available samples from F(y). Therefore, different estimators of Eq. 17 are compared: AIC, WAIC,
maximum a posteriori cross-validation and Bayesian cross-validation (see Methods). As a result, if
current time series are modeled with REs, both information criteria fail to detect the overfitting
model (Fig. 7a). This means, ignoring intrinsic fluctuations of macroscopic data, such as RE ap-
proaches do, leads to the inference of more states than present in the true model if the model
performance is evaluated by the training data. One can exploit this weakness by choosing the ki-
netic scheme on cross-validated data, since too complex models derived from RE do not generalise
as good to new data as a parsimonious model. Their additional states do not contribute positively
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to the predictive accuracy of the model.

As expected from theory, WAIC Watanabe (2010) succeeds (Fig. 7b) while AIC fails to estimate the
predictive accuracy distribution. It suggests a better predictive accuracy with more complex model
structures (Fig. 7b). The failing AIC correlates with the occurrence of a non-normal posterior dis-
tribution Watanabe (2007)(see, Methods). The mean predictive accuracy of WAIC and BC (black
and red) for M, and M; is only slightly smaller than that for M, which can be explained by the
observation that the KF automatically finds a sharp peak at P(k, 5 = 0) (Fig. 6g-j). This can be used
as a model selection strategy: If two models have a similar predictive accuracy and are nested one
should check whether the posterior of the larger model switches off certain rates. The predictive
accuracy not only scores a kinetic scheme. It also evaluates how closely the whole algorithm mim-
ics the true process. Comparing the predictive accuracy of the true kinetic scheme M, in (Fig. 7a
and b) reveals the higher precision of the KF in modeling the intrinsic noise compared to the RE ap-
proach. For multidimensional cPCF data all methods yield similar predictive accuracies and select
the true data-generating process (Fig. 7c), as a unique peak for the true process is observed for all
data sets.

Conclusion

We derived the prediction (Methods Eqg. 33 and 34d), the output statistics (Methods Eq. 53) and
correction equations (Appendix 4) of the KF for analyzing the gating and binding dynamics of ion
channels including open-channel noise, photon-counting noise and background noise. For the
correct kinetic scheme the parameter estimates obtained by the KF are ~ 10 times as good when
applied to the same data set (Fig. 3b,e). Furthermore, enriching the data by fluorescence based
ligand binding increases the accuracy of the parameter estimates up to ~ 10-fold (Fig. 4a,c). In
the case of weakly informative data we show the superiority of informative priors to constrain the
posterior to physically reasonable values. In this case the interaction between data and the prior
information enables a much more meaningful model inference (Fig. 5a-d) compared to using flat
priors. Moreover, we showed that overfitting can be detected by continuous model expansion
(Fig. 6g-i). Usually the KF maximizes its posterior by abolishing a rate into an non-existing state.
This is not the case if the current time traces are analyzed by REs (Fig. 6h). The potential weakly
informative prior on one critical rate which increases the accuracy of continuous model expansion
approach (Fig. 6i-j). We demonstrated that the information criterion WAIC performs much better
in approximating the predictive accuracy than traditional information criteria based on point esti-
mates such as AIC (Fig. 7b). We are even able to predict the correct kinetic network in cases were
the data are insufficient for creating a multivariate normal posterior (Fig. 7b). Another relevant
aspect is that both information criteria fail to predict the true kinetic scheme if the data are ana-
lyzed by deterministic REs (Fig. 7a). To select a model, one should apply WAIC and BC to multiple
data sets, considering their dependency on noisy data. For the RE approach, only cross-validation
revealed the true data-generating process. Model selection of kinetic schemes should not be done
on training data if the analysis has been done by REs. For cPCF data we could detect the true ki-
netic scheme with the second moment of the residuals. For the true model the empirical r(r) are
close to the expected variance var(r) = 1 and overfitting is revealed distinctively by the variance
of the fluorescence signal (Fig. 6f) given the noise sources are quantitatively described. Together
this demonstrates the potential of a full Bayesian treatment of the state estimation, parameter es-
timation and model selection. This approach maximises the amount of information infered from
stochastic time-courses. While developed for PC/cPCF data our approach is applicable to all time
courses where the intrinsic noise of the studied system is governed by a first order kinetic scheme
and the measuring apparatus can be quantitatively described.
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Materials

The state evolution s(r) of each individual channel in the patch was sampled with the Gillespie
algorithm. Gillespie Daniel T. (1977) Then, traces were summed up, defining the ensemble state
vector n(t) := (ny,ny, ny,n,)", which counts the number of channels in each state.

Methods

In the Methods section we derive the equations for our Bayesian network for time series analysis
of ion channels which are applicable for all linear chemical reaction networks (kinetic schemes). A
detailed description of the experimental noise is provided in Appendix.

The relation of Bayesian statistics to the Kalman filter

The following conventions are generally used: Bold symbols are used for multi-dimensional ob-
jects such as vectors or matrices. Calligraphic letters are used for (some) vectorial time series
and double-strike letters are used for probabilities and probability densities. Within the Bayesian
paradigm Hines (2015); Ball (2016), each unknown quantity, including model parameters 6 and time
series of occupancies of hidden states 9, = {n(z,)}~ I, are treated as random variables conditioned
on observed time series data Y, = {y(t[)}i=1. The prior P(0) = H Nyar P(8;) or posterior distribution
P(6|Y;) encodes the available information about the parameter values before and after analysing

the data, respectively. According to the Bayesian theorem the posterior distribution

Npar

PO|Yy) = uyT|e)H P()) (18)

Z(J? )
is a probability distribution of a parameter set 6 conditioned on Y,. The likelihood L(Y;|0) encodes
the distribution of the data by modelling the intrinsic fluctuations of the protein as well as noise
coming from the experimental devices. The prior provides either assumptions before measuring
data or what has been learnt from previous experiments about 6 (see Methods). The normalization
constant

2y = / LY, 10)P(©)d6 (19)

ensures that the posterior is a normalized distribution. The KF is a special class of models in the
family of Bayesian networks Ghahramani (1997), which is a generalisation of the classical KF. Due
to its linear time evolution (Eq. 1) the KF is particularly useful for modeling time series data of
ensembles dynamics of first order chemical networks. It delivers a set of recursive algebraic equa-
tions (Methods Eq. 28 and Eq. 32) for each time point, which allows to express the prior P(n()|Y,_,)
and (after incorporating y(¢)) the posterior P(n(r)|Y,) occupancies of hidden states n(z) for all ¢ given
a set of parameters 6. This means the KF solves the filtering problem (inference of 9t;) by explicitly
modeling the time evolution of n(r) by multivariate normal distributions. This allows us to replace
L(Yr|6) of Eq. 18 by the expression of Eq. 8.

The Bayesian framework (as demonstrated in this article) has various properties which makes it
superior to maximum likelihood estimation (MLE) McElreath (2018). Those properties are in partic-
ular useful for the analysis of biophysical data since very often the dynamics of interest are hidden
or latent in the data. Models with a hidden structure are called singular. Consider for example
the type of data investigated in this study which probes the protein dynamics by current and light.
Singularity means that the Fisher information matrix of a model is not invertible leading to the
breakdown of the Cramer-Roa Bound theorem. Due to the breakdown, it cannot be guaranteed
that even in the asymptotic limit the log-likelihood function can be approximated by a quadratic
form Watanabe (2007). Thus, usually the MLE is not normally distributed. Consequently, the pos-
terior distribution is usually not a normal distribution either Watanabe (2007).

Using the full posterior distribution without further approximations detects the resulting problems
such as deviation from normality or non-identifiability of parameters, related to the singularity. In
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533
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conclusion, the posterior is still a valid representation of parameter plausibility while maximum
likelihood fails.

Time evolution of a Markov Model for a single channel

In the following, we write the time 7 as function argument rather than a subscript. Following stan-
dard approaches, we attribute to each state of the Markov model an element of a vector space with
dimension M. At a time, a channel can only be in a single state. This implies that the set of possible
states is S:={(1,0,0,...), (0,1,0,...), ...,(...,0, 1)} c {0, 1}M. In the following, Greek subscripts refer
to different states while Latin subscripts refer to different channels. By s(t) = e, we specify that
the channel is in state a at time . Mathematically, e, stands for the a-th canonical unit Cartesian
vector.

Assuming that the state transitions can be modeled by a first order Markov process, the path prob-
ability can be decomposed as the product of conditional probabilities as follows:

P(path) = P(s(0),s(1), ..., s(T)) = P(s(0)) - P(s(1) | s(0)) - P(s(2) | s(1)) -+ P(s(T) | (T — 1)). (20)

Markov models (MMs) and rate models are widely used for modeling molecular kinetics (Appendix
Sec. 2). They provide aninterpretation of the data in terms of a set of conformational states and the
transition rates between these states. For exactness it remains indispensable to model the dynam-
ics with a HMMs Noé et al. (2013a). The core of a hidden Markov model is a conventional Markov
model, which is supplemented with a an additional observation model. We will therefore first fo-
cus on a conventional Markov model. State-to-state transitions can be equivalently described with
a transition matrix T in discrete time or with a rate matrix K in continuous time, as follows:

T,; :=P@s@+1)=¢e,|s@) =e;) =exp(K- Al),,, 21)

where exp is the matrix exponential. We aim to infer the elements of the rate matrix K, constituting
a kinetic model or reaction network of the channel. Realizations of sequences of states can be
produced by the Doob-Gillespie algorithm Gillespie Daniel T. (1977). To derive succinct equations
for the stochastic dynamics of a system, is it beneficial to consider the time propagation of an
ensemble of virtual system copies. This allows to ascribe a probability vector p(¢) to the system, in
which each element p,(7) is the probability to find the system at 7 in state a. One can interpret the
probability vector p as the instantaneous expectation value of the state vectors.

p() = E(s(n) (22)
The probability vector obeys the discrete-time Master equation

p(t + 1) = Tp(H)E(s(t + 1)) = TE(s(z)) (23)

Time evolution of an ensemble of identical non-interacting channels

We model the experimentally observed system as a collection of non-interacting channels. A sin-
gle channel can be modeled with a first-order MM. The same applies to the ensemble of non-
interacting channels. We focus on modeling the time course of extensive macroscopic observables
such as the mean current and fluorescence signals as well as their fluctuations. A central quantity
is the vector n(r) which is the occupancy of the channel states at time #:

Nch
n( = Y s (24)
i=1

This quantity, like s(#), is a random variate. Unlike s(z), its domain is not confined to canonical unit
vectors but to n € N, From the linearity of Eq. 24 in the channel dimension and from the single-
channel CME Eq. 23 one can immediately derive the equation for the time evolution of the mean
occupancy n(r) = E[n()]:
A+ 1) = Z T, ;1,(0) (25)
s
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Symbol Meaning

0 set of all unknown model parameters for which the posterior distribution is sampled

n(z) hidden ensemble occupancy vector of channel states in a specific patch at time 7 which is a continuous
Markov state vector n(r) € RM

P() variance-covariance matrix of a hidden ensemble state n(z) in a specific patch at time ¢ which contains

the dispersion of the ensemble and the lacking knowledge of the algorithm about the true n(r)

T transition matrix of a single channel
K rate matrix which is the logarithm of the transition matrix T = exp(KAr)
H observation matrix which projects the hidden ensemble state vector onto its mean signal.
s single-molecule Markov state vector
ki specific transition rate from state j to state i, [K],; = k;;
K, ratio of two transition rates i.e. an equilibrium constant
y() data point at time ¢
Yy time series of T data points, Y, = {y(,)}_,
N, time series of T hidden ensemble states, R, = {n(z,)}]_,
Ny, number of channels in patch number
i mean electrical current through a single-channel
z variance of the current including all noise from the patch and the recording system
af)p variance of the current noise generated by a single open-channel
Ay mean brightness of a bound ligand
o mean brightness of the fluorescence signal from bulk and bound ligands
oo variance of the fluorescence generated by unbound ligands after subtraction of the image obtained
for the reference dye
M number of single-channel states which is the dimension of n(r) € N¥ in the KF algorithm
N dimensions of the observational space
FQ) true probability density of ), i.e. the true data-generating process
L(Y|0) likelihood function of the model parameters
PO|Y) posterior distribution of the model parameters
P.a(¥1Y) predictive distribution of the new data points Y
O(y|m) distribution of observables for a single time step
N(©) normal distribution
E[-] mean value

Table 1. Important symbols
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with the transition matrix T. The full distribution P(n(z+1)|n(?)) is a generalized multinomial distribu-
tion. To understand the generalized multinomial distribution and how it can be constructed from
the (conventional) multinomial distribution, consider the simplified case where all channels are
assumed to be in the same state a. Already after one time step, the channels will have spread out
over the state space. The channel distribution after one time step is parametrized by the transition
probabilities in row number « of the single-channel transition matrix T. According to the theory
of Markov models, the final distribution of channels originating from state a is the multinomial
distribution

Pm“(+ 1) | nee,) =P(n,,...,n, | nt) =ne,) = "—"Tl"; Ty (26)
In general, the initial ensemble will not have only one but multiple occupied channel states. Be-
cause of the independence of the channels, one can imagine each initial sub-population spreading
out over the state space independently. Each sub-population with initial state a gives rise to its
own final multinomial distribution that contributes n;") transitions into state g to the total final dis-
tribution. The total number of channels at 7 + 1 in each state can then be simply found by adding
the number of channels transitioning out of the different states a.

ni+1)= zn(“>(t +1) (27)

Evidently, the total number of channels is conserved during propagation. The distribution of n(z+1),
defined by Egs. 26 and 27, is called the generalized multinomial distribution:

n(t + 1) ~ general-multinomial(n(z), T) (28)

While no simple expression exists for the generalized multinomial distribution, closed form ex-
pressions for its moments can be readily derived. For large N, each Pm@(r + 1) | n,e,) can be
approximated by a multivariate-normal distribution such that also general-multinomial(n(z), T) has a
multivariate-normal approximation. In the next section we combine the kinetics of channel ensem-
bles with the KF by a moment expansion of the governing equations for the ensemble probability
evolution.

Moment expansion of ensemble probability evolution
The multinomial distribution (26) has the following mean and covariance matrix

n¢+1)=nT,, (29)

29 + 1) = n,diag(T. ,) - n,T. . T] (30)

where T. , denotes the column number « of the transition matrix and diag(T. ,) describes the diag-
onal matrix with T., on its diagonal. Combining Eq. 27 with Egs. 29 and 30 we deduce the mean
and variance of the generalized multinomial distribution:

E[n¢+1) [n®] = Y n, (0T, =Tn(®) (31)

a

covin(t+ 1),n(t + 1) | n(®)] = Z n, (1) (diag(T:Ya) - T:,aT:T’a> = diag (Tn(t)) — Tdiag (n()) TT (32)

Note that Egs. 31 and 32 are conditional expectations that depend on the random state n at the
previous time 7 and not only on the previous mean n. To find the absolute mean, the law of total
expectation is applied to Eq. 31, giving

n(i+1)=E[E[In(+ 1) | n@®))] = Tn(?), (33)
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in agreement with the simple derivation of Eq. 25. We introduce a shorthand P(¢) := cov(n(?), n(?))
for the absolute covariance matrix of n(z + 1). Similarly, P() can be found by applying the law of
total variance decomposition Weiss (2005) to Eqgs. 32 and 31, giving

P(t + 1) = E[cov(n(r + 1),n(t + 1) | n()] + cov [E(n(t + 1) | n(t)), E(n(t + 1) | n(®))] (34a)
= diag (Tn(r)) — Tdiag (n()) T* + cov(Tn(r), Tn(1)) (34b)
= diag (Tn(1)) — Tdiag (n()) T* + Tcov(n(t), n(1))T" (340)
= diag (Tn(1)) — Tdiag (n()) T' + TP(HT" (34d)

where we have introduced the shorthand P() = cov(n(?),n(?)) in the last line. Eqgs. 33, 34d are
compact analytical expressions for the mean and the covariance matrix of the occupancy vector n
at 7 + 1 that depend on the mean n and covariance matrix P at the previous time step ¢. Chaining
these equations for different time steps ¢+ = 0, ..., T allows to model the whole evolution of a
channel ensemble. Moreover, these two equations together with the output statistics of O(y|n(?))
are sufficient to formulate correction equations of the KF Moffatt (2007); Anderson and Moore
(2012)(see Appendix 4). These equations will be used in a Bayesian context to sample the posterior
distribution of the model parameters. The sampling entails repeated numerical evaluation of the
model likelihood. Therefore, analytical equations for the ensemble evolution that can be quickly
evaluated on a computer millions of times are indispensable. This was achieved by deriving Egs.
33, 34d. Comparing Eq. 34d with the KF prediction equation Anderson and Moore (2012) for P(z)
we obtain the state-dependent covariance matrix of Eq. 2 as

Q(T,n(»)) = diag (Tn(r)) — Tdiag (n(r)) T" (35)

In the following section on properties of measured data and the KF, we no longer need to refer
to the random variate n(z). All subsequent equations can be formulated by only using the mean
hidden state n(r) and the variance-covariance matrix of the hidden state P(r). We therefore drop
the overbar in n(¢) so that the symbol n(r) refers from now on to the mean hidden state.

Modeling simultaneous measurement of current and fluorescence

In the following, we develop a model for the conditional observation distribution O(y|n(z)), (Ap-
pendix 3) for experimental details. Together with the hidden ensemble dynamics this will enable
us to derive the output statistics of the KF (see, below). Let y(¢) be the vector of all observations at
t. Components of the vector are the ion current and fluorescence intensity.

V) = (fluorgscence intensity(z)) _ <yﬂu(t)> (36)
ion current(?) Veurr (1)

As outlined in the introduction part, in Eq. 3 we model the observation by using a conditional prob-
ability distribution O(y(r)|n(z)) that only depends on the mean hidden state n(r), as well as on fixed
channel and other measurement parameters. O(y(r)|n(?)) is modeled as a multivariate normal dis-
tribution with mean Hn(r) and variance-covariance matrix X(z), that can in general depend on the
mean state vector n(r) (much like the covariance matrix of the kinetics in Eq. 34d). The observation
matrix H € RNes*™ projects the hidden state vector n(r) onto Hn(r) € RNexs, the observation space.
The observation distribution is

O(y()In() = N (y()[Hn(), Z(n(1))) & y(1) = Hn(@) + v(@). (37)

This measurement model is very flexible and allows to include different types of signals and er-
ror sources arising from both the molecules and the instruments. A summary of the signals and
sources of measurement error and their contributions to the parameters of O(y(¢)|n(z)) is provided
by Tab. 2. Below we address the two types of signals and four noise sources one by one. For
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jon current fluorescence

current signal

measurement noise | fluorescence signal background fluo-

rescence
signaling states open state - ligand-bound states -

error term open-channel noise | measurement noise | photon counts bulk noise
affected signal current current fluorescence fluorescence
distribution normal(in,, azpn4) normal(0, ¢2) Poisson(4,n;(1)) scaled Skellam

contribution to H

Hy, =i i}

= (0, 4,,24,,24,) -

contributionto X

— A2
%, = 02 ny(0)

2, = 631 2, =1(0,4,,24,,24,)n(r) I, =0l

back

Table 2. Summary of signals and noise sources for the exemplary CCCO model with the closed states a = 1,2,3 and the open state « = 4. The
observed space is two-dimensional with yp; = fluorescence and y; = ion current. The fluorescence signal is assumed to be derived from the
difference of two spectrally different Poisson distributed fluorescent signals. That procedure results in scaled Skellam distribution of the noise.

606

620

623

this we decompose the observation matrix and the observation noise covariance matrix into the
individual terms:

H = H; + Hy;gine (38)

E(I) =X (t) + Emeas. + Ebinding(t) + 2back (39)

open

In the following, we report the individual matrices for the exemplary CCCO model with one open
state a« = 4 and three closed states a = 1,2,3. Matrices can be constructed analogously for the
other models. For the definition of X, refer to (Appendix 3).

Macroscopic current and open-channel noise

We model the current and the intrinsic fluctuations of the open-channel state s = e, (the open
channel noise) by a state-dependent normal distribution with mean in,(r) where n,(z) is the number
of channels in the open state at r and i is the single-channel current. The additional variance of
the single-channel current is described by "opcn The sum of the instrumental noise of the experi-
mental setup and the open channel noise is modeled as uncorrelated (white) normally distributed
noise with the mean E[v,(n] = 0 and variance E[v;(1)] = o> WAORS o2 . By making the open-channel
noise dependent on the hidden state population n,(r), we fuIIy take advantage of the flexibility of
Bayesian networks which admits an (explicitly or implicitly) time-dependent observation model. By
tabulating the parameters of the two normal distributions into H and Z, we obtain

0 0 0 O
H '_< 00 0 i ) (“0)
0 0
()Pen(t)+zmeds . < 0 6 n4(t)+0' > (41)

One can now ask for the variance of a data point y(¢) given the epistemic and aleatory uncertainty
of n(¢) encoded by P(¢) in Eq. 34d. By using the law of total variance the signal variance follows as:

var(y(t)) = E[var[y(®)|n(®)]] + var[E[y(#)|n()]] (42a)
= [E[agpn4(z) + 021+ var[Hn(1)] (42b)
= o Eln, (0] + o, + HPOH),, (42¢)

See, Appendix Sec. 4.1 for further details.
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Fluorescence and photon-counting noise
The statistics of photon counts in the fluorescence signal are described by a Poisson distribution
with emission rate 4y

Y (1) ~ pois(Ag(1)). (43)

The total emission rate iy can be modeled as a weighted sum of the specific emission rates 4,
of each ligand class {0, 1,2}. The weights are given by the stoichiometric factors which reflect the
number of bound ligands. In order to cast the Poisson distribution into the functional form of the
observation model (Eq. 37), we invoke the central limit theorem to approximate

Vg ~ Pois(Ag) & N (A1), A5 (D) (44)

The larger Ay the better is the approximation. We assume, that the confocal volume is equally
illuminated. For our model of ligand fluorescence, we assume for a moment that there is no signal
coming from ligands in the bulk. We will drop this assumption in the next section. With these
assumptions, we arrive at the following observation matrix

. 0 4, 24, 24,
Hbinding -=< 0 0 0 0 (45)

The matrix H aggregates the states into two conductivity classes: non-conducting and conducting
and three different fluorescence classes. The first element (Hn), is the mean fluorescence A, (t) =
Ap[ny () + 2(n5 (1) + ny(1))]. The variance-covariance matrix Zpinding CAN be derived along the same lines

using Eq. 44. We find
H 0
Zinding(D) 1= < ( nét))l 0 > (46)

Under these assumptions the observation matrix can be written as follows

H:=<8 /18 2/16 2,11;> )

Output statistics of a Kalman Filter with two-dimensional state-dependent noise
Now simultaneously measured current and fluorescence data y € R?, obtained by cPCF, are mod-
eled. Thus, the observation matrix fulfills H € R>™, One can formulate the observation distribu-
tion as

Vpois(t)
Vop(®)
The vector v, denotes the experimental noise, with E[v,,] = 0 and variance given by the diago-
nal matrix X, .., + Z..«. The second noise term arises from Poisson-distributed photon counting
statistics and the open-channel noise. It has the properties

E VPOis(t) -0 (49)
Vop()
cov << ‘E’Ois((tt)) )( ‘Eois((:)) >> = Z pen(?) + Zpinging (1) (50)
op op

. The matrix X is a diagonal matrix. To derive the covariance matrix cov(y(r)) we need to additionally
calculate var(yy,,()) and cov(yryo(1), Ypaten (). By the same arguments as above we get

y@®) =Hn@®) + v, () + ( ) <y~ NHn®),Z(®)). (48)

var[yp,, (0] = Elvar(y(@)|n(#))] + var[E(y()[n(7)] (51a)
= [E[rsback + (Hn(?)),] + var(Hn(?)) (51b)
o2, + (Hn()), + HP)H"), | (51¢)
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The cross terms can be calculated by using the law of total covariance

COV(ypatch’ yf]uo) = [E[COV(ypmm yfluoln)] + COV([E(ypatch |n)’ [E(yfluoln)) (528)
=0+cov(H,.n,H, .n) (52b)
=H, . cov(n, n)HI: = H2‘:P(t)HL (52¢)

yielding the matrix
cov(y,y) = HP()H" + X(r) (53)

We assumed that the Poisson distribution is well captured by the normal approximation. In cPCF
data the ligand binding to only a sub-ensemble of the channels is monitored, which we assume
to represent the conducting ensemble such that Ny = Ng,. For real data further refinement
might be necessary to model the randomness of the sub-ensemble in the summed voxels. With
the time evolution equations for the mean (Eq. 31) and for the covariance matrix (Eq. 34d) as well
as with the expressions for the signal variance we possess all parameters that are needed in the
correction equation of the KFKalman (1960); Anderson and Moore (2012).

Algorithm. Prediction  Correction

Mean Covariance Mean Covariance
RE Yes No No No
KF Yes Yes Yes Yes

Table 3. Comparison of algorithms: The RE approach predicts the next mean ensemble state, estimates
probabilities of occupying a certain state by p ~ NLch[E[n(t + 1)] and constructs a likelihood by a multinomial
assumption Milescu et al. (2005). The multinomial distribution is then approximated by a normal distribution
and the variance from the experimental noise is added. There is neither a prediction of P(s) nor any
correction step, thus the random fluctuations and the hidden structure of an ion channel ensemble of finite
size is ignored. In contrast, the KF accounts correctly for all aspects of the hidden stochastic dynamics of the
ion channels as long as all involved distributions can be approximated by multivariate normal distributions.
This is a much less restrictive assumption then assuming that the ensemble is fully determined just by its
mean value. Additionally, the KF includes the information from the data in each state estimation in an optimal
manner.

The correction step

For completeness we write down the correction step of the KF though its derivation can be found
in Chen et al. (2003); Anderson and Moore (2012); Moffatt (2007). The mean ensemble state n(z) is
corrected by the current data point

n(t)poslerior = +n(t)prior +K (Y(t) - Hn(t)prior) (54)

Where Kalman gain matrix K := P(z),,;, H Z~! evaluates the intrinsic noise against the experimental
noise. How precise are my model predictions about n() compared with the information gained
about n(r) by measuring y(¢). The covariance P(¢) of the ensemble state n(r) is corrected by

P(t)pcsterior = P(t)prior -K (HP(t)priorH + 2(t)) KT (55)

Appendix Eqg. 28 and 29 form with Methods Eq. 26 and 30 the filtering equations which summarize
the algorithm. One initialises the first n(0) and P(0) and with an equilibrium assumption.
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Bayesian Model selection via predictive accuracy

The minimum of the Kullback-Leibler divergence can be found asymptotically by maximizing the
predictive accuracy Burnham and Anderson (2004); Gelman et al. (2014) The predictive accuracy is
defined as

108 P g (Vr) :=log By [L(70)] = log / L(Vr|0)P o, (81 Y;) dO (56)

for a specific new (held-out) data set J,, which has not been used for training the model Gelman
et al. (2074). E,[-] denotes the average of some function found by integrating it over the poste-
rior distribution P, (6|Y;). The difference between maximum likelihood (or maximum a posteriori
cross-validation, MPC) to Bayesian cross-validation in Eq. 56 is that the mentioned point estimates
in MPC would yield a Dirac distribution P, (01Y;) = 8(6yyz — 6) as the posterior. Doing so col-
lapses the integral in Eq. 56 to logL(Y;|6,,5). Note, that Eq. 56 can also be used to selected the
prior distribution for the parameters if the average is taken with respect to the prior distribution
instead of to the posterior distribution. In our application to ion channel dynamics, we generate
from each patch that was used for the training data at least a second hold-out time trace to validate
the model. Here we explicitly use the term model in a way that includes the observation model and
is not restricted to the kinetic scheme. A model of all unknowns considered to be relevant for the
data. Moreover, assuming the availability of multiple time traces from the same patch allows to
avoid difficulties of applying cross-validation within one time series. Since we wish to know the pre-
dictive performance of the model for all possible unseen data sets, we have also to average over
the unknown true data generating process F(§(1)). The objective of the experiment is then to sam-
ple sequences of data Y, which are as representative as possible for F. The expected predictive
accuracy for a full unseen set of time series of data is then

T
Elog P FrlY 1 = [+ [ 1og®esF,190F G0 [T (57)

Unfortunately, F(J,) is unknown. In practice the expectation value in Eq. 57 is approximated sum-
ming over independent realizations generated by the experiment.

K
Eg[10g Pyrea(Vr 1 V)] & ) [log Py ey (D11 37)] (58)
k=1
If noindependent realizations are available e.g. if experiments are expensive, the estimation can be
performed over the training data instead, i.e. setting Y, = Y. But this leads to an over-optimistic
biased predictive accuracy estimateGelman et al. (2014). To compensate for that optimistic bias
one needs to penalize the model complexityGelman et al. (2014) which is done by scores called in-
formation criteria. The first non-Bayesian information criterion was found by Akaike Akaike (1998).
It states that for linear models with Gaussian noise, with no hidden structures, asymptotically one
can compensate the too optimistic bias from the training sample by subtracting the number of
parameters dim(6) of the model

AIC =log P(Y;|0,,.) — dim(6). (59)

Under those conditions AIC is asymptotically equivalent to cross-validation Stone (1977). These very
restrictive model conditions are not satisfied by models with hidden or latent structures Watanabe
(2007). Thus AIC has no mathematical justification for any Biophysical data model, whose experi-
mental base is a signal which probes some hidden dynamics. We show (Fig. 7 b), that AIC fails to
predict the true data-generating process unless the data are strong enough to create a multivariate
normal posterior. Recently, WatanabeWatanabe (2010) showed for muc broader class of models,
including singular models, that asymptotically WAIC is equivalent for large data sets to Bayesian
cross-validation Thus the predictive accuracy of the model Eq. 57 can be estimated by

WAIC :=log P (Y1) = Pwarc (60)
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Algori. Selec. Strategy

AIC WAIC  MPC BC CMEXP E[r?]
RE;c No No Yes Yes No No
KFpc No Yes Yes Yes Yes Yes
KF,per  No(Yes) Yes Yes Yes Yes Yes

Table 4. Model selection strategies by estimating the predictive accuracy (columns 1-4), by continuous model
expansion (CMEXP) (column 5) and by residua r? (column 6). The No(Yes) means that for the used example we
were successful but for AIC there is no asymptotic guarantee that it converges with large Ny, to the true
value.

The bias correction py,,c = var,,(logP(¥|0)) is asymptotically correct even for singular models
and reduces to the from Akaike expected dim(€) for regular normal models Gelman et al. (2014).
We show that in order to reliably detect overfitting and determine the best generalizing model
on the training data, it is inevitable to use the KF instead of REs, see Fig. 7 a, b. Notably, WAIC
exploits the full posterior thus model selection for singular model should usually be done within the
Bayesian framework. The obvious way to estimate Eq. 57 by Eq. 56 used through out this study as a
reference is with hold out data. In order to decide upon a parsimonious model, predictive accuracy
methods should be combined with the continuous model expansion technique to interpret the
cross-validation and information criteria correctly.
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22 Appendix 1

022 An example emphasizing the importance of weakly informative priors for
023 complex models

o
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025 Figure 1. a, Posterior of the rates which are not present in the true process equipped with a uniform
926 prior on ks ,. The uniform prior puts too much probability mass into regions (gray shaded) where one
027 should distrust the likelihood value due to limitations of the experiment. The likelihood cannot
o028 confine ks, by the data such that the only limitation is the sampling box. b, This lack of information in
920 the data is true for 10 out of 10 data sets though some of the data sets show a local maximum for
930 ks, — 0. ¢, For ks 4 9 out of 10 data sets show a global maximum at k5, = 0, only the showcased data
931 set has significant probability mass for 5, > 0. Notice, that the first and second columns and rows

932 are displayed in kHz while the others are in Hz.

We demonstrate the influence of prior information for the model selection by continuous
model expansion (Fig. 6 i-j). As argued in the main article, weakly informative prior distribu-
tions can support the algorithm to select simpler base models, which means concentrating
the posterior for certain k;; around zero Gelman et al. (2017). Here we show the effect of
the halfnormal prior P(ks,) for the other rates and eigenvalues. We compare now (Appendix
Fig. 1) posteriors of the rates of in model M which are not present in the true process. First,
we use a prior ks, ~ uniform(0, 60kHz) which places too much probability mass to high fre-
quencies, if we consider that the frequency by which the KF analysed the data ranged from
83.3 Hz to 500 Hz. At a first glance one might see a finite peak in P(k, ), implying that there
is a second open state which opens at a similar rate as the true opening step. Looking at
P(k, s, ks,) one realizes that the posterior has a ridge which appears in the marginal distribu-
tion P(k,5) as a peak. Most of that ridge lies in regions ks, > 10kHz where we should distrust
the experimental data due to the noise and limited time resolution to reasonably constrain
the model. Note that the used prior places 6 times more probability mass higher then the
sampling frequency, which in case of weakly informative data is a strong statement for mag-
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040 nitude of ks, being greater than would could have been measured. As argued in the main
950 text that would not be an issue if the data would be informative on ks ,. Indeed, P(k, 5. ks,)
051 is bounded by the sampling box rather than by the data.

952

£s/kHz = —36.47+225%

£4/kHz = —1.38738°

2
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.
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E
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# °
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953
o054 Figure 2. Posterior of the eigenvalues derived from the posterior of the rate matrix. We left out the
055 equilibrium eigenvalue ¢; = 0, since by construction of the rate matrix it is always zero. The vertical
956 dashed lines on the diagonal show the quantiles {0.1,0.5,0.9}. The posterior of the three slower
057 eigenvalues cover the eigenvalues of the true process. Examining 5 reveals that roughly 90% of the
958 probability mass belongs to eigenvalues faster than the sampling frequency. The upper limit of ¢5 is
960 only confined by the sampling box but not by the data.

Closely related to the rate matrix is its spectrum of eigenvalues e. A kinetic scheme consist-
ing of M states has M eigenvalues. The largest one is always zero Colquhoun and Hawkes
((1995). This eigenvalue corresponds to the equilibrium solution of the chemical network
Colquhoun and Hawkes ((1995). All other M — 1 eigenvalues are the negative inverse of the
timescales on which deviations from the equilibrium distributions decay in time Colquhoun
and Hawkes ((1995). The Gershgorin-circle theorem justifies this heuristic Varga et al. (1965).
It states, that the spectrum of a matrix is inside the union of Gershgorin-circles. For a matrix
with real valued eigenvalues such as the rate matrix this statement simplifies to real valued
intervals R. For the j-th column the Gershgorin-interval R; is

= [k, - Zk,n ,,+Zk,ll (61)
i) Li%]

We use the properties k;; > 0, fori # jand k; ; = Z, 42 k. < 0 of arate matrix and derive

R, = [2k;

J-J?

0] (62)
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Since the interval from the column with the smallest diagonal element k,,,, < 0 covers all

other intervals the union is

min

€, € R = [2k,,;,,0] (63)

Each eigenvalue is always larger than 2 times the smallest diagonal element but smaller
then 0.
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Figure 3. a, Posterior of the rates which are not present in the true process equipped with a weakly
informative prior ks, ~ halfnormal(0, 6 kHz). Still there is much probability mass in unrealistic rate
regions (gray shaded) and one can still identify the correlated structure of P(ks », k, 5) but the
distribution, in particular the rates into the overfitting state Os, show a distinct maximum for k — 0. b,

The posteriors for all data sets of P(ks,) show now the tendency to develop a peak for ks, — 0. c, All

data sets indicate that also ks, describes a process which is either slow beyond the time scales of the
experiment or does not exist.

The unbounded rate P(ks,) creates a posterior for the eigenvalues (Appendix Fig. 2) whose

90% probability mass for e5 covers areas faster than what could have been measured. The
algorithm places most of the probability mass where it does not harm the fit. Since distur-
bances corresponding to that eigenvalue Colquhoun and Hawkes ((1995) suffered already,
a strong decay before the next data point is measured. This should raise the concern that
the model would do better without the fifth eigenvalue thus one of the fife states should
be left out. Not surprisingly, the likelihood benefits from increasing a rate which empties a
state which does not exist in the true process. The posterior of the slower time scales ¢, —¢,
(Appendix Fig. 2) covers the true values. From Appendix Eq. 5 it is clear that there is close
correspondence between e; and k;,. A prior such as ks, ~ halfnormal(0, 6 kHz) is still vague
but values ks, > 10kHz are strongly penalized. The prior states that we only except a rate
close to the sampling rate if the data indicates it by a sharp likelihood peak which dominates
the weakly regularising prior. The effect of that prior on the posterior of rates can be seen
in (Appendix Fig. 3). P(k,s. Develops a peak for k,5 = 0 and is much more concentrated
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1006

1007

1008 close to zero. It further emphasizes that Os is a state which should be left out (Fig. 5 i-j).
1000 Additionally, with this weak constraint some of 10 data sets gain the tendency to develop a
1010 maximum at P(ks, = 0) (Appendix Fig. 3)b. As a side effect, the prior helps to sample from
1011 the posterior in limited time because it suppresses the correlations in the high-dimensional
1012 tails.
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w5 Appendix 2

101 Markov Models for a single ion channel

1015 Markov models and rate models are widely used for modeling molecular kinetics. They pro-
1016 vide an interpretation of the data in terms of a set of functional states and the transition
1017 rates between these states. Markov models can be estimated from experimentally recorded
1018 data as well as from computer simulation data. The use of Markov models with one-step
1010 memory is supported by the concept of the molecular free energy landscape. Molecular
1020 energy landscapes are typically characterized by conformationally well defined free-energy
1021 minima that are separated by free-energy barriers. State transitions in molecules are ther-
1022 mally activated barrier-crossing events on this landscape Frauenfelder et al. (1991) leading
1023 to a rapid equilibration of the system in the vicinity of this new minimum. Memory of other
1024 minima that have been visited in the past is not required. Regarding the wide spectrum of
1025 time scales at which processes in a protein take place, one has to be aware that there is
1026 typically a small number of relaxation modes with excessively long autocorrelation times
1027 and many relaxation modes with much faster autocorrelation times. To model the slow, ex-
1028 perimentally accessible processes, it is sufficient to retain the small number of slow modes
1020 Noé et al. (2011). It has been shown rigorously that working with the set of slow modes is
1030 equivalent to model the state dynamics with a small number of fuzzily defined metastable
1031 states in the full conformational space Deuflhard and Weber (2005). Later it has been shown
1032 that the set of slow modes can be well approximated with a hidden Markov model Noé et al.
1033 (2013b).
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w3«  Appendix 3

1035 The fluorescence signal of cPCF experiments

1036 First four moments of a photomultiplier signal

In this work, the KF analysis assumes Poisson statistics for the fluorescence signal in cPCF.
Many commercial microscopes are not equipped with photon counting detectors or detec-
tors are not operated in photon-counting mode, often to due to ease of use or limitation in
dynamic range. Therefore, it is important to verify that the fluorescence signal follows, at
least approximately, Poisson counting statistics. In particular, for the KF it is assumed that
higher order statistics, such as skewness and excess kurtosis, vanish. The central assump-
tion of the derivation of our Bayesian network is that var[y;] = E[y]

Here we show that this assumption for the detectors used in our system (Ch1 and Ch2, LSM
710, Carl Zeiss) under typical cPCF conditions is fulfilled by re-scaling to photon-numbers,
The measured variance obeys var[y;,] = a - E[y;]. It depends linearly on the mean signals
(Appendix Fig. 1a).

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047 var[y] = aE[y] (64)
1048 var[px] = aE[pux] (65)
1040 u? var[x] = au E[x] (66)
1050

1051 For the scaled signal x being Poisson distributed follows y = a. Then re-scaling of the
1052 signal by 1/a provides approximately Poisson distributed values. A linear fit yields a =
1083 205a.u.(16 bit)/photon (for 680 V PMT voltage, 3.26 us pixel dwell time). Appendix Fig. 1
1054 b,c) shows that excess kurtosis and skewness remain small at all levels of photons/pixel
1085 but are somewhat higher than theoretically predicted for Poisson-distributed data. The
1056 proportionalities are correctly described by the Poisson distribution assumption but the
1057 skewness and the kurtosis are too small by a constant factor of V2and4, respectively. This
1058 finding has to be verified for different experimental conditions, because at lower concentra-
1080 tion/particle densities and higher count rates, particle number fluctuations can dominate
1060 statistics Brown et al. (2008). For comparison another option would be a Gamma distribu-
1061 tion which has the mean and the variance of E[y] = k6 and var[y] = k62, respectively. Thus,
1062 the applied scaling requires that = 1. The Gamma distribution has a higher skewness by
1063 factor two (independently of ) than a Poisson distribution and overscores the skewness
1064 and excess kurtosis of the detector. For simplicity only the Poisson distribution is consid-
1065 ered in this work. In conclusion: Typical cPCF fluorescence signal detection rates are well
1066 approximated by a Gamma or Poisson distribution which in turn have the desired property
1067 that can be approximated by a normal distribution.

1068

average fluorescence (a.u.)
0 10 20 30 40 5
200 1 1 1 1 1

60x10°

3

- 3
250 80x10

200 f~ 60

150

skewness

Variance (photons)
(n°e) souewen

100 —

50

0 T T T T T o T T
0 50 100 150 200 250 300 0 50 100 150 200 250 300

# photon/pixel (estimated) # photon/pixel (estimated)

36 of 41


https://doi.org/10.1101/2020.04.27.029207
http://creativecommons.org/licenses/by-nc-nd/4.0/

bIORXIV preprlnt d0| https /ldoi. org/lO 1101/2020 04 27.029207; thls verS|on posted September 2, 2020 The copyright holder for thls preprlnt

excess kurtosis

1069

0 50 100 150 200 250 300
1070 # photon/pixel (estimated)
1071 Figure 1. Benchmark of the signal statistics for experimental solution data recorded under cPCF
1072 conditions: The concentrations of the fluorescent ligand were 0.25, 3 and 15 uM and a reference dye
1073 was present. The laser intensities covered 1.6 orders of magnitude at constant detection settings. The
1074 data points were obtained from 1.4 - 10%pixel. The red and blue lines indicate the theoretical
1075 prediction for a Poisson and Gamma distribution, respectively, assuming 6 = 1. a, Variance vs.
1076 average. The linear relation allows to relate the measured a.u. (top, right axis) to photons (bottom,
1077 left axis). b, Skewness. ¢, Excess kurtosis. The higher moments are small but the values are slightly
1078 larger than theoretically predicted. The insets provide a corresponding log-log plot. Important for the
1080 KF algorithm is that skewness and excess kurtosis is small.
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1081
1082 Figure 2. Simulated binding signals. a, Comparison of binding of a labeled ligand at two
1083 concentrations. A simple two-ligand binding process is simulated with the Hill equation for the two
1084 expression levels of 1,000 or 10,000 binding sites and a BCs, of 1,000 (BCs,a) or 10,000(BCs,b),
1085 respectively, given in molecules per observation unit. The observed signal is the sum of the signal
1086 from ligands free in solution and bound to the receptors. The solution signal scales linearly with the
1087 concentration, while the binding signal saturates. b, Relative contribution of the binding signal to the
1088 total signal. Note that the contribution of the binding signal scales linearly with the expression level
1080 and inversely with the BCs,.
1001 Background noise statistics

In cPCF measurements with fluorescence-labeled ligands, the signals of the ligands bound
to the receptors overlap with the signals from freely diffusing fluorescence-labelled ligands
in the bulk. This bulk signal is subtracted from the total signalBiskup et al. (2007). While the
mean difference signal y;, (r) of the confocal voxel k represents the bound ligands in that
voxel, its noise y, , (¢) originates from both bound and bulk ligands. The additional bulk signal,
e.g. the fraction of bulk solution inside that voxel, varies from voxel to voxel and can hardly
be described theoretically. Nevertheless, it can be determined experimentally Biskup et al.
(2007). At low expression levels or at ligand concentrations above low nano-molar levels,
this background signal is not negligible. It scales linearly with the ligand concentration, while
the signal from bound receptors depends on the affinity, as estimated by the concentration
of half maximum binding BCy,, and the number of ion channels in the membrane of the
observed volume. The binding signal saturates at high concentrations (Appendix Fig. 2).
Thus, both high affinity (low BCy,) and high expression reduce the relative contribution of
the background to the overall signal, improving the signal to noise ratio.

Practically, the bulk signal is estimated by counter-staining the solution with a spectrally
distinct reference dye Biskup et al. (2007). The spatial distribution of this dye mimics the
spatial distribution of the freely diffusing ligands. The bulk absolute concentration as well
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1107

1108

as the molecular brightness of the reference dye and the labeled ligand differ. Hence, the
binding signal is calculated as the average pixel intensity of the scaled difference image
between the signal of labeled ligand and reference dye according to

1109

1110

1111

1112 a )”hg A’lig,back

1113 Yeik = Nigtotal — Alig,back - (yfl,ref /lret back)%' (67)
ref — Aref,back

1114

1115 where j’lig,back and 4, . are the arithmetic mean background signals of the ligand and ref-

1116 erence dye recorded beyond the membrane were no signal should be recorded. They rep-

1117 resent a signal offset which needs to be subtracted. The mean intensities in the bulk, 4,

1118 and 4, are estimated outside the pipette. In order to get the correct scaling, the mean in-

1110 tensities need to be corrected by the respective mean background signals. If w = Il
1120 holds then y;,;, would be Skellam distributed Hwang et al. (2007). The total sférnarirrgkthen
1121 Yi = 2 Y- This procedure creates E[y,] = 0 but adds an additional noise term £(z)). For the
1122 general case of different intensities, we name the distribution 'scaled Skellam distributed'.
1123 The scaling variance of the background noise in each voxel of the difference image

1124 Az

H2s a? = Ay + /lﬁ (68)
1126 telf

1127 is derived from simulated data in the Appendix 3. 4;, and 4, are the fluorescence intensity
1128 from the freely diffusing ligands and reference dye molecules per voxel, respectively. 4,
1120 and 4., are proportional to the volume fraction of the voxel, which is occupied by the bulk,
1130 and to the respective concentrations. To achieve a symmetric P({), one can set Ay, = A,
1131 The summed variance of all selected voxels can be tabulated according to

1132 0—2 0

- (% 0)
1135 To mimic an experiment which creates time series data ¢(r), we draw Poisson numbers for
1136 the signal from the membrane Poisson(Hn(7)) and for the signal from the bulk we draw num-
1137 bers from the two respective Poisson distributions. Then subtraction of the two background
1138 signals is performed according to

1139 /1

1140 Youlk = Viigbulk — yref,bulk/lhgﬂ (70)
1141 ref ,bulk

1142 assuming that the dark count signal has been correctly subtracted. Then we add the bulk
1143 signal to the bound ligand signal. In this way we produce a time trace with colored noise by
1144 the Gillespie algorithm and add white noise to time traces as it is observed in real experi-
1145 ments.

1146
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1147 Deriving the moments of the background noise for the difference signal
¥ x
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1149 Figure 3. Master curves of 2nd till 4th centralized moment of photon counting noise ¢ arising from
1150 the difference signal of fluorescent ligands and the dye in the bulk. The curves are created from 4 - 10°
1151 draws from Poisson distributions with different combinations of intensities for the reference dye 4,.¢
1152 and of the intensity of the confocal voxel fraction 4;;,.

For the KF the variance, skewness and kurtosis arising from the background noise has to be
calculated. Skewness and excess kurtosis of the distribution have to be small compared to
the total variance of the signal including all noise sources because only in this case the KF
algorithm can be considered as the optimal solution for the filtering and inference problem
Anderson and Moore (2012). In the following the 2nd to 4th moment of ¢ are derived. The
noise intensity parameter of the reference dye 4., is proportional to p,. 4, With V being the
confocal volume fraction containing fluorophores and p,.; the density of the fluorophores
in this volume. In Appendix Fig. 3 we deduce master curves for the variance skewness and
excess kurtosis of the white noise by drawing 4 - 10° Poisson numbers from the respective
Poisson distribution and subtract them from each other according to Appendix Eq. 70. The
variance is derived empirically to be

1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164

2 2
1165 o, /llig

S 71

2
1166 /lref )‘ref A’ref

1167

In Appendix Fig. S. 3 a, we confirm the intuition 4, — o0 = var({) = 4;,. Optimally, the
skewness should be zero to avoid a biased estimate of 6 when the data are analyzed by the
KF. Empirically, for 4, < 4,,, the skewness holds

1168

1169

1170

1171

skew(O)V e = ;f (72)
1173 hg
1174 Additionally for 4, < 4,,, the skewness holds
1175
A

1176 skew(0) /A < ‘/A‘—e“ (73)
1177 lig
1178 Itis zero when 4,,, = 4,,. The KF is optimal if the kurtosis excess approaches zero, in other
1o words if ¢ is distributed normally. Empirically the kurtosis holds this
1180

i ef
1181 kur($)A, s < — (74)

A’Iig
1182
1183 for A < 4. The relative intensity 4, of the voxel fraction compared to the intensity 4,
1184 depends on the affinity of the ligand to the receptor, the number of receptors in the patch,
1185 and the density of the fluorphores p;, at the patch. For larger concentrations should be
1186 Alig/j’rcf'
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usz  Appendix 4

1188 Output statistics of Bayesian networks

1180 Classical Kalman Filter without open-channel noise
Assuming that current measurements are only compromised by additive technical white

noise v but do not contain open-channel noise v,,, then our noise model reduces to

y(1) = Hn(?) + v(1) & y ~ O(y|n) = normal(Hn(?), 62) (75)

The noise term v, has a mean of E[v,] = 0 and variance E[v2] = 62 = const. One has to
keep in mind that we have to add an extra variance term originating from the dispersion
of channels over state space, as encoded by P() and n(r). The uncertainty P(z) is calculated
using Methods Eq. 30. The variance of the total output is

1190

1191

1192

1193

1o var(y(1), (1)) = E[(y(t) = E[y(OD((1) = E[y(®OD) '] (76a)
= El(y(1) - HEI® (1) - HEl(®)])"] (76b)
1107 = E[(Hn(?) + v(t) — HE[n()])(Hn(t) + v(r) — HE[n(#)])"] (760)
1108 = HE[(n(r) — E[n()])(n(t) — E(n(®)]"TH" + E[v(z)’] (76d)
1100 =HPOH' + 0, (76e)
1200 (76f)
1201

1202 The two cross terms E[v(,)(n—E[n])"H'] and E[H(n— E[n])v(z,)"] are zero since v is indepen-
1203 dent of n and E[v,,] = 0. Our derivation is equivalent to marginalization over the predicted
1204 normal prior of the ensemble state P(n(z)|Y,_,) at the time of the measurement except that
1205 the prior distribution could be any probability distribution with some mean and variance.
1206 Eq. 76 is the classical KF variance prediction of a signal. The first term in Eq. 76, describes
1207 the variance from stochastic gating and that the ensemble state is hidden. Notably, by Meth-
1208 ods Eq. 30 we realize that var(y(s)) contains information about T and n(¢ — 1), which we can
1200 exploit with the KF framework.

1319 A generalized Kalman filter with state-dependent open-channel noise

Additional to the standard KF with only additive noise Moffatt (2007); Anderson and Moore
(2012); Chen et al. (2003), fluctuations arising from the single-channel gating lead to a second
white-noise term v, n,(7), causing state-dependency of our noise model. The output model

1212

1213

1214

1215 is then
120 () = Hn(®) + v, (1) + v, (1) & y ~ p(y[n) = normal(y|Hn(), o, + n,(1)o;,) (77)
1217
1218 The second noise term v, is defined in terms of the first two moments E(v,,) = 0 and
1219 therefore var(v,,) = [E(vgp) = aﬁpn4(t). To the best of our knowledge such a state-dependent
1220 noise makes the following integration intractable
1221 P(y()) = / normal(y[Hn, 6> + n4a§p) normal(n|n(?), P(r)) dn (78a)
1222
1223 1 (y— Hn)2 ( 1 — 1 — T

= —_— ~(m—n@)P'(n —n( ) d 78b
e P / exp (2(",2,. i) exp 2(n n())P~ (n—n()) ) dn (78Db)

When assuming that the relative fluctuations of n(¢) are small on average then n, in the
denominator is close to E(n,) of the state. Thus the incremental likelihood can be written as
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1225

1226

1227 in the standard KF, just with the difference that the measurement noise is the sum of two
1228 components.

1220 y(1) ~ normal(Hn(?), o>, + agpm(r) +HPH") (79)
1230 To see that this approximation of the variance is correct, we apply the law of total variance
1231 decomposition Weiss (2005).

1232

1233 var(y(t)) = E[var[y(#)|n(®)]] + var[E[y(#)|n(®)]] (80a)
1234 =E[Z + agpn4(t)] + var[Hn(7)] (80b)
1235 =0’ + agp[E[n4(t)] +HP(HH" (80c)
1236

1237 The terms HP(HH' + ¢ are the standard output covariance matrix. Again P(r) contains in-
1238 formation about T, n(r — 1) while the additional variance term includes information about
1230 about the current n(r). The information in the noise enters in two ways the likelihood of the
1240 data. By the variance or covariance of the current y(s) but also for y(¢ + 1) in correction step
1241 by the Kalman gain K matrix defined in the next section.
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