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Abstract Inferring the complex conformational dynamics of ion channels from ensemble9

currents is a daunting task due to limited information in the data leading to poorly determined10

model inference and selection. We address this problem with a parallelized Kalman filter for11

specifying Hidden Markov Models for current and fluorescence data. We demonstrate the12

flexibility of this Bayesian network by including different noises distributions. The accuracy of the13

parameter estimation is increased by tenfold compared to fitting Rate Equations. Furthermore,14

adding orthogonal fluorescence data increases the accuracy of the model parameters by up to15

two orders of magnitude. Additional prior information alleviates parameter unidenfiability for16

weakly informative data. We show that with Rate Equations a reliable detection of the true kinetic17

scheme requires cross validation. In contrast, our algorithm avoids overfitting by automatically18

switching of rates (continuous model expansion), by cross-validation, by applying the ’widely19

applicable information criterion’ or variance-based model selection.20

21

Introduction22

Ion channels are essential proteins for the homeostasis of an organism. Disturbance of their func-23

tion by mutations often causes severe diseases, such as epilepsy Oyrer et al. (2018); Goldschen-24

Ohmet al. (2010), sudden cardiac death Clancy and Rudy (2001) or sick sinus syndromeVerkerk and25

Wilders (2014) indicating a medical need Goldschen-Ohm et al. (2010) to gain further insight into26

the biophysics of ion channels Sakmann (2013). The gating of ion channels is usually interpreted27

by kinetic schemes which are inferred from macroscopic currents with rate equations (REs) Sak-28

mann (2013) or from single-channel currents using dwell time distributions Neher and Sakmann29

(1976); Colquhoun et al. (1981); Horn and Lange (1983); Epstein et al. (2016); Siekmann et al. (2016)30

or hidden Markov models (HMMs) Chung et al. (1990); Fredkin and Rice (1992); Qin et al. (2000);31

Venkataramanan and Sigworth (2002). It is becoming increasingly clear that the use of Bayesian32

statistics in HMM estimation constitutes a major advantage Ball F. G. and A. (1999); de Gunst et al.33

(2001); Rosales et al. (2001); Rosales (2004); Gin et al. (2009); Siekmann et al. (2011, 2012); Hines34

et al. (2015).35

In ensemble patches, simultaneous orthogonal fluorescence measurement of either conforma-36

tional changes Zhengand Zagotta (2000); Taraskaand Zagotta (2007); Taraska et al. (2009);Bruening-37

Wright et al. (2007); Kalstrup and Blunck (2013, 2018);Wulf and Pless (2018) or ligand binding itself38

Biskup et al. (2007); Kusch et al. (2010, 2011); Wu et al. (2011) has increased insight into the com-39

plexity of channel activation.40
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Figure 1. HMM used for the simulations. a, The kinetic schemeMtrue used for simulating the data. The
Markov state model (kinetic scheme) consists of two binding steps and one opening step. The rate matrix K is
parametrized by the absolute rates ki,j , the ratios Ki between on and off rates (i.e. equilibrium constants) and
L, the ligand concentration in the solution. The units of the rates are s−1 and �M−1s−1 respectively. The
liganded states are C2, C3, O4. The open state O4 conducts a mean single-channel current i = 1. b-c,
Normalized time traces of simulated relaxation experiments of ligand concentration jumps with Nch = 103

channels, �b = 0.375mean photons per bound ligand per frame and single-channel current i = 1. The current
ycurr and fluorescence yf lu time courses are calculated from the same simulation run to mimic the experiment.
For visualization, the signals are normalized by the respective median estimates of the KF. The fluctuation of
the current traces is due to gating noise, instrumental noise with the variance �2m = i2 and open-channel noise
�2op = 0.1i

2. The fluctuation of fluorescence is caused by stochastic binding and Poisson counting noise of
photons. The black lines are the theoretical open probabilities Po(t) and the average binding per channel B(t)
for Nch →∞ of the used model. The ligand concentrations are 0.125, 0.25, 0.5, 1, 2, 4, 8, 16, 64�M. d, Equilibrium
binding and open probability as function of the ligand concentration L.

Currently, a Bayesian estimator that can collect information from cross-correlations and time cor-41

relations inherent in multi-dimensional signals of ensembles of ion channels is still missing. Tra-42

ditionally, macroscopic currents are analyzed with solutions of rate equations (REs) which yield43

a point estimate of the rate matrix or its eigenvalues Colquhoun et al. (1997); Sakmann (2013);44

Alcantara et al. (2002); Wang et al. (2012). The RE approach is based on a deterministic differen-45

tial equation derived by averaging the chemical master equation (CME) for the underlying kinetic46

scheme Kurtz (1972); Van Kampen (1992); Jahnke and Huisinga (2007a). Its accuracy can be im-47

proved by processing the information contained in the intrinsic noise (stochastic gating and bind-48

ing) Milescu et al. (2005); Munsky et al. (2009). Nevertheless, all deterministic approaches do not49

use the information of the time- and cross-correlations of the intrinsic noise. These deterministic50

approaches are asymptotically valid for an infinite number of channels. Thus, a time trace with51

a finite number of channels contains, strictly speaking, only one independent data point. Some52

rigorous attempts to incorporate the intrinsic noise of current data into the estimation Celentano53

and Hawkes (2004) suffer from cubic computational complexity in the amount of data points, ren-54

dering the algorithm impractical for real data. Stepanyuk suggested a faster algorithm Stepanyuk55

and Borisyuk (2011); Stepanyuk et al. (2014). Advanced approaches to analyze single-molecule56

data such as HMMs make use of solutions of the stochastic CME Jahnke and Huisinga (2007b) Qin57

et al. (2000); Venkataramanan and Sigworth (2002). A HMM consists of a discrete set ofmetastable58

states. Changes of their occupation occur as random events over time. Each state is characterized59

by transition rates in addition to its signal observation probability distribution Rabiner (1989). HMM60
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Box 1. Illustration of two statistical problems in patch-clamp
recordings addressed by a Bayesian network
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Box 1 Figure 1. a, Idealized patch-clamp (PC) data in the absence of instrumental noise for either ten
(colored) or an infinite number of channels generating the mean time trace (black). The fluctuations from
the mean time trace (black) reveal autocorrelation, the deviation at one time-point depends on the devi-
ation on the previous time point b, Conceptual idea of the Kalman Filter (KF): the stochastic evolution of
the ensemble signal is predicted and the prediction model updated recursively.
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The two major problems for parameter inference for the dynamics of the ion channel ensem-
ble n(t) are: (I) that currents are only low dimensional observations (e.g. one dimension for
patch clamp or two for cPCF) of a high-dimensional process (dimension being the number
of model states) blurred by noise and (II) the fluctuations from the stochastic gating process
cause autocorrelation in the signal. Traditional analyses for macroscopic PC data (and also
for related fluorescence data) by the RE approach, e.g. Milescu et al. (2005) ignores the long-
lasting autocorrelations of the deviations (see blue and orange curves) from the mean time
trace (black) that occur in real data measured from a finite ensemble. Assuming a white-noise
process is never met in real data due to the Markovian nature of the system. b, In order to
account for the autocorrelation in the signal, an optimal prediction of the signal distribution
ℙ(y) at the future time step t2 should use the measurement y form the current time step t1
to update the belief about the underlying hidden ensemble state n(t1). Based on stochastic
modelling of the time evolution of the channel ensemble, it then predicts ℙ(y(t2)).
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approaches are more accurate than fitting dwell time distributions for noisy recordings of rapidly61

gating channels Venkataramanan and Sigworth (2002) but the computational complexity limits62

this type of analysis in ensemble patches to no more than a few hundred channels per time trace63

Moffatt (2007).64

65

To tame the computational complexity Jahnke and Huisinga (2007b), we approximate the so-88

lution of the CME with a Kalman filter (KF), thereby remaining in a stochastic framework Kalman89

(1960). This allows us to explicitlymodel the time evolution of the first twomoments of the probabil-90

ity distribution of the hidden channel states. Notably, the KF is optimal in producing a minimal pre-91

diction error for the mean state. KFs have been used previously in several protein expression stud-92

ies Komorowski et al. (2009); Finkenstädt et al. (2013); Fearnhead et al. (2014); Folia and Rattray93

(2018). Our approach generalizes the work of Moffat Moffatt (2007) by including state-dependent94

fluctuations such as open-channel noise and Poisson noise in additional fluorescence data.95

Stochastic rather than deterministic modeling is generally preferable for small systems or non-96

linear dynamics Van Kampen (1992); Gillespie and Golightly (2012). However, even with simulated97

data of 104 channels per time trace, the KF outperforms the deterministic approach in estimating98

the model parameters and model selection. Moffatt Moffatt (2007) already demonstrated the ad-99

vantage of the KF to learn absolute rates from time traces at equilibrium. Other benefits are the100

ability to infer the number of channels Nch for each time trace, the single-channel current i and101
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Figure 2. KF as Bayesian network. a, Graphical model of the conditional dependencies of the stochastic process. Horizontal black arrows
represent the conditional multivariate normal transition probability (nt+1|Tnt,Qt) of a continuous state Markov process. Notably, it is n(t)
which is treated as the Markov state by the KF. The transition matrix T and the time-dependent covariance Qt = Q(T,nt) characterise the
single-channel dynamics. The vertical black arrows represent the conditional observation distribution O(yt|nt). The observation distribution
summarizes the noise of the experiment, which in the KF is assumed to be multivariate normal. Given a set of model parameters and a data
point yt, the Bayesian theorem allows to calculate in the correction step ℙ(nt|yt) (red arrow). The posterior is propagated linearly in time by the
model, predicting a state distribution ℙ(nt+1) (orange arrow). The propagated posterior predicts together with the observation distribution the
mean and covariance of the next observation. Thus, it creates a multivariate normal likelihood for each data point in the observation space. b,
Observation space trajectories of the predictions and data of the binding per channel vs. open probability. The curves are normalized by the
median estimates of �b, i and Nch and the ratio of open-channels

ycurr
Nchi

which approximates the open probability Po(t). The black crosses
represent Hnt+1, the mean of the parameter samples of the predicted signal for each data point of the KF. The green and blue trajectories
represent the part of the time traces with a non-zero ligand concentration and a zero ligand concentration in the bulk, respectively.

the mean number �b of photons from bound ligands per recorded frame. Thus no error-prone102

normalizations of the signal typical for deterministic (i.e. averaging) approaches is needed. The KF103

provides a likelihood which makes it possible to combine the time trace data during analysis with104

any other data that admits modelling with a likelihood.105

To select models and to identify parameters, stochastic models are formulated within the frame-106

work of Bayesian statistics where parameters are assigned uncertainties by treating them as ran-107

dom variablesHines (2015); Ball (2016). In contrast, previouswork on ensemble currents combined108

the KF only with maximum likelihood (ML) estimation Moffatt (2007) and did not derive model se-109

lection strategies. Difficulties in treating simple stochastic models by ML approaches in combina-110

tion with the KF Auger-Methe Marie et al. (2016), especially with non-observable dynamics, justify111

the computational burden of Bayesian statistics. Bayesian inference provides outmatching tools112

for modeling: First, information from other experiments, simulations or from theory can be in-113

tegrated through prior probabilities. Hence, uncertainties in the model parameters prior to the114

experiment are correctly accounted for in the analyses of the new data. For weakly informative115

data we demonstrate the beneficial effect of incorporating theoretical knowledge such as diffu-116

sion limited binding by prior distributions onto the posterior. Second, the Bayesian approach is117

still applicable in situations where parameters are not identifiable Hines et al. (2014);Middendorf118

and Aldrich (2017) or posteriors are non-Gaussian, whereas ML fitting ceases to be valid Calder-119

head et al. (2013);Watanabe (2007). Third, a Bayesian approach provides superior model selection120

tools for singular models such as HMMs Kienker (1989).121

The best fitting model will be defined as that one with the highest predictive accuracy, esti-122

mated either by cross-validation against held-out test data or by information criteria Gelman et al.123

(2014). Information criteria allow for model testing on training data instead of hold-out data by124

performing a bias-corrected computation of the predictive accuracy Gelman et al. (2014). We use125

the recently developed Widely Applicable Information Criterion (WAIC) Watanabe (2010) relying126

on the Bayesian paradigm. In contrast to its predecessor, the Akaike Information Criterion (AIC),127

WAIC asymptotically approximates the predictive accuracy of themodel correctly, even for singular128

4 of 41

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.04.27.029207doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.27.029207
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manuscript submitted to eLife

models Watanabe (2010) such as HMMs or KFs. Moreover, we show that fitting current data with129

REs, both AIC and WAIC fail to detect overfitting, which demonstrates the importance of correctly130

modeling the intrinsic noise. Additionally, we propose a second-moment based model selection131

criterion which is enabled by the KF and improved by simultaneous measurement of fluorescence132

and current signals using cPCF.133

Results and Discussion134

Simulation of relaxing cPCF data135

As an exemplary HMM we assume a ligand-gated channel with two ligand binding steps and one136

open-closed isomerization (see Fig. 1a). We define the ensemble state vector137

n(t) ∶= (n1(t), n2(t), n3(t), n4(t))⊤ =
Nch
∑

i=1
si(t), (1)

which counts the number of channels in each state s (see Methods). A qualitative description of138

two statistical problems inherent in a stochastic a time series with an RE approach and the Basic139

idea of the KF is outlined in Box. 1. At first we assume that the fluorescence signal originates only140

from bound ligands (Fig. 3). Later also the signal of unbound ligands and the correction using a141

reference dye will be included (see Figs. 4-7, Appendix, and Methods section ). Example data are142

shown in Figs. 1b-d.143

Kalman filter derived from a Bayesian network144

Here and in the Methods section, we derive the mathematical tools to account correctly for the145

stochastic Markov dynamics of single molecules in the fluctuations of macroscopic signals. The146

KF is a Bayesian network (see Methods), i.e. a continuous state HMM with a multivariate normal147

transition probability Ghahramani (1997) (Fig. 2a). To make use of the KF, we assume the following148

general form of the dynamic model: The evolution of the hidden state vector n(t) is determined by149

a linear model that is parametrized by the state evolution matrix T150

nt+1 ∼ (⋅|Tnt,Qt) = Tnt + !t, (2)

where ∼means sampled from and is a shorthand for the multivariate normal distribution. The151

mean of the hidden state evolves according to the equation E[nt+1|nt] = Tnt. It is perturbed by152

normally-distributed noise ! with the following properties: The mean value of the noise fulfills153

E[!t] = 0 and the variance-covariance matrix determines the noise cov[!t,!t] = Q(T,nt−1) (Methods154

Eq. 34d). In short, Eq. 1a defines a continuous state Gaussian Markov process. The observations yt155

depend linearly on the hidden state nt. The linear map is determined by an observation matrix H.156

yt ∼ O(⋅|Hnt) ∶= (⋅|Hnt,�t) = Hnt + �t (3)

The noise of themeasurement setup (Appendix 3 and Eq. 39) is modeled as a randomperturbation157

of the mean observation vector. The noise fulfills E[�] = 0 and cov[�t, �t] = �t. Eq. 3 defines the158

state-conditioned observation distribution O (Fig. 2a).159

For each element in a sequence of hidden states {nt ∶ 0 < t < T } and for a fixed set of parameters160

�, an algorithm based on a Bayesian network (Fig. 2a), exploits the conditional dependencies of161

the assumed stochastic process. A Bayesian network recursively predicts (prior) distributions for162

the next nt163

ℙ(nt) = ∫ ℙ(nt|nt−1)ℙ(nt−1|yt−1)dnt−1, (4)

given what is known at time t−1. The KF as a special Bayesian network assumes that the transition164

probability is multivariate normal according to Eq. 2a165

ℙ(nt) = ∫  (nt|Tnt−1,Qt−1)ℙ(nt−1|yt−1)dnt−1 (5)
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Each prediction of nt (Eq. 5) is followed by a correction step,166

ℙ(nt|yt) =
O(yt|nt)ℙ(nt)

∫ O(yt|nt)ℙ(nt) dnt
, (6)

that allows to incorporate the current data point into the estimate, based on the Bayesian theo-167

rem Chen et al. (2003). Additionally, the KF assumes Anderson and Moore (2012);Moffatt (2007) a168

multivariate normal observation distribution169

ℙ(nt|yt) =
 (yt|Hnt,�t)ℙ(nt)

∫  (yt|Hnt,�t)ℙ(nt) dnt
, (7)

If the initial prior distribution is multivariate normal then due the mathematical properties of the170

normal distributions all priors and posteriors ℙ(⋅) in Eq. 3b and 4b become multivariate normal171

Chen et al. (2003). In this case one can derive algebraic equations for the prediction (Methods172

Eq. 33 and 34d) and correction (Methods Eq. 54 and Eq. 54) of the mean and covariance. Due to173

the recursiveness of its equations, the KF has a time complexity that is linear in the number of174

data points, allowing a fast algorithm. The denominator of Eq. 7 is the normal distributedmarginal175

likelihood L(yt|t−1,�) for each data point, which constructs by176

L(T |�) =
NT
∏

t=2
L(yt|t−1,�) =

NT
∏

t=2
∫ O(yt|nt)ℙ(nt|t−1,�) dnt =

NT
∏

t=2
 (yt|HE[nt],HPtH⊤ + �t), (8)

a product marginal likelihood of normal distributions of the whole time trace T = {y1,… , yNT} of177

lengthNT for the KF. For the derivation of Pt and �t see Methods Eq. 34d and Eq. 39. The likelihood178

for the data allows to ascribe a probability to the parameters �, given the observed data (Methods179

Eq. 18). An illustration for the operation of the KF on the observation space (Fig. 2b).The predicted180

mean signal HE[n(t)] and the data are plotted as vector trajectories.181

For signals with Poisson-distributed photon counting or open-channel noise Eq. 7 becomes in-182

tractable. By applying the theorem of total variance decomposition Weiss (2005), we derive the183

output statistics that approximate various forms of noise and cast them into the form of Eq. 3184

(Methods Eq. 53). The Bayesian posterior distribution185

ℙ(�|T ) ∼ L(T |�)ℙ(�) (9)

encodes all information frommodel assumptions and experimental data used during model train-186

ing (see Methods). Our algorithm reconstructs the posterior (Fig. 3a) by sampling from it with the187

Hamiltonian Monte Carlo (HMC) method Hoffman and Gelman (2014); Betancourt (2017) provided188

by the STAN software Gelman et al. (2015).189

Benchmarking of the KF against REs190

For the synthetic time traces the KF samples from the posterior (Fig. 3a,b). For realistic channel191

numbers as 103 per patch, the posterior of the KF contains the true parameter values within the192

bounds of its 5th and 95th percentile (Fig. 3b). However, for typical experimental settings the193

total parameter error of the RE estimates Moffatt (2007); Milescu et al. (2005), calculated as the194

Euclidean distance to the true values, is roughly 10 times larger than the corresponding error of195

the posterior median of the KF to the true values. (Fig. 3c). It is noteworthy that, even for 104196

channels per patch, the precision of the KF is 4 times higher than that of the RE model on that data197

set. Dividing the error of all estimates from the REs approach for Nch = 104 by the error of the KF198

estimates for Nch = 103 gives a ratio 0.97 ≈ 1. This means that analysis of the same data with the199

KF yields an improvement of model quality that REs could only match with a tenfold increase in200

the numbers of channels analysed. This result confirms that the KF approach is superior to the RE201

approach as already discoveredwhen comparing the twomethodswith current data aloneMoffatt202

(2007). For small Nch, the ratio of the errors decreases like ∼ 1∕
√

Nch (Fig. 3c). Thus the RE203

approach scales like ∼ 1∕Nch and does not simply scale like the inverse square root of the system204
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Figure 3. Benchmark of the KF against least squares fitting of REs. By �̃i we indicate that the samples from the posterior are scaled by their
true value. a, Sample traces of 3 representative parameters from the posterior distribution of the KF algorithm created by Hamiltonian Monte
Carlo sampling. The posterior is constructed by those samples. b, Posterior distribution plotted against the point estimate of a least squares fit
with REs forNch = 103. The blue lines represent the true values used for simulating the data, the red lines are their estimate from the RE fits. The
dashed black lines show the quantiles (0.025, 0.5, 0.975) of the posterior. All values are normalized by their true value. Parameters which are not
possible to infer from the mean values alone i, Nch and � are used as fixed input parameters to make both approaches comparable. c, Absolute
errors of the median for the rate and equilibrium constants obtained by the KF (orange) and from the REs (blue) are plotted against Nch . Error
ratio (red) between both approaches scales according to 1∕

√

Nch at least for smaller Nch which is the expected scaling since the intrinsic noise
divided by the mean signal scales in the same way. One expects an asymptotic equivalence for large Nch between KF and REs since the signal to
noise ratio diverges. The typical experimental situation Nch ∝ 102 − 103 is indicated by the area shaded in gray. d, Time trace of median of the
normalized residuals rcurr (blue) and rf luo (red) for one ligand concentration after analyzing with the KF. e, The autocorrelation function of r from
the KF shows the expected white-noise process.
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Figure 4. Benchmark of the KF for patch-clamp versus patch-clamp fluorometry data. a, Posteriors of PC data (blue), cPCF data with
�b = 0.00375 (orange) and cPCF data with �b = 0.375 (green) but accounting for the superimposing fluorescence of unbound ligands in solution.
The black lines represent the true values of the simulated data. The posteriors for cPCF ℙ(k2,1, k3,2) are centered around the true values that are
hardly visible on the scale of the posterior for the PC data. b, Distribution of the absolute error of the median for the parameters of the rate
matrix for 9 different data sets, with �b = 0.375 and superimposing bulk signal c, The 95th percentile of the marginalized posteriors vs. �b
normalised by the true value of each parameter. A regime with l95 ∼ 1∕

√

� is shown for k2,1 and K1, while other parameters show a weaker
dependency on the ligand brightness. d, Histograms of the residuals r of cPCF with �b = 2.5 ⋅ 10−3 data and PC data. The randomness of the
normalized residuals of the cPCF or PC data are well described by ri ∼ normal(0, �2res = 1). The estimated variance is �2res = 0.98 + 0.26. Note that
the fluorescence signal per frame of is very low such that it is skewed. e, Posterior of the open-channel noise ℙ(�2op∕�

2
op,true) for PC data with

Nch ⋅ 103 (green) and Nch ⋅ 105 (blue) as well as for cPCF data with Nch ⋅ 103 (red) with �b = 0.375. Adding fluorescence data is roughly equal to five
times more ion channels to estimate �2op. We assumed as prior for the instrumental variance ℙ(�2) = (1, 0.01).
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Figure 5. Variations of the posterior under different prior assumptions All posterior samples of �i are plotted scaled by their true values as
�̃i. True values are indicated by blue lines. The vertical orange lines represent the median and 2.5 and 15-percentile. a, Posterior ℙ(k1,2) of the PC
data fromMtrue as used throughout this article. Posterior derived from different priors. The priors are indicated by dashed curves. The uniform
prior leads to a heavy tail in the posterior (blue). Note that the 97.5−percentile is at k̃1,2 = 28.9 and the median is at k̃1,2 = 4. In contrast, the
exponential tails of the other priors dominate their posteriors in the tails. Even if we set the prior mean value 4 times smaller then the true rate
(black dashed curve), the posterior (black) is still better centered around the true value than the posterior with the uniform prior. b, Since k1,2
describes the ligand binding, theoretical predictions of a diffusion-limited binding rate can be used as a maximum in an informative prior. A
beta distribution as the prior can be tuned k1,2

1800 ⋅ s�M = k̃1,2 ∼ beta(4, 2) to favor ligand binding between k̃1,2 ∈ [0.6, 1.4] (black, dashed curve). This
results in a posterior which is likelihood-dominated below k̃1,2 = 0.9 while it is dominated by the prior above k̃1,2 = 1.1. A uniform prior with the
same support as the beta prior results in a posterior with more weight above the theoretical possible range (red), where it is prior dominated.
Thus, the difference between black and red posteriors indicates the information which is added by the beta prior. In this case it penalizes too
high values and pushes the probability mass towards the true value. A stricter beta distribution k1,2

1400 ⋅ s�M = k̃1,2 ∼ beta(5, 2) results in a narrower
posterior (green). The Bayesian update concentrates for both priors the posterior mass towards the true value. c, The consequence of the more
informative beta prior (green dashed line in b) on the posterior of the complete rate matrix. Green dots result from this prior, black lines are
from a uniform prior u(30). The inset zooms onto the collapsed posterior.

9 of 41

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.04.27.029207doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.27.029207
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manuscript submitted to eLife

size, as one might assume. In Fig. 3d, the normalized residuals of one time trace are shown205

which are defined as206

ri ∶=
yi − (HE[n])i
√

var[yi]
. (10)

We normalize with respect to the predicted standard deviation for each data point
√

var[yi] given207

by the KF. If the synthetic data are fitted with the true model, one expects to find a white-noise208

process for the residuals. Plots of the autocorrelation function of both signal components confirm209

our expectation (Fig. 3e). The estimated autocorrelation vanishes after one multiple of the lag210

time (the sampling interval), which means that the residuals are indeed a white-noise process.211

Estimating the residuals from RE would lead to correlated residuals Moffatt (2007), which is one212

reason for less precise parameter estimates.213

cPCF versus patch clamp only214

To evaluate the advantage of cPCF data Biskup et al. (2007) with respect to PC data only (Fig. 4),215

we compare different types of ligands: Idealized ligands with brightness �b, emitting light only216

when bound to the channels, and ’real’ ligands which also produce background fluorescence when217

diffusing in the bath solution (Appendix 3). The increased precision for the dissociation rate of the218

first ligand, k2,1, is that strong that the variance of the posterior ℙ(k2,1, k3,2) nearly vanishes in the219

combined plot with the current data (nearly all probability mass is concentrated in a single point220

in Fig. 4a). The effect on the error of the equilibrium constants Ki is less strong. Additionally, the221

bias is reduced and even the estimation of Nch is improved. The brighter the ligands are, the222

more the posterior of the rates decorrelates, in particular ℙ(k2,1, k3,2) (Fig. 4a). All median estimates223

of nine different cPCF data sets (Fig. 4b) differ by less than a factor 1.1 from the true parameter224

except k3,2, which does not profit as much from the fluorescence data as k2,1 (Fig. 4c). The 95th225

percentiles, l95 of ℙ(k2,1) and ℙ(K1) follow l95 ∼ 1∕
√

�b. Thus, with increasing magnitude of ligand226

brightness �, the estimation of k2,1 becomes increasingly better compared to that of k3,2 (Fig. 4c).227

The posterior of the binding and unbinding rates of the first ligand contracts with increasing �b. The228

l95 percentiles of other parameters exhibit a weaker dependency on the brightness (l95 ∼ �−0.1). For229

�b = 0.01 photons per bound ligand and frame, which corresponds to amaximummean signal of 20230

photons per frame, the normal approximation to the Poisson noise hardly captures the asymmetry231

of photon counting noise included in the time traces. Nevertheless, l95 decreases about ten times232

when cPCF data are included (Fig. 4c). The estimated variance of ri for PC or cPCF data is �2(ri) ≈ 1233

(Fig. 4d) whichmeans that themodeling predicts the stochastic process correctly up to the variance234

of the signal. Note that the mean value and covariance of the signal and the state form sufficient235

statistics of the process, since all involved distributions are approximately multivariate normal.236

The fat tails and skewness of ℙ(k21) and ℙ(k12) arises because the true model is too flexible for237

current data without further pior information. Nevertheless, we show that for similar data sets the238

true underlying process can still be determined (Fig. 6g and Fig. 7b). Remarkably, the KF allows to239

determine in a macropatch the variance of the open-channel current noise for �op = 0.1i, i.e. when240

the total noise is dominated by the much larger gating noise (HPtH⊤)2,2 (Fig. 4e): For the saturating241

ligand concentration po,max = 0.833, i.e. the expected open probability of the true process, the ratio242

at equilibrium is243

(HPtH⊤)2,2
�2op

≈
1 − po,max
�2op

≥ 20. (11)

Including theoretical limits and vague parameter knowledge into the analysis with244

different priors245

One advantage of Bayesian statistics is that with prior distributions, one can account for partial246

knowledge about parameters and their uncertainties. While it is straightforward to use the pos-247

terior of a previous experiment as a prior for the data set, it is less obvious how to model notion248

of the plausible magnitude of a parameter into a prior. Here we propose some usable options for249
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Figure 6. Model selection by the second moment of the residuals and by continuous model expansion. a-d, Model structures of the
trained models differing from the true process (c.f. Fig. 1a). Red states and transitions have no counterpart in the true model. All models are
nested in the most complex modelM5 (d). e, Time traces of residuals r of cPCF data from KF-fits for current data (blue) and fluorescence data
(red) at two ligand concentrations L for the incorrect modelM2. Left: Jump to the ligand concentration. Right: Jump to zero. Systematic
deviations from zero suggest that modelM2 is too simple. f, Second non-centralized moment of the residuals for all models. For the true model
the second non-centralized moment becomes the variance with var[ri] = 1 because E[ri] = 0. The inset shows the second non-centralized
moment of PC data for the five different models on a linear scale. While underfitting can be clearly detected, overfitting is not detected. cPCF
Data increase the contrast of current residuals between underfitting and true process by ≈ 12.5. g-j, Continuous model expansion by modelM4
andM5 from c,d. g, Posterior distribution ℙ(k2,5) for a rate into a state which does not exist in the true process obtained by the KF. For current
data only, 10 out of 10 data sets maximise the probability density for k2,5 → 0. For cPCF data, 9 out of 10 data sets yielded the same result and
only one data set has a finite maximum. Hence, the KF suggests to delete O5. h, Same current data (blue) analyzed with a RE approach finds in 4
out of 7 data sets rates into the non-existing state. Adding fluorescence data (red) improves the analysis. Now in 8 out of 10 data sets the
posterior is maximized for k2,5 = 0. i,j. The KF for various PC and cPCF data sets reducesM5 to the true data-generating processMtrue for most
data sets by maximizing the posterior for a zero rate into O5. For current only data 4 out of 7 data sets show this behavior. For cPCF 9 out 10
data sets maximise ℙ(k2,5) for k2,5 → 0 and ℙ(k4,5) for k4,5 → 0. AcrossM4 andM5 (g and i) the posteriors ℙ(k2,5) show a similar shape. j, For cPCF
data there is no probability mass for k4,5 > 10. Hence, for k4,5 cPCF data constrain closer to zero then PC data but k2,5 it is reverse. The dashed
red lines belong to the same cPCF data but with a weakly informative halfnormal prior k5,2 ∼ halfnormal(0, 6 ⋅ 103) for one specific rate which we
identified to be not confined by the data. This prior also reduces the magnitude of the peak in k4,5 and thus suggests omitting state O5.
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prior distributions for k1,2 that are related to themaximumentropy principle using diffusion limited250

binding as example.251

Binding can not be faster than molecular encounters due to diffusion Smoluchowski (1918). For252

the first binding step we used an approximation for small ligand receptor interactions van Holde253

(2002)kbinding = 600�M−1s−1. Thus, for two available binding sites the stoichiometry increases the254

upper limit to k1,2 = 1, 200�M−1s−1. Here we investigate priors with different information content255

to model the a priori plausibility for k1,2 by making use of the mentioned diffusion limit. Traditional256

Bayesian or frequentist approaches, using uniform priors u(l) = 1
l
if k1,2 ∈ [0, l], perform well for257

the “strong data case”. A uniform prior is a maximum entropy distribution under the condition258

that the only information available about the unknown rate is the interval of possible values, i.e.259

their support. A maximum entropy distribution adds the least information (is the most conserva-260

tive assumption) to the posterior apart from the explicitly used conditions, which is in this case the261

support Jaynes (1957). In the strong data context, the posterior is dominated by the likelihood and262

the influence of the prior information is minor van der Vaart (1998). In contrast, for modeling situa-263

tions with weakly informative data (Fig. 5 a) an educated prior selection influences the posterior to264

centre around the true values. For instance, the PC data are not informative enough to make the265

likelihood of k1,2 contract in a small neighbourhood around the true value (see Fig. 4). Due to the266

uniform prior the corresponding posterior behaves accordingly (Fig. 5 a). The data are only weakly267

informative because larger k1,2 can be partially compensated for by a larger k2,1 and a smaller k3,2268

(Fig. 5 c). Nevertheless, all probability mass of ℙ(k1,2) above the diffusion limit of binding (Fig. 5 a) is269

physically impossible, though plausibly given by the data, since the rates k1,2 and k2,3 are diffusion-270

limited or slower. Note that the estimated 15th-percentile is at k̃1,2 = 1.47 such that more than 85%271

of the probability mass lies in a physically impossible area.272

The situation can be improved by supplying more plausible information about k1,2 using an expo-273

nential distribution274

ℙ(k1,2) = � ⋅ exp(−�k1,2). (12)

The parameter � refers to the parameter which scales the statistics, E[k1,2] = 1∕� and var[k1,2] = 1∕� 2.275

Notably, the exponential distribution is a maximum entropy distribution if two conditions are met276

McElreath (2018). The parameter has to be positive and the mean of the parameter is known. On277

the one side the exponential prior succeeds in penalizing the heavy tails of the likelihood (Fig. 5 b).278

On the other side, even if we apply an exponential prior whose mean value is four times smaller279

than the true binding rates, the posterior (black) is still more concentrated around the true value280

than the posterior with the uniform prior.281

Nevertheless, the exponential distribution is not well suited for our problem because it does not282

incorporate a hard upper limit. Even with the exponential prior, there is always some probability283

mass in areas which are physically impossible and, additionally, the exponential prior does not284

include that the response of the ion channel proceeds in a limited amount of time which means285

that k1,2 and k2,3 cannot be arbitrarily small. Thus it is unlikely that the true k1,2, k2,3 are by orders286

of magnitude slower than the diffusion limit. In fact, the exponential prior states the opposite:287

binding rates have the highest probability density at zero.288

The beta distribution289

be(a, b) 1
B(a, b)

�a−1(1 − �)b−1, (13)

where B(⋅, ⋅) defines the beta function, is a maximum entropy distribution derived from three con-290

ditions: that the support is �1,2 ∈ [0, 1], that291

E[ln(�1,2)] = Ψ(a) − Ψ(a + b) (14)

and that292

E[ln(1 − �1,2)] = Ψ(b) − Ψ(a + b), (15)

where Ψ(⋅) symbolizes the digamma function. Since rescaling k1,2 = l�1,2 by l adds only a constant293

term to the entropy and the entropy is translation invariant, we remain in the maximum entropy294
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Figure 7. Bayesian Model selection Compared is the predictive accuracy of the indicated five models estimated by either the Akaike
Information Criterion (AIC), the Widely Applicable Information Criterion (WAIC), Bayesian cross-validation (BC) or Maximum a posteriori
cross-validation (MPC). We use BC on a single validation data set as an estimator of the predictive accuracy and evaluate the other criteria how
they approximate BC. The solid lines represent the mean quality of the estimators over different data sets (crosses). a, Both information criteria
fail to approximate the predictive accuracy if current-only data are modeled with deterministic REs. WAIC approximates the predictive accuracy
better than AIC, though both information criteria suggest too complex models. Cross-validation (black and green) reveals the correct kinetic
scheme. b, For current data analyzed with the KF, WAIC estimates the predictive accuracy obtained by Bayesian cross-validation (black) with high
accuracy while AIC fails. WAIC predicts the BC value even better than MPC. c, Including the fluorescence, the difference in the predictive accuracy
of the true model to the under-complex models increases strongly and all methods identify the right kinetic scheme. At the same time, the
posterior has become multivariate normal by adding the second dimension to the data. Instead of an almost constant region in b for model
Mtrue toM5, there is a unique peak for modelMtrue. To identify this peak, we only needed to score the models by the data on the activation part
of the time series. This is consistent with the observation of Fig. 6 f that the estimation of the decaying part of the fluorescence is very
susceptible to overfitting. The residuals in the decaying part of the fluorescence data are smaller which results in a higher probability of those
data points if fitted withM4 orM5. We did not observe this result in PC data. Note that ligand association happens over different trajectories in
the observation space but ligand dissociation relaxes after a quick transition of a few data points onto a single trajectory (Fig. 2b). There is less
diverse information about the deactivation about the rates. The inset shows a part of the diagram at an extended ordinate.

setting for every set of a, b, l. Therefore, we use the beta distribution to model the prior plausibility295

of k1,2 ∈ [0, l] by setting hard constraints: positive but smaller than l. We then distribute the prob-296

ability mass with respect to the vague idea of where to expect the binding rate within this interval.297

Thereby, we implicitly assume the conditions from above. k̃1,2 ∶= k1,2∕1, 800 ⋅ s�M ∼ beta(4, 2) con-298

strains the posterior such that k1,2 cannot be larger than 1800 ⋅ s−1�M−1 and we expect k1,2 to be299

between 700 ⋅ s−1�M−1 and 1, 700 ⋅ s−1�M−1. Even though this beta prior (Fig. 5 b) is an informative300

prior, a lot of the information derives from the support of the beta distribution as revealed by com-301

parison for k̃1,2 < 0.9with the posterior obtainedwith the uniformprior having the same support. In302

this unconstrained area the data are really informative. In contrast, for k̃1,2 > 1 the prior is themost303

important source of information for the posterior. For the green posterior (Fig. 5 b-c) we assume a304

little bit stricter limits and plausibility within the possible interval. k1,2∕1, 400 ⋅ s�M ∼ beta(5, 2). The305

data support the a priori plausibility assumptions by concentrating the posterior within the area306

which contains most probability mass of the prior (Fig. 5 b). Note, that for the other rates (which307

have not been constrained by an informative prior), the beta prior for k1,2 improves their parameter308

inference by concentrating the posterior (Fig. 5 c) around the true values. That effect is strongest309

for k2,1 due to the strong correlation with k1,2 induced by the likelihood. The posterior has now310

areas in the parameter space which are strongly influenced be the shape of the beta distribution311

whereas other areas are shaped by the likelihood. Remarkably, despite some arbitrariness of the312

shape of the beta prior, it provides profit for the inference of all ligand-related rates. Furthermore,313

the restricted range speeds up sampling and thus reduces the computation time.314
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Bayesian Model selection by continuous model expansion or predictive accuracy315

We compare three methods of model selection: continuous model expansion, the statistics of r(t),316

and the predictive accuracy estimated either by cross-validation or information criteria on a set of317

candidate modelsM1,M2,Mtrue,M4,M5 (Fig. 6a-d).318

The KF enables to identify underfitting better by plotting the residuals r(t) (Fig. 6e) rather than sig-319

nal time traces because the large amplitude changes of the mean current obscures the relatively320

small amplitude of the systematic errors. The estimated second moment of r(t) is plotted for the321

different models (Fig. 6f). For the true modelMtrue the estimated second moment equals the vari-322

ance and, since we normalized the residual traces, the second non-centralized moment should be323

close to 1. In fact all variance is explained by Mtrue. Overfitting models M4 and M5 are detected324

by the decrease of the fluorescence variance in the decaying part of the traces. For PC data only,325

underfitting can be detected. But as long as the modeler looks out for the simplest model which326

does not underfit the detection of the true process is successful.327

The conceptional idea of continuous model expansion is to sample from a model structure which328

contains the true process and a lot of additional model structure whose rates are set to zero by329

the algorithm when the data quality or quantity increases. In other words one assumes a complex330

super modelM5 which includes all simpler models as a limiting case ki,j → 0. A simpler model can331

be chosen if the posterior has a distinctive maximum for ki,j = 0. Testing continuous model ex-332

pansion byM4 with the KF, the posterior for only one out of ten data sets shows a local maximum333

for k2,5 ≠ 0 (Fig. 6g). Thus, the KF switches off non-existing states for most data sets. By contrast,334

the corresponding analysis of current-only data by REs reveals a peaking posterior for k2,5 ≠ 0 in335

several cases (Fig. 6h). Additional fluorescence data reduce the occurrence of those peaks.336

If the PC or cPCF data are fitted with modelM5 by using the KF, for most data sets the rates into O5337

maximize the posterior if they vanish (Fig. 6i-j). For PC data, the posterior reveals multi-modality338

with some data sets (Fig. 6j). Hence, point estimates of the parameters are not reliable while the339

posterior ofM5 encodes all model uncertainties. Notably, this multimodality occurs also for cPCF340

data though less pronounced. Thus, both experiments share the tendency to create a finite peak341

around k4,5 = 10, indicating the false detection of an additional open state if not analyzed with cau-342

tion.343

Applying a weakly informative prior distribution supports the model determination in the contin-344

uous model expansion case. The advantage of continuous model expansion is that it reduces the345

risk of finding a local optimum on the discrete model space rather than a global optimum by trans-346

lating the model space from a discrete to continuous model space. The disadvantage of having a347

lot of possible structure in the model makes the model quickly too flexible to come to a conclusive348

posterior with a limited amount of data. Many parameter sets can fit the data roughly equally likely.349

Thus, prior distributions are needed to support the algorithm to select simpler basemodels, which350

means concentrating for certain ki,j the posterior around zero Gelman et al. (2017). To exemplify351

this, we use a weakly informative prior distribution on k5,2 (see Appendix 1) to show how prior in-352

formation alleviates model pathology due to excessive model flexibility. Heuristically, one should353

be sceptical about rates which are faster than the sampling frequency because they could gener-354

ate eigenvalues � Sakmann (2013) of the rate matrix, which are smaller than the time between355

two sampling points. Here we used a sampling frequency of 10 kHz The frequency by which the356

KF analysed the data ranged from 83.3Hz to 500Hz depending on the kinetics. The weakly infor-357

mative half-normal prior k5,2 ∼ half-normal(0, 6 ⋅ 103), which penalizes unrealistic high rates of k5,2,358

is necessary because the data are not able to constrain that rate. Applying this prior distribution359

suppresses secondary peaks and probability mass in the distribution tails of the other rates k2,5360

and k4,5. This further emphasizes to leave out O5 in the final model (Fig. i-j).361

We use this prior to argue that one loses a lot of descriptive power of a data set if one tries to be362

objective by using uniform priors in particular with unrealistic large intervals. The notion of being363

unbiased with a flat prior, where the likelihood does not dominate the prior, ends up in paradoxes364
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Zwickl and Holder (2004). A uniform prior on chemical rates leads to a non-uniform prior on the365

activation energies in the free energy landscape of the protein or any chemical reaction. Hence,366

the weakly informative prior acts as a guard against overfitting by suppressing fast rates beyond367

the experimental time resolution.368

Notably, continuousmodel expansion fits many candidate models in one attempt with the exhaus-369

tive supermodel. This technique reduces the risk of getting into an impasse in a local optimum370

in the model space. Nevertheless, one should drop from the supermodel step by step the parts371

which are switched off and then refit. Optimally, this process should be accompanied by the esti-372

mation of the predictive accuracy Gelman et al. (2014). In particular in ambiguous situations with373

either multi-modality in the posterior or no clear maximum in the probability density at ki,j = 0 the374

predictive accuracy is a well definied criterion.375

Several other statistical approaches to identify the best fitting model have been reported Vehtari376

et al. (2012); Piironen and Vehtari (2017);McElreath (2018);Wallace (2005). Those approaches bal-377

ance accuracy of the model’s predictions with its simplicity. Note, the "simplicity" of a model is378

ultimately subjective because it depends on the choice of the (formal) language in which a model379

is described. Wallace (2005) Some of them, such as Maximum evidence or BIC, Vehtari et al. (2012)380

rely on the assumption that the true data-generating process is included in the set of models to be381

tested. This is called the M−closed situation Vehtari et al. (2012). These approaches perform well382

in simulation studies Bronson et al. (2009) if one is in fact in an M−closed setting.383

Generally, when selecting a kinetic scheme for a protein, one reduces the high-dimensional con-384

tinuous dynamics of the true data-generating process F (y) to a few discrete states and transition385

rates. The true data-generating process is therefore not included in the set of models from which386

the best fitting model is chosen which is the M−open setting Vehtari and Ojanen (2012). For this387

setting we define the best fitting model as the model which loses the least information, or adds388

the least entropy, if it is used as a proxy for F (y). In this way we are able to rank all models by389

their information loss. The information loss (or the increase of entropy) incurred by approximat-390

ing one probability distribution (the true data-generating process) by another (the model) can be391

measured by the Kullback-Leibler divergenceMcElreath (2018) which is in principle not accessible.392

But the model with the minimum Kullback-Leibler divergence within a set of candidate models can393

be found asymptotically bymaximizing the predictive accuracy Burnham and Anderson (2004);Gel-394

man et al. (2014). The predictive accuracy for a specific data set ̃ = {ỹ1,… , ỹNdata}, which has not395

been used for model training Gelman et al. (2014), is defined as396

logℙpred(̃) = logE�[L(̃|�)] (16)

where E�[L(̃|�)] = ∫ L(̃|�)ℙ(�|) d�means the average with regard to the posterior distribution.397

Themean predictive accuracy of amodel for all possible data sets is the average over the unknown398

true data-generating process F (ỹ, t)399

EF [logℙpred(̃)] = ∫ logℙpred(̃)F (̃)
Ndata
∏

i=1
dỹi (17)

Maximizing Eq. 17 is equivalent to minimizing the Kullback-Leibler distance which specifies the400

information loss when approximating the unknown F (y) by a model Kullback and Leibler (1951);401

Burnham and Anderson (2004). Because F (y) is unknown, one has to estimate Eq. 17 by using the402

available samples from F (y). Therefore, different estimators of Eq. 17 are compared: AIC, WAIC,403

maximum a posteriori cross-validation and Bayesian cross-validation (see Methods). As a result, if404

current time series are modeled with REs, both information criteria fail to detect the overfitting405

model (Fig. 7a). This means, ignoring intrinsic fluctuations of macroscopic data, such as RE ap-406

proaches do, leads to the inference of more states than present in the true model if the model407

performance is evaluated by the training data. One can exploit this weakness by choosing the ki-408

netic scheme on cross-validated data, since too complexmodels derived from RE do not generalise409

as good to new data as a parsimonious model. Their additional states do not contribute positively410
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to the predictive accuracy of the model.411

As expected from theory, WAIC Watanabe (2010) succeeds (Fig. 7b) while AIC fails to estimate the412

predictive accuracy distribution. It suggests a better predictive accuracy with more complexmodel413

structures (Fig. 7b). The failing AIC correlates with the occurrence of a non-normal posterior dis-414

tribution Watanabe (2007)(see, Methods). The mean predictive accuracy of WAIC and BC (black415

and red) for M4 and M5 is only slightly smaller than that for Mtrue which can be explained by the416

observation that the KF automatically finds a sharp peak at ℙ(k2,5 = 0) (Fig. 6g-j). This can be used417

as a model selection strategy: If two models have a similar predictive accuracy and are nested one418

should check whether the posterior of the larger model switches off certain rates. The predictive419

accuracy not only scores a kinetic scheme. It also evaluates how closely the whole algorithm mim-420

ics the true process. Comparing the predictive accuracy of the true kinetic schemeMtrue in (Fig. 7a421

and b) reveals the higher precision of the KF in modeling the intrinsic noise compared to the RE ap-422

proach. For multidimensional cPCF data all methods yield similar predictive accuracies and select423

the true data-generating process (Fig. 7c), as a unique peak for the true process is observed for all424

data sets.425

Conclusion426

We derived the prediction (Methods Eq. 33 and 34d), the output statistics (Methods Eq. 53) and427

correction equations (Appendix 4) of the KF for analyzing the gating and binding dynamics of ion428

channels including open-channel noise, photon-counting noise and background noise. For the429

correct kinetic scheme the parameter estimates obtained by the KF are ∼ 10 times as good when430

applied to the same data set (Fig. 3b,e). Furthermore, enriching the data by fluorescence based431

ligand binding increases the accuracy of the parameter estimates up to ∼ 102-fold (Fig. 4a,c). In432

the case of weakly informative data we show the superiority of informative priors to constrain the433

posterior to physically reasonable values. In this case the interaction between data and the prior434

information enables a much more meaningful model inference (Fig. 5a-d) compared to using flat435

priors. Moreover, we showed that overfitting can be detected by continuous model expansion436

(Fig. 6g-i). Usually the KF maximizes its posterior by abolishing a rate into an non-existing state.437

This is not the case if the current time traces are analyzed by REs (Fig. 6h). The potential weakly438

informative prior on one critical rate which increases the accuracy of continuous model expansion439

approach (Fig. 6i-j). We demonstrated that the information criterion WAIC performs much better440

in approximating the predictive accuracy than traditional information criteria based on point esti-441

mates such as AIC (Fig. 7b). We are even able to predict the correct kinetic network in cases were442

the data are insufficient for creating a multivariate normal posterior (Fig. 7b). Another relevant443

aspect is that both information criteria fail to predict the true kinetic scheme if the data are ana-444

lyzed by deterministic REs (Fig. 7a). To select a model, one should apply WAIC and BC to multiple445

data sets, considering their dependency on noisy data. For the RE approach, only cross-validation446

revealed the true data-generating process. Model selection of kinetic schemes should not be done447

on training data if the analysis has been done by REs. For cPCF data we could detect the true ki-448

netic scheme with the second moment of the residuals. For the true model the empirical r(t) are449

close to the expected variance var(r) = 1 and overfitting is revealed distinctively by the variance450

of the fluorescence signal (Fig. 6f) given the noise sources are quantitatively described. Together451

this demonstrates the potential of a full Bayesian treatment of the state estimation, parameter es-452

timation and model selection. This approach maximises the amount of information infered from453

stochastic time-courses. While developed for PC/cPCF data our approach is applicable to all time454

courses where the intrinsic noise of the studied system is governed by a first order kinetic scheme455

and the measuring apparatus can be quantitatively described.456
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Materials457

The state evolution s(t) of each individual channel in the patch was sampled with the Gillespie458

algorithm. Gillespie Daniel T. (1977) Then, traces were summed up, defining the ensemble state459

vector n(t) ∶= (n1, n2, n3, n4)⊤, which counts the number of channels in each state.460

Methods461

In the Methods section we derive the equations for our Bayesian network for time series analysis462

of ion channels which are applicable for all linear chemical reaction networks (kinetic schemes). A463

detailed description of the experimental noise is provided in Appendix.464

The relation of Bayesian statistics to the Kalman filter465

The following conventions are generally used: Bold symbols are used for multi-dimensional ob-466

jects such as vectors or matrices. Calligraphic letters are used for (some) vectorial time series467

and double-strike letters are used for probabilities and probability densities. Within the Bayesian468

paradigmHines (2015);Ball (2016), each unknownquantity, includingmodel parameters � and time469

series of occupancies of hidden statesNT = {n(ti)}Ti=1, are treated as random variables conditioned470

on observed time series data T = {y(ti)}Ti=1. The prior ℙ(�) =
∏Npar

j ℙ(�j) or posterior distribution471

ℙ(�|T ) encodes the available information about the parameter values before and after analysing472

the data, respectively. According to the Bayesian theorem the posterior distribution473

ℙ(�|T ) =
1

Z(T )
L(T |�)

Npar
∏

j
ℙ(�j) (18)

is a probability distribution of a parameter set � conditioned onT . The likelihood L(T |�) encodes474

the distribution of the data by modelling the intrinsic fluctuations of the protein as well as noise475

coming from the experimental devices. The prior provides either assumptions before measuring476

data or what has been learnt fromprevious experiments about � (seeMethods). The normalization477

constant478

Z(T ) = ∫ L(T |�)ℙ(�)d� (19)

ensures that the posterior is a normalized distribution. The KF is a special class of models in the479

family of Bayesian networks Ghahramani (1997), which is a generalisation of the classical KF. Due480

to its linear time evolution (Eq. 1) the KF is particularly useful for modeling time series data of481

ensembles dynamics of first order chemical networks. It delivers a set of recursive algebraic equa-482

tions (Methods Eq. 28 and Eq. 32) for each time point, which allows to express the prior ℙ(n(t)|t−1)483

and (after incorporating y(t)) the posterior ℙ(n(t)|t) occupancies of hidden states n(t) for all t given484

a set of parameters �. This means the KF solves the filtering problem (inference ofNT ) by explicitly485

modeling the time evolution of n(t) by multivariate normal distributions. This allows us to replace486

L(T |�) of Eq. 18 by the expression of Eq. 8.487

The Bayesian framework (as demonstrated in this article) has various properties which makes it488

superior to maximum likelihood estimation (MLE)McElreath (2018). Those properties are in partic-489

ular useful for the analysis of biophysical data since very often the dynamics of interest are hidden490

or latent in the data. Models with a hidden structure are called singular. Consider for example491

the type of data investigated in this study which probes the protein dynamics by current and light.492

Singularity means that the Fisher information matrix of a model is not invertible leading to the493

breakdown of the Cramer-Roa Bound theorem. Due to the breakdown, it cannot be guaranteed494

that even in the asymptotic limit the log-likelihood function can be approximated by a quadratic495

form Watanabe (2007). Thus, usually the MLE is not normally distributed. Consequently, the pos-496

terior distribution is usually not a normal distribution eitherWatanabe (2007).497

Using the full posterior distribution without further approximations detects the resulting problems498

such as deviation from normality or non-identifiability of parameters, related to the singularity. In499
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conclusion, the posterior is still a valid representation of parameter plausibility while maximum500

likelihood fails.501

Time evolution of a Markov Model for a single channel502

In the following, we write the time t as function argument rather than a subscript. Following stan-503

dard approaches, we attribute to each state of theMarkovmodel an element of a vector space with504

dimensionM . At a time, a channel can only be in a single state. This implies that the set of possible505

states is S := {(1, 0, 0,…), (0, 1, 0,…), … , (… , 0, 1)} ⊂ {0, 1}M . In the following, Greek subscripts refer506

to different states while Latin subscripts refer to different channels. By s(t) = e� we specify that507

the channel is in state � at time t. Mathematically, e� stands for the �-th canonical unit Cartesian508

vector.509

Assuming that the state transitions can bemodeled by a first order Markov process, the path prob-510

ability can be decomposed as the product of conditional probabilities as follows:511

ℙ(path) = ℙ(s(0), s(1),… , s(T )) = ℙ(s(0)) ⋅ ℙ(s(1) ∣ s(0)) ⋅ ℙ(s(2) ∣ s(1))⋯ℙ(s(T ) ∣ s(T − 1)). (20)

Markov models (MMs) and rate models are widely used for modeling molecular kinetics (Appendix512

Sec. 2). They provide an interpretation of the data in terms of a set of conformational states and the513

transition rates between these states. For exactness it remains indispensable tomodel the dynam-514

ics with a HMMs Noé et al. (2013a). The core of a hidden Markov model is a conventional Markov515

model, which is supplemented with a an additional observation model. We will therefore first fo-516

cus on a conventional Markov model. State-to-state transitions can be equivalently described with517

a transition matrix T in discrete time or with a rate matrix K in continuous time, as follows:518

T�,� ∶= ℙ(s(t + 1) = e� ∣ s(t) = e�) = exp(K ⋅ Δt)�,� , (21)

where exp is thematrix exponential. We aim to infer the elements of the ratematrixK, constituting519

a kinetic model or reaction network of the channel. Realizations of sequences of states can be520

produced by the Doob-Gillespie algorithm Gillespie Daniel T. (1977). To derive succinct equations521

for the stochastic dynamics of a system, is it beneficial to consider the time propagation of an522

ensemble of virtual system copies. This allows to ascribe a probability vector p(t) to the system, in523

which each element p�(t) is the probability to find the system at t in state �. One can interpret the524

probability vector p as the instantaneous expectation value of the state vector s.525

p(t) = E(s(t)) (22)

The probability vector obeys the discrete-time Master equation526

p(t + 1) = Tp(t)E(s(t + 1)) = TE(s(t)) (23)

Time evolution of an ensemble of identical non-interacting channels527

We model the experimentally observed system as a collection of non-interacting channels. A sin-528

gle channel can be modeled with a first-order MM. The same applies to the ensemble of non-529

interacting channels. We focus onmodeling the time course of extensivemacroscopic observables530

such as the mean current and fluorescence signals as well as their fluctuations. A central quantity531

is the vector n(t) which is the occupancy of the channel states at time t:532

n(t) =
Nch
∑

i=1
si(t) (24)

This quantity, like s(t), is a random variate. Unlike s(t), its domain is not confined to canonical unit533

vectors but to n ∈ ℕM . From the linearity of Eq. 24 in the channel dimension and from the single-534

channel CME Eq. 23 one can immediately derive the equation for the time evolution of the mean535

occupancy n(t) = E[n(t)]:536

n�(t + 1) =
∑

�
T�,�n�(t) (25)
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Symbol Meaning
� set of all unknown model parameters for which the posterior distribution is sampled
n(t) hidden ensemble occupancy vector of channel states in a specific patch at time t which is a continuous

Markov state vector n(t) ∈ ℝM

P(t) variance-covariance matrix of a hidden ensemble state n(t) in a specific patch at time t which contains
the dispersion of the ensemble and the lacking knowledge of the algorithm about the true n(t)

T transition matrix of a single channel
K rate matrix which is the logarithm of the transition matrix T = exp(KΔt)
H observation matrix which projects the hidden ensemble state vector onto its mean signal.
s single-molecule Markov state vector
ki,j specific transition rate from state j to state i, [K]i,j = ki,j
Ki ratio of two transition rates i.e. an equilibrium constant
y(t) data point at time t
T time series of T data points, T = {y(ti)}Ti=1
NT time series of T hidden ensemble states, NT = {n(ti)}Ti=1
Nch,j number of channels in patch number j
i mean electrical current through a single-channel
�2m variance of the current including all noise from the patch and the recording system
�2op variance of the current noise generated by a single open-channel
�b mean brightness of a bound ligand
�Fl mean brightness of the fluorescence signal from bulk and bound ligands
�2bulk variance of the fluorescence generated by unbound ligands after subtraction of the image obtained

for the reference dye
M number of single-channel states which is the dimension of n(t) ∈ ℕM in the KF algorithm
Nobs dimensions of the observational space
F () true probability density of  , i.e. the true data-generating process
L(|�) likelihood function of the model parameters
ℙ(�|) posterior distribution of the model parameters
ℙpred(̃|) predictive distribution of the new data points ̃
O(y|n) distribution of observables for a single time step
 (⋅) normal distribution
E[⋅] mean value

Table 1. Important symbols
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with the transitionmatrixT. The full distributionℙ(n(t+1)|n(t)) is a generalizedmultinomial distribu-537

tion. To understand the generalized multinomial distribution and how it can be constructed from538

the (conventional) multinomial distribution, consider the simplified case where all channels are539

assumed to be in the same state �. Already after one time step, the channels will have spread out540

over the state space. The channel distribution after one time step is parametrized by the transition541

probabilities in row number � of the single-channel transition matrix T. According to the theory542

of Markov models, the final distribution of channels originating from state � is the multinomial543

distribution544

ℙ(n(�)(t + 1) ∣ n�e�) = ℙ(n1,… , nM ∣ n(t) = n�e�) =
n�!

n1!⋯ nM !
T n11,�⋯ T nMM,� (26)

In general, the initial ensemble will not have only one but multiple occupied channel states. Be-545

cause of the independence of the channels, one can imagine each initial sub-population spreading546

out over the state space independently. Each sub-population with initial state � gives rise to its547

own final multinomial distribution that contributes n(�)� transitions into state � to the total final dis-548

tribution. The total number of channels at t + 1 in each state can then be simply found by adding549

the number of channels transitioning out of the different states �.550

n(t + 1) =
∑

�
n(�)(t + 1) (27)

Evidently, the total number of channels is conserved during propagation. The distribution of n(t+1),551

defined by Eqs. 26 and 27, is called the generalized multinomial distribution:552

n(t + 1) ∼ general−multinomial(n(t),T) (28)

While no simple expression exists for the generalized multinomial distribution, closed form ex-553

pressions for its moments can be readily derived. For large Nch each ℙ(n(�)(t + 1) ∣ n�e�) can be554

approximated by amultivariate-normal distribution such that also general−multinomial(n(t),T) has a555

multivariate-normal approximation. In the next section we combine the kinetics of channel ensem-556

bles with the KF by a moment expansion of the governing equations for the ensemble probability557

evolution.558

Moment expansion of ensemble probability evolution559

The multinomial distribution (26) has the following mean and covariance matrix560

n(�)(t + 1) = n�T∶,� (29)

561

�(�)(t + 1) = n�diag(T∶,�) − n�T∶,�,∶T⊤∶,� (30)

where T∶,� denotes the column number � of the transition matrix and diag(T∶,�) describes the diag-562

onal matrix with T;,� on its diagonal. Combining Eq. 27 with Eqs. 29 and 30 we deduce the mean563

and variance of the generalized multinomial distribution:564

E [n(t + 1) ∣ n(t)] =
∑

�
n�(t)T∶,� = Tn(t) (31)

565

cov [n(t + 1),n(t + 1) ∣ n(t)] =
∑

�
n�(t)

(

diag(T∶,�) − T∶,�T⊤∶,�
)

= diag (Tn(t)) − Tdiag (n(t))T⊤ (32)

Note that Eqs. 31 and 32 are conditional expectations that depend on the random state n at the566

previous time t and not only on the previous mean n. To find the absolute mean, the law of total567

expectation is applied to Eq. 31, giving568

n(t + 1) = E [E []n(t + 1) ∣ n(t))] = Tn(t), (33)
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in agreement with the simple derivation of Eq. 25. We introduce a shorthand P(t) ∶= cov(n(t), n(t))569

for the absolute covariance matrix of n(t + 1). Similarly, P(t) can be found by applying the law of570

total variance decompositionWeiss (2005) to Eqs. 32 and 31, giving571

P(t + 1) = E [cov (n(t + 1),n(t + 1) ∣ n(t))] + cov [E(n(t + 1) ∣ n(t)),E(n(t + 1) ∣ n(t))] (34a)
= diag

(

Tn(t)
)

− Tdiag
(

n(t)
)

T⊤ + cov(Tn(t),Tn(t)) (34b)
= diag

(

Tn(t)
)

− Tdiag
(

n(t)
)

T⊤ + Tcov(n(t), n(t))T⊤ (34c)
= diag

(

Tn(t)
)

− Tdiag
(

n(t)
)

T⊤ + TP(t)T⊤ (34d)

where we have introduced the shorthand P(t) = cov(n(t), n(t)) in the last line. Eqs. 33, 34d are572

compact analytical expressions for the mean and the covariance matrix of the occupancy vector n573

at t + 1 that depend on the mean n and covariance matrix P at the previous time step t. Chaining574

these equations for different time steps t = 0, … , T allows to model the whole evolution of a575

channel ensemble. Moreover, these two equations together with the output statistics of O(y|n(t))576

are sufficient to formulate correction equations of the KF Moffatt (2007); Anderson and Moore577

(2012)(see Appendix 4). These equations will be used in a Bayesian context to sample the posterior578

distribution of the model parameters. The sampling entails repeated numerical evaluation of the579

model likelihood. Therefore, analytical equations for the ensemble evolution that can be quickly580

evaluated on a computer millions of times are indispensable. This was achieved by deriving Eqs.581

33, 34d. Comparing Eq. 34d with the KF prediction equation Anderson and Moore (2012) for P(t)582

we obtain the state-dependent covariance matrix of Eq. 2 as583

Q(T,n(t)) = diag
(

Tn(t)
)

− Tdiag
(

n(t)
)

T⊤ (35)

584

In the following section on properties of measured data and the KF, we no longer need to refer585

to the random variate n(t). All subsequent equations can be formulated by only using the mean586

hidden state n(t) and the variance-covariance matrix of the hidden state P(t). We therefore drop587

the overbar in n(t) so that the symbol n(t) refers from now on to the mean hidden state.588

Modeling simultaneous measurement of current and fluorescence589

In the following, we develop a model for the conditional observation distribution O(y|n(t)), (Ap-590

pendix 3) for experimental details. Together with the hidden ensemble dynamics this will enable591

us to derive the output statistics of the KF (see, below). Let y(t) be the vector of all observations at592

t. Components of the vector are the ion current and fluorescence intensity.593

y(t) =
(

fluorescence intensity(t)
ion current(t)

)

=

(

yf lu(t)
ycurr(t)

)

(36)

As outlined in the introduction part, in Eq. 3 wemodel the observation by using a conditional prob-594

ability distribution O(y(t)|n(t)) that only depends on the mean hidden state n(t), as well as on fixed595

channel and other measurement parameters. O(y(t)|n(t)) is modeled as a multivariate normal dis-596

tribution with mean Hn(t) and variance-covariance matrix �(t), that can in general depend on the597

mean state vector n(t) (much like the covariance matrix of the kinetics in Eq. 34d). The observation598

matrix H ∈ ℝNobs×M projects the hidden state vector n(t) onto Hn(t) ∈ ℝNobs , the observation space.599

The observation distribution is600

O(y(t)|n(t)) =
(

y(t)|Hn(t),�(n(t))
)

⇔ y(t) = Hn(t) + �(t). (37)

This measurement model is very flexible and allows to include different types of signals and er-601

ror sources arising from both the molecules and the instruments. A summary of the signals and602

sources of measurement error and their contributions to the parameters ofO(y(t)|n(t)) is provided603

by Tab. 2. Below we address the two types of signals and four noise sources one by one. For604

21 of 41

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.04.27.029207doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.27.029207
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manuscript submitted to eLife

ion current fluorescence
current signal measurement noise fluorescence signal background fluo-

rescence
signaling states open state - ligand-bound states -
error term open-channel noise measurement noise photon counts bulk noise
affected signal current current fluorescence fluorescence
distribution normal(in4, �2opn4) normal(0, �2m) Poisson(�bni(t)) scaled Skellam
contribution to H H2,4 = i - H1,∶ = (0, �b, 2�b, 2�b) -
contribution to � Σ2,2 = �2opn4(t) Σ2,2 = �2m Σ1,1 = (0, �b, 2�b, 2�b)n(t) Σ1,1 = �2back

Table 2. Summary of signals and noise sources for the exemplary CCCO model with the closed states � = 1, 2, 3 and the open state � = 4. The
observed space is two-dimensional with yF l = fluorescence and yI = ion current. The fluorescence signal is assumed to be derived from the
difference of two spectrally different Poisson distributed fluorescent signals. That procedure results in scaled Skellam distribution of the noise.

this we decompose the observation matrix and the observation noise covariance matrix into the605

individual terms:606

H = HI +Hbinding (38)

�(t) = �open(t) + �meas. + �binding(t) + �back (39)

In the following, we report the individual matrices for the exemplary CCCO model with one open607

state � = 4 and three closed states � = 1, 2, 3. Matrices can be constructed analogously for the608

other models. For the definition of �back refer to (Appendix 3).609

Macroscopic current and open-channel noise610

We model the current and the intrinsic fluctuations of the open-channel state s = e4 (the open611

channel noise) by a state-dependent normal distribution with mean in4(t) where n4(t) is the number612

of channels in the open state at t and i is the single-channel current. The additional variance of613

the single-channel current is described by �2open. The sum of the instrumental noise of the experi-614

mental setup and the open channel noise is modeled as uncorrelated (white) normally distributed615

noise with the mean E[�I (t)] = 0 and variance E[�2I (t)] = �2opn4(t) + �
2
m. By making the open-channel616

noise dependent on the hidden state population n4(t), we fully take advantage of the flexibility of617

Bayesian networks which admits an (explicitly or implicitly) time-dependent observationmodel. By618

tabulating the parameters of the two normal distributions into H and �, we obtain619

HI ∶=

(

0 0 0 0
0 0 0 i

)

(40)

620

�open(t) + �meas. ∶=
(

0 0
0 �2opn4(t) + �

2
m

)

(41)

One can now ask for the variance of a data point y(t) given the epistemic and aleatory uncertainty621

of n(t) encoded by P(t) in Eq. 34d. By using the law of total variance the signal variance follows as:622

var(y(t)) = E[var[y(t)|n(t)]] + var[E[y(t)|n(t)]] (42a)
= E[�2opn4(t) + �

2
m] + var[HIn(t)] (42b)

= �2opE[n4(t)] + �
2
m + (HIP(t)H⊤

I )2,2 (42c)

See, Appendix Sec. 4.1 for further details.623
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Fluorescence and photon-counting noise624

The statistics of photon counts in the fluorescence signal are described by a Poisson distribution625

with emission rate �Fl626

yFl(t) ∼ pois(�Fl(t)). (43)

The total emission rate �Fl can be modeled as a weighted sum of the specific emission rates �b627

of each ligand class {0, 1, 2}. The weights are given by the stoichiometric factors which reflect the628

number of bound ligands. In order to cast the Poisson distribution into the functional form of the629

observation model (Eq. 37), we invoke the central limit theorem to approximate630

yFl ∼ pois(�Fl) ≈ (�Fl(t), �Fl(t)) (44)

The larger �Fl the better is the approximation. We assume, that the confocal volume is equally631

illuminated. For our model of ligand fluorescence, we assume for a moment that there is no signal632

coming from ligands in the bulk. We will drop this assumption in the next section. With these633

assumptions, we arrive at the following observation matrix634

Hbinding ∶=

(

0 �b 2�b 2�b
0 0 0 0

)

(45)

The matrix H aggregates the states into two conductivity classes: non-conducting and conducting635

and three different fluorescence classes. The first element (Hn)1 is the mean fluorescence �Fl(t) =636

�b[n2(t) + 2(n3(t) + n4(t))]. The variance-covariance matrix �binding can be derived along the same lines637

using Eq. 44. We find638

�binding(t) ∶=
(

(Hn(t))1 0
0 0

)

(46)

Under these assumptions the observation matrix can be written as follows639

H ∶=
(

0 �b 2�b 2�b
0 0 0 i

)

(47)

Output statistics of a Kalman Filter with two-dimensional state-dependent noise640

Now simultaneously measured current and fluorescence data y ∈ ℝ2, obtained by cPCF, are mod-641

eled. Thus, the observation matrix fulfills H ∈ ℝ2×M . One can formulate the observation distribu-642

tion as643

y(t) = Hn(t) + �m(t) +
(

�pois(t)
�op(t)

)

⇔ y ∼ (Hn(t),�(t)). (48)

The vector �m denotes the experimental noise, with E[�m] = 0 and variance given by the diago-644

nal matrix �meas + �back . The second noise term arises from Poisson-distributed photon counting645

statistics and the open-channel noise. It has the properties646

E

[(

�pois(t)
�op(t)

)]

= 0 (49)

and647

cov

((

�pois(t)
�op(t)

)

,

(

�pois(t)
�op(t)

))

= �open(t) + �binding(t) (50)

. Thematrix � is a diagonal matrix. To derive the covariancematrix cov(y(t))we need to additionally648

calculate var(yf luo(t)) and cov(yf luo(t), ypatch(t)). By the same arguments as above we get649

var[yf luo(t)] = E[var(y(t)|n(t))] + var[E(y(t)|n(t)] (51a)
= E[�2back + (Hn(t))1] + var(Hn(t)) (51b)
= �2back + (Hn(t))1 + (HP(t))H

⊤)1,1 (51c)
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The cross terms can be calculated by using the law of total covariance650

cov(ypatch, yf luo) = E[cov(ypatch, yf luo|n)] + cov(E(ypatch|n),E(yf luo|n)) (52a)
= 0 + cov(H2,∶n,H1,∶n) (52b)
= H2,∶ cov(n,n)H⊤

1,∶ = H2,∶P(t)H⊤
1,∶ (52c)

yielding the matrix651

cov(y, y) = HP(t)H⊤ + �(t) (53)

We assumed that the Poisson distribution is well captured by the normal approximation. In cPCF652

data the ligand binding to only a sub-ensemble of the channels is monitored, which we assume653

to represent the conducting ensemble such that Nch,FL = Nch,I. For real data further refinement654

might be necessary to model the randomness of the sub-ensemble in the summed voxels. With655

the time evolution equations for the mean (Eq. 31) and for the covariance matrix (Eq. 34d) as well656

as with the expressions for the signal variance we possess all parameters that are needed in the657

correction equation of the KFKalman (1960); Anderson and Moore (2012).

Algorithm. Prediction Correction
Mean Covariance Mean Covariance

RE Yes No No No
KF Yes Yes Yes Yes

Table 3. Comparison of algorithms: The RE approach predicts the next mean ensemble state, estimates
probabilities of occupying a certain state by p ≈ 1

Nch
E[n(t + 1)] and constructs a likelihood by a multinomial

assumptionMilescu et al. (2005). The multinomial distribution is then approximated by a normal distribution
and the variance from the experimental noise is added. There is neither a prediction of P(t) nor any
correction step, thus the random fluctuations and the hidden structure of an ion channel ensemble of finite
size is ignored. In contrast, the KF accounts correctly for all aspects of the hidden stochastic dynamics of the
ion channels as long as all involved distributions can be approximated by multivariate normal distributions.
This is a much less restrictive assumption then assuming that the ensemble is fully determined just by its
mean value. Additionally, the KF includes the information from the data in each state estimation in an optimal
manner.

658

The correction step659

For completeness we write down the correction step of the KF though its derivation can be found660

in Chen et al. (2003); Anderson and Moore (2012);Moffatt (2007). The mean ensemble state n(t) is661

corrected by the current data point662

n(t)posterior = +n(t)prior +K
(

y(t) −Hn(t)prior
)

(54)

Where Kalman gainmatrixK ∶= P(t)priorH⊤�−1 evaluates the intrinsic noise against the experimental663

noise. How precise are my model predictions about n(t) compared with the information gained664

about n(t) by measuring y(t). The covariance P(t) of the ensemble state n(t) is corrected by665

P(t)posterior = P(t)prior −K
(

HP(t)priorH + �(t)
)

K⊤ (55)

Appendix Eq. 28 and 29 form with Methods Eq. 26 and 30 the filtering equations which summarize666

the algorithm. One initialises the first n(0) and P(0) and with an equilibrium assumption.667
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Bayesian Model selection via predictive accuracy668

The minimum of the Kullback-Leibler divergence can be found asymptotically by maximizing the669

predictive accuracy Burnham and Anderson (2004); Gelman et al. (2014) The predictive accuracy is670

defined as671

logℙpred(̃T ) ∶= logE�,post[L(̃T |�)] = log∫ L(̃T |�)ℙpost(�|T ) d� (56)

for a specific new (held-out) data set ̃T , which has not been used for training the model Gelman672

et al. (2014). Epost[⋅] denotes the average of some function found by integrating it over the poste-673

rior distribution ℙpost(�|T ). The difference betweenmaximum likelihood (or maximum a posteriori674

cross-validation, MPC) to Bayesian cross-validation in Eq. 56 is that the mentioned point estimates675

in MPC would yield a Dirac distribution ℙpost(�|T ) = �(�MLE − �) as the posterior. Doing so col-676

lapses the integral in Eq. 56 to logL(̃T |�MLE). Note, that Eq. 56 can also be used to selected the677

prior distribution for the parameters if the average is taken with respect to the prior distribution678

instead of to the posterior distribution. In our application to ion channel dynamics, we generate679

from each patch that was used for the training data at least a second hold-out time trace to validate680

themodel. Here we explicitly use the termmodel in a way that includes the observationmodel and681

is not restricted to the kinetic scheme. A model of all unknowns considered to be relevant for the682

data. Moreover, assuming the availability of multiple time traces from the same patch allows to683

avoid difficulties of applying cross-validation within one time series. Since we wish to know the pre-684

dictive performance of the model for all possible unseen data sets, we have also to average over685

the unknown true data generating process F (ỹ(t)). The objective of the experiment is then to sam-686

ple sequences of data T which are as representative as possible for F . The expected predictive687

accuracy for a full unseen set of time series of data is then688

EF [logℙpred(̃T |T )] = ∫ ⋯∫ logℙpred(̃T |T )F (̃T )
T
∏

i
dỹi (57)

Unfortunately, F (̃T ) is unknown. In practice the expectation value in Eq. 57 is approximated sum-689

ming over independent realizations generated by the experiment.690

EF [logℙpred(̃T |T )] ≈
K
∑

k=1
[logℙpred(̃

(k)
T |T )] (58)

If no independent realizations are available e.g. if experiments are expensive, the estimation canbe691

performed over the training data instead, i.e. setting ̃T = T . But this leads to an over-optimistic692

biased predictive accuracy estimateGelman et al. (2014). To compensate for that optimistic bias693

one needs to penalize the model complexityGelman et al. (2014) which is done by scores called in-694

formation criteria. The first non-Bayesian information criterion was found by Akaike Akaike (1998).695

It states that for linear models with Gaussian noise, with no hidden structures, asymptotically one696

can compensate the too optimistic bias from the training sample by subtracting the number of697

parameters dim(�) of the model698

AIC = log ℙ(T |�̂mle) − dim(�). (59)

Under those conditions AIC is asymptotically equivalent to cross-validation Stone (1977). These very699

restrictivemodel conditions are not satisfied bymodels with hidden or latent structuresWatanabe700

(2007). Thus AIC has no mathematical justification for any Biophysical data model, whose experi-701

mental base is a signal which probes some hidden dynamics. We show (Fig. 7 b), that AIC fails to702

predict the true data-generating process unless the data are strong enough to create amultivariate703

normal posterior. Recently, WatanabeWatanabe (2010) showed for muc broader class of models,704

including singular models, that asymptotically WAIC is equivalent for large data sets to Bayesian705

cross-validation Thus the predictive accuracy of the model Eq. 57 can be estimated by706

WAIC ∶= log ℙpost(T ) − pWAIC (60)

25 of 41

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.04.27.029207doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.27.029207
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manuscript submitted to eLife

Algori. Selec. Strategy
AIC WAIC MPC BC CMEXP E[r2]

REPC No No Yes Yes No No
KFPC No Yes Yes Yes Yes Yes
KFcPCF No(Yes) Yes Yes Yes Yes Yes

Table 4. Model selection strategies by estimating the predictive accuracy (columns 1-4), by continuous model
expansion (CMEXP) (column 5) and by residua r2 (column 6). The No(Yes) means that for the used example we
were successful but for AIC there is no asymptotic guarantee that it converges with large Ndata to the true
value.

The bias correction pWAIC = varpost(logℙ(|�)) is asymptotically correct even for singular models707

and reduces to the from Akaike expected dim(�) for regular normal models Gelman et al. (2014).708

We show that in order to reliably detect overfitting and determine the best generalizing model709

on the training data, it is inevitable to use the KF instead of REs, see Fig. 7 a, b. Notably, WAIC710

exploits the full posterior thusmodel selection for singularmodel should usually be donewithin the711

Bayesian framework. The obvious way to estimate Eq. 57 by Eq. 56 used through out this study as a712

reference is with hold out data. In order to decide upon a parsimoniousmodel, predictive accuracy713

methods should be combined with the continuous model expansion technique to interpret the714

cross-validation and information criteria correctly.715
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Appendix 1921

An example emphasizing the importance of weakly informative priors for
complex models
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Figure 1. a, Posterior of the rates which are not present in the true process equipped with a uniform
prior on k5,2. The uniform prior puts too much probability mass into regions (gray shaded) where one
should distrust the likelihood value due to limitations of the experiment. The likelihood cannot
confine k5,2 by the data such that the only limitation is the sampling box. b, This lack of information in
the data is true for 10 out of 10 data sets though some of the data sets show a local maximum for
k5,2 → 0. c, For k5,4 9 out of 10 data sets show a global maximum at k5,4 = 0, only the showcased data
set has significant probability mass for k5,4 > 0. Notice, that the first and second columns and rows
are displayed in kHz while the others are in Hz.
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We demonstrate the influence of prior information for the model selection by continuous
model expansion (Fig. 6 i-j). As argued in the main article, weakly informative prior distribu-
tions can support the algorithm to select simpler base models, which means concentrating
the posterior for certain ki,j around zero Gelman et al. (2017). Here we show the effect of
the halfnormal priorℙ(k5,2) for the other rates and eigenvalues. We compare now (Appendix
Fig. 1) posteriors of the rates of in modelM5 which are not present in the true process. First,
we use a prior k5,2 ∼ uniform(0, 60kHz) which places too much probability mass to high fre-
quencies, if we consider that the frequency by which the KF analysed the data ranged from
83.3Hz to 500Hz. At a first glance one might see a finite peak in ℙ(k2,5), implying that there
is a second open state which opens at a similar rate as the true opening step. Looking at
ℙ(k2,5, k5,2) one realizes that the posterior has a ridge which appears in themarginal distribu-
tionℙ(k2,5) as a peak. Most of that ridge lies in regions k5,2 > 10 kHzwhere we should distrust
the experimental data due to the noise and limited time resolution to reasonably constrain
the model. Note that the used prior places 6 times more probability mass higher then the
sampling frequency, which in case of weakly informative data is a strong statement for mag-
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nitude of k5,2 being greater than would could have been measured. As argued in the main
text that would not be an issue if the data would be informative on k5,2. Indeed, ℙ(k2,5, k5,2)
is bounded by the sampling box rather than by the data.
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Figure 2. Posterior of the eigenvalues derived from the posterior of the rate matrix. We left out the
equilibrium eigenvalue �1 = 0, since by construction of the rate matrix it is always zero. The vertical
dashed lines on the diagonal show the quantiles {0.1, 0.5, 0.9}. The posterior of the three slower
eigenvalues cover the eigenvalues of the true process. Examining �5 reveals that roughly 90% of the
probability mass belongs to eigenvalues faster than the sampling frequency. The upper limit of �5 is
only confined by the sampling box but not by the data.
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Closely related to the rate matrix is its spectrum of eigenvalues �. A kinetic scheme consist-
ing of M states has M eigenvalues. The largest one is always zero Colquhoun and Hawkes
((1995). This eigenvalue corresponds to the equilibrium solution of the chemical network
Colquhoun and Hawkes ((1995). All otherM − 1 eigenvalues are the negative inverse of the
timescales on which deviations from the equilibrium distributions decay in time Colquhoun
andHawkes ((1995). TheGershgorin-circle theorem justifies this heuristic Varga et al. (1965).
It states, that the spectrum of amatrix is inside the union of Gershgorin-circles. For amatrix
with real valued eigenvalues such as the rate matrix this statement simplifies to real valued
intervals R. For the j-th column the Gershgorin-interval Rj is

Rj = [kj,j −
M
∑

i,i≠j
kj,i, kj,j +

M
∑

i,i≠j
kj,i] (61)

We use the properties ki,j > 0, for i ≠ j and kj,j = −
∑M

i,i≠j kj,i < 0 of a rate matrix and derive

Rj = [2kj,j , 0] (62)
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Since the interval from the column with the smallest diagonal element kmin < 0 covers all
other intervals the union is

�i ∈ R = [2kmin, 0] (63)

Each eigenvalue is always larger than 2 times the smallest diagonal element but smaller
then 0.
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Figure 3. a, Posterior of the rates which are not present in the true process equipped with a weakly
informative prior k5,2 ∼ halfnormal(0, 6 kHz). Still there is much probability mass in unrealistic rate
regions (gray shaded) and one can still identify the correlated structure of ℙ(k5,2, k2,5) but the
distribution, in particular the rates into the overfitting state O5, show a distinct maximum for k → 0. b,
The posteriors for all data sets of ℙ(k5,2) show now the tendency to develop a peak for k5,2 → 0. c, All
data sets indicate that also k5,4 describes a process which is either slow beyond the time scales of the
experiment or does not exist.

986

987

988

989

990

991

992993

The unbounded rate ℙ(k5,2) creates a posterior for the eigenvalues (Appendix Fig. 2) whose
90% probability mass for �5 covers areas faster than what could have been measured. The
algorithm places most of the probability mass where it does not harm the fit. Since distur-
bances corresponding to that eigenvalue Colquhoun and Hawkes ((1995) suffered already,
a strong decay before the next data point is measured. This should raise the concern that
the model would do better without the fifth eigenvalue thus one of the fife states should
be left out. Not surprisingly, the likelihood benefits from increasing a rate which empties a
state which does not exist in the true process. The posterior of the slower time scales �4− �2
(Appendix Fig. 2) covers the true values. From Appendix Eq. 5 it is clear that there is close
correspondence between �5 and k5,2. A prior such as k5,2 ∼ halfnormal(0, 6 kHz) is still vague
but values k5,2 > 10 kHz are strongly penalized. The prior states that we only except a rate
close to the sampling rate if the data indicates it by a sharp likelihood peak which dominates
the weakly regularising prior. The effect of that prior on the posterior of rates can be seen
in (Appendix Fig. 3). ℙ(k2,5. Develops a peak for k2,5 = 0 and is much more concentrated
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close to zero. It further emphasizes that O5 is a state which should be left out (Fig. 5 i-j).
Additionally, with this weak constraint some of 10 data sets gain the tendency to develop a
maximum at ℙ(k5,2 = 0) (Appendix Fig. 3)b. As a side effect, the prior helps to sample from
the posterior in limited time because it suppresses the correlations in the high-dimensional
tails.
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Appendix 21013

Markov Models for a single ion channel1014

Markov models and rate models are widely used for modeling molecular kinetics. They pro-
vide an interpretation of the data in terms of a set of functional states and the transition
rates between these states. Markovmodels can be estimated fromexperimentally recorded
data as well as from computer simulation data. The use of Markov models with one-step
memory is supported by the concept of the molecular free energy landscape. Molecular
energy landscapes are typically characterized by conformationally well defined free-energy
minima that are separated by free-energy barriers. State transitions in molecules are ther-
mally activated barrier-crossing events on this landscape Frauenfelder et al. (1991) leading
to a rapid equilibration of the system in the vicinity of this new minimum. Memory of other
minima that have been visited in the past is not required. Regarding the wide spectrum of
time scales at which processes in a protein take place, one has to be aware that there is
typically a small number of relaxation modes with excessively long autocorrelation times
and many relaxation modes with much faster autocorrelation times. To model the slow, ex-
perimentally accessible processes, it is sufficient to retain the small number of slow modes
Noé et al. (2011). It has been shown rigorously that working with the set of slow modes is
equivalent to model the state dynamics with a small number of fuzzily defined metastable
states in the full conformational spaceDeuflhard andWeber (2005). Later it has been shown
that the set of slowmodes can be well approximated with a hiddenMarkovmodelNoé et al.
(2013b).
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Appendix 31034

The fluorescence signal of cPCF experiments1035

First four moments of a photomultiplier signal1036

In this work, the KF analysis assumes Poisson statistics for the fluorescence signal in cPCF.
Many commercial microscopes are not equipped with photon counting detectors or detec-
tors are not operated in photon-counting mode, often to due to ease of use or limitation in
dynamic range. Therefore, it is important to verify that the fluorescence signal follows, at
least approximately, Poisson counting statistics. In particular, for the KF it is assumed that
higher order statistics, such as skewness and excess kurtosis, vanish. The central assump-
tion of the derivation of our Bayesian network is that var[yf l] = E[yf l]
Here we show that this assumption for the detectors used in our system (Ch1 and Ch2, LSM
710, Carl Zeiss) under typical cPCF conditions is fulfilled by re-scaling to photon-numbers,
The measured variance obeys var[yf l] = a ⋅ E[yf l]. It depends linearly on the mean signals
(Appendix Fig. 1a).

var[y] = aE[y] (64)
var[�x] = aE[�x] (65)

�2 var[x] = a� E[x] (66)

For the scaled signal x being Poisson distributed follows � = a. Then re-scaling of the
signal by 1∕a provides approximately Poisson distributed values. A linear fit yields a =
205a.u.(16bit)∕photon (for 680 V PMT voltage, 3.26 �s pixel dwell time). Appendix Fig. 1
b,c) shows that excess kurtosis and skewness remain small at all levels of photons/pixel
but are somewhat higher than theoretically predicted for Poisson-distributed data. The
proportionalities are correctly described by the Poisson distribution assumption but the
skewness and the kurtosis are too small by a constant factor of

√

2 and 4, respectively. This
finding has to be verified for different experimental conditions, because at lower concentra-
tion/particle densities and higher count rates, particle number fluctuations can dominate
statistics Brown et al. (2008). For comparison another option would be a Gamma distribu-
tion which has the mean and the variance of E[y] = k� and var[y] = k�2, respectively. Thus,
the applied scaling requires that � = 1. The Gamma distribution has a higher skewness by
factor two (independently of �) than a Poisson distribution and overscores the skewness
and excess kurtosis of the detector. For simplicity only the Poisson distribution is consid-
ered in this work. In conclusion: Typical cPCF fluorescence signal detection rates are well
approximated by a Gamma or Poisson distribution which in turn have the desired property
that can be approximated by a normal distribution.
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1069

1070

Figure 1. Benchmark of the signal statistics for experimental solution data recorded under cPCF
conditions: The concentrations of the fluorescent ligand were 0.25, 3 and 15 �M and a reference dye
was present. The laser intensities covered 1.6 orders of magnitude at constant detection settings. The
data points were obtained from 1.4 ⋅ 106pixel. The red and blue lines indicate the theoretical
prediction for a Poisson and Gamma distribution, respectively, assuming � = 1. a, Variance vs.
average. The linear relation allows to relate the measured a.u. (top, right axis) to photons (bottom,
left axis). b, Skewness. c, Excess kurtosis. The higher moments are small but the values are slightly
larger than theoretically predicted. The insets provide a corresponding log-log plot. Important for the
KF algorithm is that skewness and excess kurtosis is small.
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Figure 2. Simulated binding signals. a, Comparison of binding of a labeled ligand at two
concentrations. A simple two-ligand binding process is simulated with the Hill equation for the two
expression levels of 1,000 or 10,000 binding sites and a BC50 of 1,000 (BC50a) or 10,000(BC50b),
respectively, given in molecules per observation unit. The observed signal is the sum of the signal
from ligands free in solution and bound to the receptors. The solution signal scales linearly with the
concentration, while the binding signal saturates. b, Relative contribution of the binding signal to the
total signal. Note that the contribution of the binding signal scales linearly with the expression level
and inversely with the BC50.
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10891090

Background noise statistics1091

In cPCF measurements with fluorescence-labeled ligands, the signals of the ligands bound
to the receptors overlap with the signals from freely diffusing fluorescence-labelled ligands
in the bulk. This bulk signal is subtracted from the total signalBiskup et al. (2007). While the
mean difference signal yf l,k(t) of the confocal voxel k represents the bound ligands in that
voxel, its noise y�,k(t)originates frombothboundandbulk ligands. The additional bulk signal,
e.g. the fraction of bulk solution inside that voxel, varies from voxel to voxel and can hardly
be described theoretically. Nevertheless, it can be determined experimentally Biskup et al.
(2007). At low expression levels or at ligand concentrations above low nano-molar levels,
this background signal is not negligible. It scales linearly with the ligand concentration, while
the signal from bound receptors depends on the affinity, as estimated by the concentration
of half maximum binding BC50, and the number of ion channels in the membrane of the
observed volume. The binding signal saturates at high concentrations (Appendix Fig. 2).
Thus, both high affinity (low BC50) and high expression reduce the relative contribution of
the background to the overall signal, improving the signal to noise ratio.
Practically, the bulk signal is estimated by counter-staining the solution with a spectrally
distinct reference dye Biskup et al. (2007). The spatial distribution of this dye mimics the
spatial distribution of the freely diffusing ligands. The bulk absolute concentration as well
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as the molecular brightness of the reference dye and the labeled ligand differ. Hence, the
binding signal is calculated as the average pixel intensity of the scaled difference image
between the signal of labeled ligand and reference dye according to

yf l,k = ylig,total − �̂lig,back − (yf l,ref − �̂ref ,back)
�̂lig − �̂lig,back
�̂ref − �̂ref ,back

, (67)

where �̂lig,back and �̂ref ,back are the arithmetic mean background signals of the ligand and ref-
erence dye recorded beyond the membrane were no signal should be recorded. They rep-
resent a signal offset which needs to be subtracted. The mean intensities in the bulk, �̂bulk
and �̂ref , are estimated outside the pipette. In order to get the correct scaling, the mean in-
tensities need to be corrected by the respective mean background signals. If �̂lig−�̂lig,back

�̂ref−�̂ref ,back
= 1

holds then yf l,bin would be Skellam distributed Hwang et al. (2007). The total signal is then
yf l =

∑

k yf l,k . This procedure createsE[y� ] = 0but adds an additional noise term �(tj). For the
general case of different intensities, we name the distribution ’scaled Skellam distributed’.
The scaling variance of the background noise in each voxel of the difference image

�2� = �lig +
�2lig
�ref

(68)

is derived from simulated data in the Appendix 3. �lig and �ref are the fluorescence intensity
from the freely diffusing ligands and reference dye molecules per voxel, respectively. �lig
and �ref are proportional to the volume fraction of the voxel, which is occupied by the bulk,
and to the respective concentrations. To achieve a symmetric ℙ(� ), one can set �lig = �ref .
The summed variance of all selected voxels can be tabulated according to

Σback =

(

�2� 0
0 0

)

(69)

To mimic an experiment which creates time series data � (t), we draw Poisson numbers for
the signal from themembrane Poisson(Hn(t)) and for the signal from the bulk we draw num-
bers from the two respective Poisson distributions. Then subtraction of the two background
signals is performed according to

ybulk = ylig,bulk − yref ,bulk
�lig,bulk
�ref ,bulk

(70)

assuming that the dark count signal has been correctly subtracted. Then we add the bulk
signal to the bound ligand signal. In this way we produce a time trace with colored noise by
the Gillespie algorithm and add white noise to time traces as it is observed in real experi-
ments.
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Deriving the moments of the background noise for the difference signal1147
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Figure 3. Master curves of 2nd till 4th centralized moment of photon counting noise � arising from
the difference signal of fluorescent ligands and the dye in the bulk. The curves are created from 4 ⋅ 105

draws from Poisson distributions with different combinations of intensities for the reference dye �ref
and of the intensity of the confocal voxel fraction �lig.

1149

1150

1151

11521153

For the KF the variance, skewness and kurtosis arising from the background noise has to be
calculated. Skewness and excess kurtosis of the distribution have to be small compared to
the total variance of the signal including all noise sources because only in this case the KF
algorithm can be considered as the optimal solution for the filtering and inference problem
Anderson and Moore (2012). In the following the 2nd to 4th moment of � are derived. The
noise intensity parameter of the reference dye �ref is proportional to �ref�bulk with V being the
confocal volume fraction containing fluorophores and �ref the density of the fluorophores
in this volume. In Appendix Fig. 3 we deduce master curves for the variance skewness and
excess kurtosis of the white noise by drawing 4 ⋅ 105 Poisson numbers from the respective
Poisson distribution and subtract them from each other according to Appendix Eq. 70. The
variance is derived empirically to be

�2�
�ref

=
�lig
�ref

+
�2lig
�2ref

. (71)

In Appendix Fig. S. 3 a, we confirm the intuition �ref → ∞ ⇒ var(� ) = �lig. Optimally, the
skewness should be zero to avoid a biased estimate of �when the data are analyzed by the
KF. Empirically, for �lig ≪ �ref the skewness holds

skew(� )
√

�ref =

√

�ref
�lig

(72)

Additionally for �lig < �ref the skewness holds

skew(� )
√

�ref ≤

√

�ref
�lig

(73)

It is zero when �ref = �lig . The KF is optimal if the kurtosis excess approaches zero, in other
words if � is distributed normally. Empirically the kurtosis holds this

kur(� )�ref ≤
�ref
�lig

(74)

for �ref ≤ �lig. The relative intensity �lig of the voxel fraction compared to the intensity �b
depends on the affinity of the ligand to the receptor, the number of receptors in the patch,
and the density of the fluorphores �lig at the patch. For larger concentrations should be
�lig∕�ref .
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Appendix 41187

Output statistics of Bayesian networks1188

Classical Kalman Filter without open-channel noise1189

Assuming that current measurements are only compromised by additive technical white
noise � but do not contain open-channel noise �op, then our noise model reduces to

y(t) = Hn(t) + �(t) ⇔ y ∼ O(y|n) = normal(Hn(t), �2m) (75)

The noise term �m has a mean of E[�m] = 0 and variance E[�2m] = �2m = const. One has to
keep in mind that we have to add an extra variance term originating from the dispersion
of channels over state space, as encoded by P(t) and n(t). The uncertainty P(t) is calculated
using Methods Eq. 30. The variance of the total output is

var(y(t), y(t)) = E[(y(t) − E[y(t)])(y(t) − E[y(t)])⊤] (76a)
= E[(y(t) −HE[n(t)])(y(t) −HE[n(t)])⊤] (76b)
= E[(Hn(t) + �(t) −HE[n(t)])(Hn(t) + �(t) −HE[n(t)])⊤] (76c)
= HE[(n(t) − E[n(t)])(n(t) − E[n(t)]T ]H⊤ + E[�(t)2] (76d)
= HP(t)H⊤ + �m (76e)

(76f)

The two cross terms E[�(t1)(n−E[n])THT ] and E[H(n−E[n])�(t1)T ] are zero since � is indepen-
dent of n and E[�m] = 0. Our derivation is equivalent to marginalization over the predicted
normal prior of the ensemble state ℙ(n(t)|t−1) at the time of the measurement except that
the prior distribution could be any probability distribution with some mean and variance.
Eq. 76 is the classical KF variance prediction of a signal. The first term in Eq. 76, describes
the variance from stochastic gating and that the ensemble state is hidden. Notably, byMeth-
ods Eq. 30 we realize that var(y(t)) contains information about T and n(t − 1), which we can
exploit with the KF framework.
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A generalized Kalman filter with state-dependent open-channel noise1210

Additional to the standard KF with only additive noiseMoffatt (2007); Anderson and Moore
(2012);Chen et al. (2003), fluctuations arising from the single-channel gating lead to a second
white-noise term �opn4(t), causing state-dependency of our noise model. The output model
is then

y(t) = Hn(t) + �m(t) + �op(t)⇔ y ∼ p(y|n) = normal(y|Hn(t), �2m + n4(t)�
2
op) (77)

The second noise term �op is defined in terms of the first two moments E(�op) = 0 and
therefore var(�op) = E(�2op) = �2opn4(t). To the best of our knowledge such a state-dependent
noise makes the following integration intractable
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1212
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1220

ℙ(y(t)) = ∫ normal(y|Hn, �2m + n4�
2
op) normal(n|n(t),P(t)) dn (78a)

= 1
const ∫

exp

(

(y −Hn)2

2(�2m + n4�2op)

)

exp
(1
2
(n − n(t))P−1(n − n(t))⊤

)

dn (78b)
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When assuming that the relative fluctuations of n(t) are small on average then n4 in the
denominator is close to E(n4) of the state. Thus the incremental likelihood can be written as
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in the standard KF, just with the difference that the measurement noise is the sum of two
components.

y(t) ∼ normal(Hn(t), �2m + �
2
opn4(t) +HPH

⊤) (79)

To see that this approximation of the variance is correct, we apply the law of total variance
decompositionWeiss (2005).

var(y(t)) = E[var[y(t)|n(t)]] + var[E[y(t)|n(t)]] (80a)
= E[Σ + �2opn4(t)] + var[Hn(t)] (80b)

= �2m + �
2
opE[n4(t)] +HP(t)H

⊤ (80c)

The terms HP(t)H⊤ + �2m are the standard output covariance matrix. Again P(t) contains in-
formation about T, n(t − 1) while the additional variance term includes information about
about the current n(t). The information in the noise enters in two ways the likelihood of the
data. By the variance or covariance of the current y(t) but also for y(t+ 1) in correction step
by the Kalman gain Kmatrix defined in the next section.
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