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Abstract. Large-scale simulations of spiking neural network models are an im-
portant tool for improving our understanding of the dynamics and ultimately the
function of brains. However, even small mammals such as mice have on the order
of 1 × 1012 synaptic connections which, in simulations, are each typically charater-
ized by at least one floating-point value. This amounts to several terabytes of data
– an unrealistic memory requirement for a single desktop machine. Large models
are therefore typically simulated on distributed supercomputers which is costly and
limits large-scale modelling to a few privileged research groups. In this work, we
describe extensions to GeNN – our Graphical Processing Unit (GPU) accelerated
spiking neural network simulator – that enable it to ‘procedurally’ generate con-
nectivity and synaptic weights ‘on the go’ as spikes are triggered, instead of storing
and retrieving them from memory. We find that GPUs are well-suited to this ap-
proach because of their raw computational power which, due to memory bandwidth
limitations, is often under-utilised when simulating spiking neural networks. We
demonstrate the value of our approach with a recent model of the Macaque visual
cortex consisting of 4.13 × 106 neurons and 24.2 × 109 synapses. Using our new
method, it can be simulated on a single GPU – a significant step forward in making
large-scale brain modelling accessible to many more researchers. Our results match
those obtained on a supercomputer and the simulation runs up to 35 % faster on a
single high-end GPU than previously on over 1000 supercomputer nodes.

1. Introduction

The brain of a mouse has around 70× 106 neurons, but this number is dwarfed by
the 1× 1012 synapses which connect them [Herculano-Houzel et al., 2006]. In computer
simulations of spiking neural networks, propagating spikes involves adding the synaptic
input from each spiking presynaptic neuron to the postsynaptic neurons. The information
describing which neurons are synaptically connected and with what weight is typically
generated before a simulation is run and stored in large arrays. For large-scale brain
models this creates high memory requirements, so that they can typically only be simu-
lated on large distributed computer systems using software such as NEST [Gewaltig and
Diesmann, 2007] or NEURON [Carnevale and Hines, 2006]. By careful design, these simu-
lators can keep the memory requirements for each node constant, even when a simulation
is distributed across thousands of nodes [Jordan et al., 2018]. However, high performance
computer (HPC) systems are bulky, expensive and consume a lot of power and are hence
typically shared resources, only accessible to a limited number of researchers and for time-
limited investigations.

Neuromorphic systems [Frenkel et al., 2018, Furber et al., 2014, Merolla et al., 2014,
Qiao et al., 2015, Schemmel et al., 2017] take inspiration from the brain and have been
developed specifically for simulating large spiking neural networks more efficiently. One
particular relevant feature of the brain is that its memory elements – the synapses – are co-
located with the computing elements – the neurons. In neuromorphic systems, this often
translates to dedicating a large proportion of each chip to memory. However, while such
on-chip memory is fast, it can only be fabricated at relatively low density so that many
of these systems economize – either by reducing the maximum number of synapses per
neuron to as few as 256 or by reducing the precision of the synaptic weights to 6 [Schemmel
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et al., 2017], 4 [Frenkel et al., 2018] or even 1 bit [Merolla et al., 2014]. This allows some
classes of spiking neural networks to be simulated very efficiently, but reducing the degree
of connectivity to fit within the constraints of current neuromorphic systems inevitably
changes the dynamics of brain simulations [van Albada et al., 2015]. Unlike most other
neuromorphic systems, the SpiNNaker [Furber et al., 2014] neuromorphic supercomputer
is fully programmable and combines large on-chip and external memories, distributed
across the system, which enables real-time simulation of large-scale models [Rhodes et al.,
2020]. This is promising for the future but, due to its prototype nature, the availability
of SpiNNaker hardware is limited and even moderately-sized simulations still require a
physically large system (9 boards for a model with around 100× 103 neurons and 300× 106

synapses [Rhodes et al., 2020]).
Modern GPUs have relatively little on-chip memory and, instead, dedicate the ma-

jority of their silicon area to arithmetic logic units. GPUs use dedicated hardware to
rapidly switch between tasks so that the latency of accessing external memory can be
‘hidden’ behind computation, as long as there is sufficient computation to be performed.
For example, the memory latency of a typical modern GPU can be completely hidden
if each CUDA core performs approximately 10 arithmetic operations per byte of data
accessed from memory. Unfortunately, propagating a spike in a spiking neural network
simulation is likely to require accessing around 8 B of memory but perform many fewer
than the required 80 instructions. This makes spike propagation highly memory bound.
Nonetheless, we have shown in previous work [Knight and Nowotny, 2018] that, as GPUs
have significantly higher total memory bandwidth than even the fastest CPU, moderately
sized models of around 100× 103 neurons and 1× 109 synapses can be simulated on a
single GPU with competitive speed and energy consumption. However, individual GPUs
do not have enough memory to simulate larger brain models and, although small numbers
of GPUs can be connected using the high-speed NVLink [NVIDIA Corporation, 2020a]
interconnect, larger GPU clusters suffer from the same communication overheads as any
other distributed HPC system.

In this work, we present a novel approach that uses the large amount of computational
power available on a GPU to reduce both memory and memory bandwidth requirements
and enable large-scale brain simulations on a single GPU workstation.

2. Results

In the following subsections, we first present two recent innovations in our GeNN simu-
lator [Yavuz et al., 2016] which enable simulations of very large models on a GPU. We then
demonstrate the power of the new features by simulating a recent model of the Macaque
visual cortex [Schmidt et al., 2018b] with 4.13× 106 neurons and 24.2× 109 synapses.

2.1. Procedural connectivity. The first crucial innovation that enables large-scale sim-
ulations on a GPU is what we call ‘procedural connectivity’. In a brain simulation, neurons
and synapses can be described by a variety of mathematical models but these are eventu-
ally all translated into time or event-driven update algorithms [Brette et al., 2007]. Our
GeNN simulator [Yavuz et al., 2016] uses code generation to convert neuron and synapse
update algorithms – described using ‘snippets’ of C-like code – into CUDA code for effi-
cient GPU simulation. Before a simulation can be run, its parameters, in particular the
state variables and the synaptic connectivity, need to be initialised. Traditionally, this
is done by running initialisation algorithms on the main CPU prior to the simulation.
The results are stored in CPU memory, uploaded to GPU memory and then used during
the simulation. We have recently extended GeNN to use code generation from code snip-
pets to also generate efficient, parallel code for model initialisation [Knight and Nowotny,
2018]. Offloading initialisation to the GPU in this way made it around 20× faster on a
desktop PC [Knight and Nowotny, 2018], demonstrating that initialisation algorithms are
well-suited for GPU acceleration. Here, we are going one step further. We realised that,
if each synaptic connection can be re-initialised in less than the 80 operations required to
hide the latency incurred when fetching its 8 B of state from memory, it could be faster and
vastly more memory efficient to regenerate synaptic connections on demand rather than
storing them in memory. This is the concept of procedural connectivity. It is applicable
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Figure 1. Simulation time performance scaling on a range of modern GPUs (colors). A The best performing approach
at each scale on each GPU (indicated by the symbols). For the largest models, the procedural method is always best. B
Raw performance of each approach on each GPU. Missing bars indicate insufficient memory to simulate.

whenever synapses are static – plastic synapses which change their weights during a sim-
ulation will have to be simulated in the traditional way. Although a similar approach was
used by Eugene Izhikevich for simulating an extremely large thalamo-cortical model with
1× 1011 neurons and 1× 1015 synapses on a modest PC cluster in 2005 [Izhikevich, 2005]
– an incredible achievement – it has not been subsequently applied to modern hardware.

We implemented procedural connectivity in GeNN by repurposing our previously de-
veloped parallel initialisation methods. Instead of running them once for all synapses at
the beginning of the simulation, we rerun the methods during the simulation to regenerate
the outgoing synapses of each neuron that fires a spike and immediately use the identified
connections and weights to run the post-synaptic code which calculates the effect of the
spike onto other neurons. This is possible because the outgoing synaptic connections from
each neuron are typically largely independent from those of other neurons as we shall see
from typical examples below.

In the absence of knowledge of the exact microscopic connectivity in the brain, there
are a number of typical connectivity schemes that are used in brain models. We will now
discuss two typical examples and how they can be implemented efficiently on a GPU.
One very common connectivity scheme is the ‘fixed probability connector’ for which each
neuron in the presynaptic population is connected to each neuron in the postsynaptic
population with fixed probability Pconn. The postsynaptic targets of any presynaptic
neuron can hence be sampled from a Bernoulli process with success probability Pconn.
One simple way of sampling from the Bernoulli process is to repeatedly draw samples
from the uniform distribution Unif[0, 1] and generate a synapse if the sample is less than
Pconn. However, for sparse connectivity (Pconn � 1), it is much more efficient to sample
from the geometric distribution Geom[Pconn] which governs the number of Bernoulli trials
until the next success (i.e. a synapse). The geometric distribution can be sampled in
constant time by inverting the cumulative density function of the equivalent continuous

distribution (the exponential distribution) to obtain log(Unif[0,1])
log(1−Pconn)

[Devroye, 2013, p499].

Note that, if we were to directly draw from the uniform distribution, the sampling for
each potential synapse would be independent from any other potential synapse and all
these operations could be performed in parallel. However, for the more efficient ‘geometric
sampling’ employed here, the sampling for the post-synaptic targets of a presynaptic
neuron must be done serially, but is still independent from the sampling for any other
presynaptic neuron.

Another common scheme for defining connectivity is the ‘fixed number total connec-
tor’ in which a fixed total number Nsyn of synapses is placed between randomly chosen
partners from the pre- and postsynaptic populations. In order to initialise this connec-
tivity in parallel, the number of synapses that originate from each of the Npre presy-
naptic neurons must first be calculated by sampling from the multinomial distribution
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Mult[Nsyn, {Pn, Pn, . . . , Pn}], where Pn = 1
Npre

, on the host CPU up front because these

numbers need to add to Nsyn and are hence not independent. However, once the numbers
of outgoing synapses are determined, the postsynaptic targets for a presynaptic neuron
can be generated very efficiently in parallel by sampling from the discrete uniform distri-
bution Unif[0, Npost] where Npost is the size of the postsynaptic population. Note, that
this can only be done because the targets of each presynaptic neuron are independent
from those of any other presynaptic neuron. Where synaptic weights and delays are not
constant across synapses, but are described by some statistical distribution, they can also
be sampled independently from each other and hence in parallel.

In order to use these parallel initialisation schemes for procedural connectivity, we
require reproducible pseudorandom numbers that can be generated independently for
each presynaptic neuron. In principle this could be done with ‘convential’ pseudorandom
number generators (PRNGs), but each presynaptic neuron would need to maintain its
own PRNG state which would lead to a significant memory overhead. Instead, we use
the ‘counter-based’ Philox4×32-10 PRNG [Salmon et al., 2011]. Counter-based PRNGs
are designed for parallel applications and essentially consist of a pseudo-random bijective
function which takes a counter as an input (for Philox4×32-10 a 128 bit number) and
outputs a random number. In constrast to convential PRNGs, this means that generating
the nth random number in a stream has exactly the same cost as generating the ‘next’
random number, allowing us to trivially divide up the random number stream between
multiple parallel processes (in this case presynaptic neurons).

For an initial demonstration of the performance and scalability of procedural connec-
tivity, we simulated a network initially designed to investigate signal propagation through
cortical networks [Vogels and Abbott, 2005] but subsequently widely used as a scalable
benchmark [Brette et al., 2007]. The network consists of N integrate-and-fire neurons,
partitioned into 4N

5
excitatory and N

5
inhibitory neurons. The two populations of neurons

are connected to each other and with themselves with fixed probability Pconn = 10 %.
We ran simulations of this network at scales ranging from 1× 103 to 1× 106 neurons

(100× 103 to 100× 109 synapses respectively) on a representative selection of NVIDIA
GPU hardware: Jetson TX2, a low-power embedded system with 8 GB (shared memory);
Geforce MX130, a laptop GPU with 2 GB; Geforce GTX 1650, a low-end desktop GPU
with 4 GB; and Titan RTX, a high-end workstation GPU with 24 GB. Fig. 1 shows the
duration of these simulations using our new procedural approach or using the standard
approach of storing synaptic connections in memory employing two different data struc-
tures. Both data structures are described in more detail in our previous work [Knight
and Nowotny, 2018] but briefly, in the ‘sparse’ data structure, a presynaptic neuron’s
postsynaptic targets are represented as an array of indices whereas, in the ‘bitfield’ data
structure, they are represented as a Npost array of bits where a ‘1’ at position i indicates
that there is a connection to postsynaptic neuron i and a ‘0’ that there is not. None of our
devices have enough memory to store the 100× 109 synapses required for the largest scale
using either data structure but, at the 100× 103 neuron scale, the bitfield data structure
allows the model to fit into the memory of several devices it otherwise would not. However,
not only is the new procedural approach the only way of simulating models at the largest
scales but, as Fig. 1 illustrates, even at smaller scales the performance of the precedural
approach is competitive with and sometimes better than the standard approach. All of
the synapses in this model have the same synaptic weight meaning that they can be hard-
coded into the procedural connectivity kernels. However, if weights vary across synapses,
the ‘bitfield’ cannot be used and the memory constraints for the ‘sparse’ representation
become even more severe.

2.2. Kernel merging. NVIDIA GPUs are typically programmed in CUDA using a Sin-
gle Instruction Multiple Thread (SIMT) paradigm where programmers write ‘kernel’ func-
tions containing serial C-like code which is then executed in parallel across many virtual
threads. We call our second innovation ‘kernel merging’ and it relates to the way these
kernels are implemented. While the procedural connectivity presented in the previous sec-
tion allows simulating models which would otherwise not fit into the memory of a GPU,
there are additional problems when using code generation for models with a large number
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Figure 2. Performance of a simulation of 1 000 000 LIF neurons driven
by a gaussian input current, partitioned into varying numbers (Npop) of
populations and running on a workstation equipped with a Titan RTX
GPU. A Compilation time (Tcomp) using GCC 7.5.0. B Simulation
time (Tsim) for an 1 s simulation. C Memory throughput (Kmem) re-
ported by NVIDIA Nsight compute profiler “Speed of light” metric. D
Number of “No instruction” stalls reported by NVIDIA Nsight compute
profiler (Nstall).

of neuron and synapse populations. GeNN and other SNN simulators which use code
generation to generate all of their simulation code [Blundell et al., 2018] (as opposed to,
for example NESTML [Plotnikov et al., 2016], which uses code generation only to generate
neuron simulation code) generate seperate pieces of code for each population of neurons
and synapses. This allows optimizations such as hard-coding constant parameters and,
although generating code for models with many populations will result in large code size,
C++ CPU code can easily be divided between multiple modules and compiled in parallel,
minimizing the effects on build time. However, GPUs can only run a small number of
kernels – which are equivalent to modules in this context – simultaneously (128 on the
latest NVIDIA GPUs [NVIDIA Corporation, 2019, p278]). Therefore, in GeNN, multiple
neuron populations are simulated within each kernel, resulting in code of the form shown
in the following pseudocode for simulating 3 populations of 100 neurons each in a single
kernel:

void updateNeurons ( ) {
i f ( thread < 100) {

// Update neuron p o p u l a t i o n A

} else i f ( thread >= 100 && thread < 200) {
// Update neuron p o p u l a t i o n B

} else i f ( thread >= 200 && thread < 300) {
// Update neuron p o p u l a t i o n C

}
}

This works well for a small number of populations but, as Fig. 2A illustrates, when we
partition a model consisting of 1 000 000 LIF neurons into an increasingly large number of
(smaller and smaller) populations, compilation time increases super-linearly and quickly
becomes impractical. Furthermore, the simulation also runs more slower with a large
number of populations (Fig. 2B). Normally, we would expect this model to be memory
bound as each thread in the model reads 32 B of data and, as discussed above, hiding the
latency of these memory accesses would require approximately 320 arithmetic operations
– many more than required to sample an input current from the normal distribution and
update a LIF neuron. Fig. 2C – obtained using data from the NVIDIA Nsight compute
profiler [NVIDIA Corporation, 2020b] – shows that this is true for small numbers of
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populations. In this case, the memory system is around 90 % utilised. However, when
the model is partitioned into larger numbers of smaller populations, the memory is used
less efficiently and the kernel becomes latency bound, i.e. neither memory nor compute
are used efficiently. Investigating further, we found that this drop in performance was
accompanied by an increasing number of “No instruction” stalls (Fig. 2D) which are
events that prevent the GPU from doing any work during a clock cycle. These particular
events are likely to be caused by “Excessively jumping across large blocks of assembly
code” [NVIDIA Corporation, 2020b, p47], which makes sense as we are generating kernels
with hundreds of thousands of lines of code. Several neural modelling tools including
Brian2 [Stimberg et al., 2014] provide modellers with tools to work with ‘slices’ of neuron
populations, allowing models to be defined with fewer populations. However, if a model
is defined by connecting these slices together, the resulting connectivity is the result of
multiple simple connection rules of the type discussed in the previous section, making it
much more difficult to apply our procedural connectivity approach. Furthermore, such an
approach places the responsibility for structuring a model in such a way that it can be
simulated efficiently onto the modellers, who often prefer to concentrate on the science
and organise populations according to anatomy or physiology.

To address the issue of too many populations, we developed a new code generator for
GeNN which first ‘merges’ the model description, grouping together populations which can
be simulated using the same generated code. From this merged description, structures
are generated to store the pointers to state variables and parameter values which are still
allowed to differ between merged populations:

struct NeuronUpdateGroup {
unsigned int numNeurons ;

f loat ∗ V;

} ;

An array of these structures is then declared for each merged population and each element
is initialised with pointers to state variables and parameter values:

NeuronUpdateGroup neuronUpdateGroup [ 3 ] ;

neuronUpdateGroup [ 0 ] = {100 , VA} ;

neuronUpdateGroup [ 1 ] = {100 , VB} ;

neuronUpdateGroup [ 2 ] = {100 , VC} ;

where VA is a pointer to the array containing the state variable ‘V’ of populations ‘A’
and so on. In order for a thread to determine which neuron in which population it should
simulate, we generate an additional data structure – an array containing a cumulative
sum of threads used for each population:

unsigned int startThread [ 3 ] = {0 , 100 , 200} ;

Each thread performs a simple binary search within this array to find the index of the
neuron and population it should simulate. As Fig. 2 shows, this approach solves the
observed issues with compilation time and simulation performance.

2.3. The multi-area model. Due to lack of computing power and sufficiently detailed
connectivity data, previous models of the cortex have either focussed on modelling indi-
vidual local microcircuits at the level of individual cells [Izhikevich and Edelman, 2008,
Potjans and Diesmann, 2014] or modelling multiple connected areas at a higher level of
abstraction [Cabral et al., 2014]. However, recent data [Belitski et al., 2008] has shown
that cortical activity has distinct features at both the global and local levels which can
only be captured by modelling interconnected microcircuits at the level of individual cells.
The recent multi-area model [Schmidt et al., 2018a,b] is an example of such multi-scale
modeling. It uses scaled versions of a previous, 4 layer microcircuit model [Potjans and
Diesmann, 2014] to implement 1 mm2 ‘patches’ for 32 areas of the macaque visual cor-
tex. The patches are connected together according to inter-area axon tracing data from
the CoCoMac [Bakker et al., 2012] database, further refined using additional anatomical
data [Markov et al., 2014a] and heuristics [Ercsey-Ravasz et al., 2013] to obtain estimates
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Figure 3. Results of full-scale multi-area model simulation in ground and resting states. A-F Raster plots of spiking
activity of 3 % of the neurons in area V1 (A,D), V2 (B,E), and FEF (C,F). Blue: excitatory neurons, red: inhibitory
neurons. G-L Spiking statistics for each population across all 32 areas simulated using GeNN and NEST shown as split
violin plots. Solid lines: medians, Dashed lines: Interquartile range. G,J Population-averaged firing rates. H,K Average
pairwise correlation coefficients of spiking activity. I,L Irregularity measured by revised local variation LvR [Shinomoto
et al., 2009] averaged across neurons.
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for the number of synapses between areas. The synapses are distributed between popula-
tions in the source and target area using layer-specific tracing data [Markov et al., 2014b]
and cell-type-specific dendritic densities [Binzegger et al., 2004]. Individual populations
are connected by the fixed number connectors described above. For a full description of
the multi-area model please see Schmidt et al. [2018a,b]. In 2018, this model was simu-
lated using NEST [Gewaltig and Diesmann, 2007] on one rack of an IBM Blue Gene/Q
supercomputer (a 2 m high enclosure containing 1024 compute nodes, weighing over 2 t
and requiring around 80 kW of power). On this system, initialization of the model took
around 5 min and simulating 1 s of biological time took approximately 12 min [Schmidt
et al., 2018b].

The multi-area model consists of 4.13× 106 neurons in 254 populations and 24.2× 109

synapses in 64 516 populations. Without kernel merging, it would therefore be unlikely
that the model would compile or simulate at a workable speed using GeNN. Additionally,
unlike the model we benchmarked previously, each synapse in this model has an indepen-
dant weight and synaptic delay sampled from a normal distribution so the bitfield data
structure cannot be used. Even if we assume that 16 bit floating-point would provide suf-
ficient weight precision, that delays could be expressed as 8 bit integers and that neuron
populations are all small enough to be indexed using 16 bit indices, our sparse data struc-
ture would still require 5 B per synapse, such that the complete synaptic data would need
over 100 GB of GPU memory. While a cluster of GPUs connected using NVLink could
be built with this much memory, it is more than any single GPU has available. However,
using procedural connectivity, we are able to simulate this model on a single workstation
with a Titan RTX GPU.

In order to validate our GeNN simulations, we ran a 10.5 s simulation of the multi-area
model in a ‘ground state’ where inter-area connections have the same strength as intra-
area connections and a 100.5 s simulation in a ‘resting state’ where inter-area connections
are 1.9× stronger. Initialization of our model took 6 min (3 min of which was spent
generating and compiling code) and simulation of each biological second took 7.7 min in the
ground state and 8.4 min in the resting state– 35 % and 30 % less than the supercomputer
simulation respectively. Fig. 3A-C shows some example spike rasters from three of the
modelled areas, illustrating the asynchronous irregular nature of the model’s ground state
whereas Fig. 3D-F illustrate the characteristic irregular activity and population bursts of
the same areas in the resting state. Next, we calculated the per-layer distributions of rates,
spike-train irregularity and cross-correlation coefficients across all areas (disregarding the
first 500 ms of simulation) and compared them to the same measures obtained from spike
trains generated by the supercomputer simulations. We calculated irregularity using the
revised local variation LvR [Shinomoto et al., 2009], averaged over a subsample of 2000
neurons and cross-correlation from spike histograms with 1 ms bins, calculated from a
subset of 2000 non-silent neurons. The violin plots in Fig. 3G-L show the comparison of
the distributions of values obtained from the NEST and GeNN simulations in both states
– which are essentially identical.

3. Discussion

In this work we have presented a novel approach for large-scale brain simulation on GPU
devices which entirely removes the need to store connectivity data in memory. We have
shown that this approach allows us to simulate a cortical model with 4.13× 106 neurons
and 24.2× 109 synapses [Schmidt et al., 2018a,b] on a single modern GPU. While this
represents a significant step forward in terms of making truly large-scale brain modelling
tools accesible to a large community of brain researchers, this model still has around 20×
fewer neurons and 40× fewer synapses than the brain of even a small mammal such as
a mouse [Herculano-Houzel et al., 2006]. Our implementation of the multi-area model
requires a little over 12 GB of GPU memory, with the majority (8.5 GB) being used for
the circular dendritic delay buffers (see Knight and Nowotny [2018]). These are a per-
neuron (rather than per-synapse) data structure but, because the inter-area connections
in the model have delays of up to 500 simulation timesteps (0.1 ms), the delay buffers
become quite large.
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Parameter Procedural connectivity Merging Multi-area
benchmark benchmark model

τm [ms] 20 20 2
Vrest [mV] −60.0 −70.0 −65
Vth [mV] −50.0 −51.0 −50
Rm [MΩ] 20 20 40
τsyn [ms] 5/101 — 0.5
τref [ms] 5 2 2
Iextj [nA] 0.55 1.00± 0.25 Poisson2

wij [nA] 3.2
N
/ 40.8

N
1 — Various2

Table 1. Model parameters.
1Excitatory/Inhibitory.
2Please refer to Schmidt et al. [2018b, Table 1,2]

One important aspect of large-scale brain simulations not addressed in this work is
synaptic plasticity and its role in learning. As discussed by Knight and Nowotny [2018],
GeNN supports a wide variety of synaptic plasticity rules. In order to modify synaptic
weights, they need to be stored in memory rather than generated procedurally. How-
ever, connectivity could still be generated procedurally, potentially halving the memory
requirements of models with synaptic plasticity. This would be sufficient for synaptic
plasticity rules that only require access to presynaptic spikes and postsynaptic neuron
states Brader et al. [2007], Clopath et al. [2010] but, for many Spike-Timing-Dependent
Plasticity (STDP) rules, access to postsynaptic spikes is also required. GeNN supports
such rules by automatically generating a lookup table structure (see Knight and Nowotny
[2018]). While this process could be adapted to generate a lookup table from procedural
connectivity, this would further erode memory savings. However, typically not all synapses
in a simulation are plastic and those that are not could be simulated fully procedurally.

In this work, we have discussed the idea of procedural connectivity in the context of
GPU hardware but, we believe that there is also potential for developing new types of
neuromorphic hardware built from the ground up for procedural connectivity. Key com-
ponents such as the random number generator could be implemented directly in hardware
leading to truly game-changing compute time improvements.

4. Methods

In all experiments presented in this work, neurons are modelled as leaky integrate-and-
fire (LIF) units with the parameters listed in Table 1. The membrane voltage Vi of neuron
i is modelled as

τm
dVi

dt
=(Vi − Vrest) +Rm(Isynj

+ Iextj ),(1)

where τm andRm represent the time constant and resistance of the neuron’s cell membrane,
Vrest defines the resting potential, Isynj

represents the synaptic input current and Iextj
represents an external input current. When the membrane voltage crosses a threshold Vth a
spike is emitted, the membrane voltage is reset to Vrest and updating of V is suspended for
a refractory period τref. In the models where there are synaptic connections, pre-synaptic
spikes lead to exponentially-decaying input currents Isynj

τsyn
dIsyni

dt
=− Isyni

+

n∑
i=0

wij

∑
tj

δ(t− tj),(2)

where τsyn represents the decay time constant and tj are the arrival times of incoming
spikes from n presynaptic neurons. The continuous terms of the Eq. 1 and 2 are seper-
ately solved algebraically so that the synaptic input current Iini is treated as a constant
throughout each simulation timestep.
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