
A modular framework for multiscale     
multicellular spatial modeling of viral     
infection, immune response and drug     
therapy timing and efficacy in epithelial      
tissues 
 
A multiscale model of viral infection in epithelial tissues 
 
T.J. Sego 1,2*, Josua O. Aponte-Serrano 1,2*, Juliano Ferrari Gianlupi 1,2, Samuel R. Heaps1, Kira            
Breithaupt1,3, Lutz Brusch 4, James M. Osborne 5, Ellen M. Quardokus1, James A. Glazier1,2 
1 Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA 
2 Biocomplexity Institute, Indiana University, Bloomington, IN, USA 
3  Cognitive Science Program, Indiana University, Bloomington, IN, USA 
4 Center for Information Services and High Performance Computing (ZIH), Technische Universität Dresden, Germany 
5 School of Mathematics and Statistics, University of Melbourne, Melbourne, 3010, Australia  
* Co-first authors 
 
 

Abstract  
Development of predictive quantitative models of all aspects of COVID-19 is essential for rapidly              
understanding the causes of differing disease outcomes and vulnerabilities, suggesting drug           
and therapeutic targets, and designing optimized personalized interventions. Easy to implement,           
predictive multiscale modeling frameworks to integrate the wide variety of clinical and research             
datasets into actionable insights, which could inform therapeutic regime strategies are lacking.            
We present a multiscale, multicellular, spatiotemporal model of the infection of epithelial tissue             
by a generic virus, a simplified cellular immune response and viral and immune-induced tissue              
damage. Our initial model is built of modular components to allow it to be easily extended and                 
adapted in a collaborative fashion to describe specific viral infections, tissue types and immune              
responses. The model allows us to define three parameter regimes: where viral infection             
coincides with a massive cytopathic effect, where the immune system rapidly controls the virus              
and where the immune system controls the virus but extensive tissue damage occurs. We use               
the model in a proof-of-concept application to evaluate a number of drug therapy concepts.              
Inhibition of viral internalization and faster immune-cell recruitment lead to containment of            
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infection. Fast viral internalization and slower immune response lead to uncontrolled spread of             
infection. Simulation of a drug, whose mode of action is to reduce production of viral RNAs,                
shows that a relatively limited reduction of viral replication at the beginning of infection greatly               
decreases the total area of tissue damage and maximal viral load, while even a treatment that                
greatly reduces the rate of genomic replication rapidly loses efficacy as the infection progresses.              
A number of simulation conditions lead to stochastically variable outcomes, with some replicas             
clearing or controlling the virus, while others see virus-induced damage sweep the simulated             
lung patch. The model is open-source and modular, allowing rapid development and extension             
of its components by groups working in parallel. 

Author summary 
Development of detailed predictive quantitative models of all aspects of COVID-19 is essential             
for rapidly understanding the causes of differing disease infection outcomes and vulnerabilities,            
suggesting drug and therapeutic targets, and designing optimized personalized interventions.          
We present an easy-to-implement, modular modeling framework representing molecular,         
cellular, tissue, and whole-body scales of virus infection and immune response that researchers             
and clinicians could use as a tool to rapidly test hypotheses concerning the origins of different                
disease outcomes and therapeutic regime strategies. The model is open-source and modular,            
allowing rapid development and extension of its components by groups working in parallel. 

Introduction 
Emerging outbreaks of infectious disease require the ability to rapidly identify the            

mechanisms of disease initiation and progression and critical factors to prevent, contain and             
therapeutically treat infected individuals. The current global outbreak of the novel coronavirus            
SARS-CoV-2 (severe acute respiratory coronavirus 2), the causative agent of COVID-19, has            
reinforced the need for integrating and applying the wide variety of data and knowledge              
available concerning infection by other viruses like influenza with the more limited data             
specifically for coronavirus like SARS-CoV and MERS and the emerging data on SARS-CoV-2             
into actionable insights for understanding disease mechanisms and developing therapies. Some           
key questions that arise during epidemics or pandemics include: What mechanisms lead a virus              
to produce different clinical outcomes when infecting a population? What types of underlying             
health conditions contribute to more severe infections or lead to death? How can virus              
heterogeneity contribute to these outcomes? When should different types of therapies be            
administered to an individual to maximize their efficacy and provide the best chance for a               
complete recovery? Could prophylactic use of a medication be beneficial or is it likely to cause                
excessive side effects from toxicity? How can medications be combined to increase efficacy and              
reduce toxicity or to respond to the specific health state of individual patients (personalization)?              
We can address these types of questions and related ones using multiscale modeling and              
simulations to rapidly understand key disease and host response mechanisms, their parameters            
and how they affect clinical outcomes. Being able to integrate and make connections between              
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biomolecular data, and cellular, tissue, and whole-body scales provides a powerful tool for             
researchers and clinicians to gain insights and understanding into the origins of different clinical              
outcomes after infection and to optimize potential treatment regimes. 
 

Viruses have been responsible for many deadly global pandemics including the Spanish            
Flu 1918, Hong Kong Flu 1968, severe acute respiratory syndrome (SARS) 2003, Swine Flu              
2009, Ebola 2014, Zika 2015 and the current novel coronavirus disease of 2019             
(COVID-19)[1–5]. Each of these viruses shares some common characteristics of infection,           
replication, disease progression and transmission. Infectious agents enter the body by one of             
three common routes: respiratory (inhalation or contact with contaminated surfaces and           
touching eyes, nose or mouth), bloodborne (flea, tick, or mosquito vector borne, breach in skin)               
or oral-fecal (ingesting) [6]. A hallmark of acute viral infections is rapid onset and short disease                
duration that can be mild or severe. The time course of disease progression varies with each                
virus, although the stages include a latency period during which individuals are contagious, but              
asymptomatic, followed by onset of outward symptoms and finally recovery. The body’s earliest,             
non-specific response to pathogens is through the innate immune response system. This            
system responds within hours of infection and is triggered upon the detection of viral genome               
release within the cytoplasm of host cells, or display of foreign viral structural protein fragments               
or genetic material on the surface of infected host cells known collectively as pathogen              
associated molecular patterns (PAMPs) [7]. Phagocytic cells like macrophages and dendritic           
cells have pattern recognition receptors (PRRs) on their cell surface that detect the PAMPs on               
infected cells, Toll-like receptors (TLR) are one example of PRRs [8]. Multiple complex signaling              
pathways are initiated that produce proinflammatory interferon type 1 (IL1), other cytokines and             
chemokines to stimulate growth and recruitment of immune cells; these molecular signals are             
associated with early clinical symptoms of viral infection such as fever, fatigue, and cough              
[9,10]. Immune cells targeted by early activation of the innate immune response are dendritic              
cells, macrophages, neutrophils, mast cells, basophils, eosinophils, leukocytes, and natural          
killer (NK) cells [11]. Type 1 interferons stimulate the expression of genes responsible for              
preventing critical steps in the viral infection process [12]. Macrophages and dendritic cells that              
have engulfed and degraded viral pathogens travel to nearby lymph nodes and serve as viral               
antigen presenting cells (APCs) to naive T-cells thereby activating the pathogen-specific           
adaptive immune response within days of infection resulting in the production of antibodies and              
memory B-cell lymphocytes that provide long term immunity [13].  

 
Once inside the body, viruses bind to host cell surface receptors [14]. In the case of                

influenza viruses, the capsid glycoprotein hemagglutinin readily binds to sialic acid containing            
molecules found on host cells in the upper respiratory tract [15], whereas in the case of                
SARS-CoV-2 and SARS-CoV, the primary binding domain to host cell surface receptor            
angiotensin-converting enzyme 2 (ACE2) is used [16,17]. The body-wide distribution of the            
host-cell receptors could contribute to the extent of viral infection and differences in patient              
outcomes. Although the primary site of SARS-CoV-2 infection seems to be the lungs, the              
tissue-wide distribution of ACE2 receptors extends to several organs beyond the upper and             
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lower respiratory tracts such as the heart, kidney, small intestine, vascular endothelium and             
smooth muscle cells [18,19].  

 
Respiratory viruses bind to and are internalized by respiratory epithelial cells. Epithelial            

tissue lines the outer surface of organs and blood vessels throughout the body [20], as well as                 
the inner surface of cavities in many internal organs including the lungs [11]. Mammalian              
respiratory passageways from the naval cavity through the bronchi are lined by ciliated,             
columnar epithelium [11]. While lung alveoli are lined by a thin layer of simple squamous               
epithelium [21]. In the lung, epithelial cells seperate the airways and potentially harmful             
materials within them from the bloodstream, while allowing for the free diffusion of carbon              
dioxide and oxygen [11,21]. After virus capsid glycoproteins bind to host epithelial cells, via              
endocytosis, virus particle uncoating and viral genome entry into the host cell occurs [22–24].              
Both SARS-CoV and SARS-CoV-2 can infect host cells by two different modes of entry 1)               
binding to the host cell surface receptor angiotensin-converting enzyme 2 (ACE2), triggering            
pH-dependent proteolytic activation of S2 domain of spike protein by cathepsin L resulting in              
endocytosis of the viral particle or by 2) binding to the ACE2 receptor and triggering               
pH-independent proteolytic activation of the S2 domain of spike protein by the transmembrane             
serine protease TMPRSS2 that often resides near the ACE2 receptor on the host cell surface               
resulting in host cell-viral membrane fusion [16,25–27].  

 
Release of the viral genome into the host cell initiates viral replication; however,             

depending upon the nature of the genome whether it is double stranded DNA or RNA or single                 
stranded positive-sense or negative sense RNA, the number of steps to produce new viral              
particles will vary greatly [28–30]. SARS-CoV-2 and other enveloped single stranded           
positive-sense RNA viruses occur within the cytoplasm of host epithelial cells where their             
genome can be used directly as an mRNA template; in contrast the influenza viruses, are               
negative ssRNA genomes that must be imported into the host cell nucleus for genome              
replication [28,29]. From the positive-sense ssRNA genome, an RNA-dependent RNA          
polymerase (RdRp) is first translated into protein and subsequently used to produce a             
complementary negative strand of RNA that will be used as a template to manufacture many               
more copies of positive-sense ssRNA genomes and smaller positive strand subgenomic           
sequences [30]. The copies of positive ssRNA strand genomes will later be packaged into new               
virions and the subgenomic sequences are translated to produce viral proteins [30]. After             
replication inside the host, viral positive RNA strands and viral capsid proteins spontaneously             
assemble to form new virions and are transported to the cell membrane for release into the                
extracellular environment through the continuous process of viral budding [31–34]. The yield for             
newly produced virions is not clearly defined in SARS-CoV-2 as it is with lytic viruses [35]. The                 
main regulation of the viral replication process occurs at the replication stage because the              
balance between replication and translation must be carefully maintained [32,33].  

 
To address one of the key challenges in building multiscale models, a modeling platform              

that is user friendly to interdisciplinary collaborations is required for successful integration of             
data types and context over the different scales (molecular, cellular, tissue and body). Likewise,              
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modularity of design makes the modeling architecture robust to rapid development of complex             
systems by multiple modeling groups in concert with the ability to rapidly incorporate data from a                
diversity of sources for new infectious agent life cycles, molecular interactions, clinical disease             
progression, and immune system responses. Here we present our framework for modular            
multiscale spatiotemporal modeling of viral infection and immune response. In this paper our             
framework is implemented using CompuCell3D, a user-friendly multiscale modeling program          
[36]. We demonstrate its predictive capability for determining the timing and efficacy of drug              
therapy in multilayered epithelial cells representative of the lining of lungs.  

Modeling background 

Context 
Mathematical models and computer simulations have been extensively used to study           

in-host progression of viral infection. Kinetics approaches are commonly used to model different             
stages of the viral replication cycle such as binding and internalization [9,37], replication and              
translation [38,39], assembly, packaging and release [40,41]. These models have been           
developed in the context of different virus families: positive-sense single-stranded RNA viruses            
such as hepatitis C virus, poliovirus and Semliki Forest virus [37,42,43], negative            
single-stranded RNA viruses such as influenza A [44,45], single-stranded RNA retroviruses           
such as human immunodeficiency virus [46,47], double-stranded DNA viruses such as herpes            
simplex virus [48] and double-stranded DNA retroviruses such as hepatitis virus B [49]. The              
disease progression of HIV [50–54] and infection and the dissemination of influenza virus to the               
lower respiratory tract [55,56] have been modeled using agent-based spatial approaches. With            
respect to the family of beta coronaviruses, spatial models have been recently developed             
motivated by the onset of the ongoing pandemic [57]. 

Our approach to an initial proof-of-concept model 
In this paper we propose an open-source modular framework to model interactions            

between: generalized epithelial cells; immune cells; and their extracellular environment during           
viral infection. The model can be used to develop and interrogate hypotheses related to the               
spatiotemporal dynamics of viral SARS-CoV-2 infection of disease-relevant nasopharyngeal and          
lung tissue and model COVID-19 progression. The framework is intended to serve as a base               
model for constructing and implementing more advanced models of targeted cellular- and            
intracellular-level phenomena in a multicellular tissue following initial exposure. In its current            
state, this model has not been formally peer-reviewed, and should not be used for patient               
diagnostics or predicting clinical outcomes.  

 
The model and its implementation can be employed and further developed to interrogate             

questions and mechanistic hypotheses about the spread of a virus, and about how the interplay               
between viral spreading and immune response determine the outcome of the disease, such as:  
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● Why does the progression of the disease seem to be dependent on the initial              
viral exposure level? 

● Why is the start time of symptoms and immune response so variable? 
● What is the role of cytokine signaling in explaining immune response variability? 
● What are the specific factors and key players determining the offset of early             

immune response? 
The model includes a representation of extracellular virus in the mucus, epithelial cells and              
immune cells. It also includes the processes of epithelial cell infection by extracellular virus, viral               
replication and cell damage in epithelial tissues, release of viruses by infected epithelial cells,              
immune cell response to infected epithelial cells and immune cell killing of infected and              
non-infected epithelial cells.  

Results 
In this section we begin by presenting our multicellular model of tissue viral interaction,              

along with a typical simulation and basic analyses. We then present results from simulations              
intended to interrogate the parameter space of the model framework with respect to select,              
critical parameters of interest to understanding SARS-CoV-2 and viral infection, in general. All             
simulations were performed according to specifications described in Simulation Specification,          
and results described in that same section were recorded concerning spatial, population, and             
system-level metrics for each simulation trial of each parameter set presented here. All             
simulations were performed using CompuCell3D [36].  

A multicellular model of viral infection and immune response in          
epithelial tissues captures the spatial dynamics of viral infection         
and spread in epithelial tissue 

We consider the interactions between a multicellular epithelial tissue (defined by a set of              
epithelial cells) and the immune system (here represented as a collection of generalized             
immune cells, which are produced in the lymph nodes and travel to the tissue) during a viral                 
infection. Specifically the multiscale multicellular model is comprised of multiple interconnected           
components: 

● the Epithelial cell component; 
● the Lymph node component; 
● the Immune cell component; and  
● the Extracellular environment component. 

For each of these components a number of biological processes govern how the system              
evolves. These processes are summarized in Figure 1 and key ones are highlighted below. Full               
details of each process and their interactions and how they are implemented are provided in               
Models and methods.  
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Figure 1: Conceptual model. Schematic representation of the model objects, processes and interactions. Epithelial              
and immune cells refer to the two agents in the model. Interactions occur within an extracellular environment, and                  
with a compartmental model of a lymph node representing immune cell recruitment. Each agent has associated                
modules that dictate their behaviors. Epithelial cells have viral internalization (E1), viral replication (E2), viral release                
(E3) and cell death (E4) modules. Immune cells have activation (I1), chemotaxis (I2), contact cytotoxicity (I3) and                 
oxidative agent cytotoxicity (I4) modules. Fields describe transport of material in the extracellular environment and to                
the lymph nodes. Three fields characterize the model: viral field (T1), cytokine field (T2) and oxidizing agent field (T3).                   
Within the lymph node compartment, transport of cytokines feeds into an immune recruitment module (L1).  

 
In our model, we approximate the discrete processes of transport and internalization of             

viral particles using continuous kinetics determined by association and dissociation constants,           
the number of available cell surface receptors and the amount of viral particles in the               
extracellular environment. We use the relevant aspects of transport on the mucous layer above              
the apical surface of epithelial cells as the site of viral extracellular presence, transport and               
contact with cells to represent where the infection of susceptible epithelial cells occurs. We              
represent the complexity of viral replication by defining four broad stages: unpacking,            
replication, translation and assembly. The subcellular kinetics of virus replication then           
determines the release of new viral particles into the extracellular environment that contribute to              
the further spreading of the virus in host tissue. For virally-induced apoptotic processes, each              
cell is given a probability of dying associated with the number of assembled viral particles inside                
the cell.  

 
Cytokines were chosen to represent the larger group of small molecule signals that             

include chemokines, interferons, and RNAi. We functionally represented the complexity of           
immune signaling by using a single diffusive cytokine field in the extracellular environment. The              
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cytokine field produces local immune effects such as activation of immune cells by exposure to               
cytokine for a period of time. The cytokine field also produces long range immune effects by                
recruiting immune cells to the locale of the simulation through long-distance signaling in the              
lymphatic system. We represent the transport of cytokines through the lymphatic system and             
bloodstream by introducing delay to the recruitment of immune cells by cytokine signaling. Cell              
death also occurs in our model due to two mechanisms associated with host immune response.               
Immune cells identify infected cells on contact by antigen presentation and induce apoptosis. In              
sufficiently high cytokine, immune cells indiscriminately kill epithelial cells by secretion of an             
oxidative agent.  

 

 
Figure 2. CompuCell3D simulation of the progression of infection in a patch of epithelial tissue of size 360                  
μm x 360 μm starting from a single infected cell for a representative simulation using the baseline                 
parameters given in Table 1. A: Snapshots of simulation configuration vs time show the progression of simulated                 
infection from an initially infected (green) cell in the epithelial layer. Columns, left to right: 0 Monte Carlo steps                   
( MCSs) (time of infection), 200 MCSs (200/30 hours after infection), 400 MCSs (200/30 hours), 600 MCSs (200                 
hours), 800 MCSs (800/30 hours), and 1,000 MCSs (1000/30 hours). Top row: Epithelial cell layer, colored to show                  
cell type: uninfected as blue; infected (not shedding virus) as green; infected (shedding virus) as red; dead as black.                   
Second row: Position of immune cells resident above the epithelial layer. Third row: Extracellular concentration field                
of virus, where red shows the current maximum concentration and blue shows the current minimum concentration.                
See (C) for minimum and maximum values. Bottom row: Extracellular concentration field of proinflammatory cytokine,               
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where red shows the current maximum concentration and blue shows the current minimum concentration. See (C) for                 
minimum and maximum values. B: The immune recruitment signal vs time in MCSs (one MCS = 1/30 hours).         S           S  
regulates the rate of immune cell introduction into (for positive values) or removal from (for negative values) the                  
simulated region per unit time. C: Minimum and maximum concentrations for the fields in Rows 3 and 4 of (A)                    
extracellular viral concentration and proinflammatory cytokine. Simulations use periodic boundary conditions in the             
plane of the epithelial sheet, and Neumann conditions normal to the epithelial sheet.  
 

Simulations were initialized with a sheet of uninfected epithelial cells, devoid of any             
diffusive virus, cytokine, and immune cells (active or inactive). Infection began with a single              
infected epithelial cell at the center point of the epithelial sheet (Figure 2A). We established a                
baseline set of parameters (Table 1) from which widespread infection occurs over the course of               
a simulation from this initial configuration. In simulation of the baseline set of parameters,              
resident immune cells (Figure 2B) appeared in simulation by 200 Monte Carlo steps (MCSs,              
200/30 hours), early infection spread to neighboring cells, and some cell death occurred far from               
the initial site of infection by this time. Significant immune cell recruitment was apparent (Figure               
2B) between 400 and 800 MSCs (between 400/30 and 800/30 hours): the number of immune               
cells more than doubled between 200 MCSs (200/30 hours) and 400 MCSs (400/30 hours).              
However, infection spread uncontrollably before peak recruitment in the baseline simulation.           
From approximately 400 MCSs (400/30 hours) onward, massive cell death centered around the             
initial site of infection occurred, and the virus spread outwards. 

Infection reached the boundary of the simulation domain by 600 MCSs (600/30 hours),             
indicating total spread of the infection. Immune cells continued to be recruited, even to 800               
MCSs (800/30 hours), though few living cells remained. By time 1,000 MCSs (1000/30 hours),              
all epithelial cells died, and many immune cells exited the simulation. The number of infected               
cells was maximal at 700 MCSs (700/30 hours), the amount of extracellular virus was maximal               
at 860 MCSs (860/30 hours). The extracellular cytokine level was maximal at 740 MCSs (740/30               
hours). As the number of live cells decreased, the amount of extracellular virus and the amount                
of extracellular proinflammatory cytokine decreased. The immune recruitment signal peaked at           
740 MCSs (740/30 hours), leading to infiltration of immune cells too late to contain the spread of                 
infection (maximal number of immune cells at 870 MCSs, (870/30 hours). For all simulation              
parameters see Table 1. Code to execute this specific simulation for these parameter values in               
CompuCell3D is available at    
https://github.com/covid-tissue-models/covid-tissue-response-models/tree/cc3d_first_model_v0_
cand/CC3D/Models/BiocIU/SARSCoV2MultiscaleVTM/interesting-results/Preliminary%20Set%2
01/simimg . 
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Level of internalization is a key driver in viral propagation 

 
Figure 3. Increasing virus-receptors association affinity drives the system towards widespread cell death.             
Reducing the virus-receptors association affinity by a factor of 100 while holding all other parameters constant     kon             
(left column of A and B) produced diminished infection (top row) and varying outcomes of cell death (bottom row)                   
compared to the baseline parameter set (right column of A and B) over 10 simulations. A: Trial results of each                    
parameter set. B: Mean results of simulated trials, where shaded blue areas show one standard deviation in each                  
direction. Top and bottom rows show the number of infected and dead cells, respectively. Time is displayed in MCSs                   
where 1 MCS corresponds to 1/30 hours.  
 

By varying the model parameters and comparing the resulting cell count time series we              
see that there are several critical parameters in the model which control outcomes of the               
simulation. In Figure 3 we present time series for different values of the virus-receptors              
association affinity , a parameter that controls the internalization of extracellular viral   kon           
particles into epithelial cells (see Equation (3) in Models and methods). We see that an increase                
in decreased virus-receptors association affinity drives the system toward quantitatively distinct           
simulation outcomes (Figure 3). We compared simulation outcomes using the baseline           
virus-receptors association affinity value (shown in Figure 2) and a 100-fold decrease from the              
baseline. Decreased virus-receptors association affinity shows a low number of infected and            
dead cells at the end of the simulation (Figure 3A, left columns). Increasing virus-receptors              
association affinity (to the value used in Figure 2) results in an increased number of infected                
cells during the simulation and corresponding increase in the number of final dead cells (Figure               
3A, right columns). Increasing virus-receptors association affinity also results in complete cell            
death in nine out of ten simulations (749 total number of dead cells for one simulation). Total                 
cell death at the end of simulation time varies for decreased virus-receptors association affinity              
(Figure 3B): ten simulations using the decreased virus-receptors association affinity produced           
final total numbers of dead cells in the range of 1 and 150 (mean 71.6, standard deviation 53.8                  
for ten simulations).  

 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2020. ; https://doi.org/10.1101/2020.04.27.064139doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.27.064139
http://creativecommons.org/licenses/by/4.0/


Containment of infection is achieved when the rate of immune          
system response increases and the rate of virus internalization         
decreases 
 

 
Figure 4. Variations in viral internalization and immune response demonstrate a parameter space containing              
deterministic uncontrolled infection and containment, as well as stochastic outcomes . A logarithmic parameter             
sweep of virus-receptors association affinity and immune response delay produced consistent viral     kon      βdelay     
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containment (top right, green shaded subplots), consistent viral spread (bottom left, orange shaded subplots), and               
parameter sets with stochastic outcomes. A, B: Mean number of dead cells (A) and total diffusive virus (B) in the                    
simulation domain over simulation time for ten trials of all parameter sets of the sweep. Blue shaded areas demarcate                   
one standard deviation in each direction. Time is displayed in MCSs where one MCS corresponds to 1/30 hours. 
 

By performing a multidimensional parameter sweep in Figure 4 we see that variations in              
immune response delay coefficient (a parameter that controls the responsiveness of     βdelay         
immune cell recruitment to local diffusive cytokine in the simulation domain, see Equations             
(12)-(14) in Models and methods.) and virus-receptors association affinity parameters drive the            
system toward two distinct simulation outcomes: containment and widespread infection (which           
are denoted as green and orange shaded regions respectively). We generated simulations            
using baseline values for virus-receptors association affinity and immune response delay           
coefficient (from Figure 2) and compared results with simulations generated using 10-fold and             
100-fold increase and decrease from the baseline values (shown in Figure 4). These parameter              
variations produce distinctive qualitative outcomes in the number of dead cells (Figure 4A).             
Baseline values of parameters result in propagation of the infection through the tissue and              
widespread death of epithelial cells (Figure 4A, center panel). Increasing virus-receptors           
association affinity and decreasing immune response delay coefficient drives the system           
towards widespread infection and cell death with small variability between simulation replicated            
(Figure 4A, red shaded panels). In this region, decreasing immune response delay coefficient             
decreases the rate of cell death as shown by the inflection points on the number of dead cells                  
occurring earlier for smaller values of immune response delay coefficient.  

 
Decreasing virus-receptors association affinity and increasing immune response delay         

coefficient drives the system towards containment of the initial infection, as shown by early              
saturation in the number of dead cells (Figure 4A, green shaded panels). In this region,               
increasing immune response delay coefficient controls the rate at which containment is            
achieved, as shown by saturation being arrived at earlier for bigger values of immune response               
delay coefficient. Also in this region, virus-receptors association affinity controls the total number             
and variability of infected and dead cells before containment whenever is immune response             
delay coefficient not too large, as shown by the saturation value being higher for increasing               
values of virus-receptors association affinity (Figure 4A, first green shaded column). For the             
remaining regions, the final outcome of the simulation is undetermined, since the number of              
dead cells is still changing at the end of the simulation.  

 
The distinctive qualitative outcomes of the simulation can also be observed in the             

dynamics of viral diffusion in the extracellular environment (Figure 4B). In the widespread             
infection region, there is a regime of fast viral growth followed by a regime of viral clearance                 
(Figure 4B red shaded region). In this region, controls how fast the maximum concentration         kon       
of virus in the extracellular environment is achieved during the growth regime, as shown by the                
maximum value being reached earlier for increasing values of virus-receptors association           
affinity. The immune response delay coefficient controls the amplitude of the rebound after a              
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short clearance phase, as shown by the distance between two maximums in the viral              
concentration curve increasing for increasing values of immune response delay coefficient. 

 
In the containment region, the same two qualitative regimes of viral growth can be              

observed but with quantitatively different properties (Figure 4B red shaded region). An initial             
growth of virus is followed by clearance of virus. The maximum concentration of the viral field is                 
smaller in the containment region than the widespread infection region. In these regions,             
immune response delay coefficient controls the clearance rate of the extracellular virus as             
shown by the rapid decay with increasing values of immune response delay coefficient. The              
time scales of viral growth in the extracellular environment is faster than the rate of cell death,                 
as shown by maxima in the extracellular environment occurring before maxima in the number of               
dead cells.  
 

 
Figure 5. Key metrics of viral infection reflect variations in viral internalization and immune response. Metrics                
relevant to the characterization of infection and immune response over simulation time were calculated for all trials of                  
the parameter sweep portrayed in Figure 4. Mean values of the metrics were calculated for all ten trials of each                    
parameter set. A: Mean final number of dead cells. B: Maximum total diffusive virus over all simulation time. C:                   
Maximum total diffusive cytokine over all simulation time. D: Clearance time, measured as the earliest simulation step                 
during which no infected cells were found, counting from the final simulation step, time is displayed in MCSs where                   
one MCS corresponds to 1/30 hours.  
 

The phase space for key metrics reveals that decreasing viral internalization and            
increasing immune response consistently drives the system towards containment of the           
infection (Figure 5). High viral internalization is generally correlated with high number of final              
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dead cells (Figure 5A), high number of maximum viruses (Figure 5B) and high number of               
maximum cytokine levels (Figure 5C). In general, values for each of these metrics increases              
proportionally with increased internalization, with the lowest value providing the lower bound            
and the highest value providing the upper bound. A noticeable exception is the maximum              
cytokine level, where at least one of the lower viral internalization values (0.1) produces a high                
number of cytokines (Figure 5C).  

 
Rapid immune response is generally associated with lower number of final dead cells,             

maximum virus and maximum cytokine in the extracellular environment. For fixed viral            
internalization values, each of these metrics decreases with increasing rate of immune response             
with the exception of total number of dead cells for a very high immune response rate and very                  
low viral internalization. In general, the metrics behave as asymptotically decreasing functions of             
the immune response, with the exception of the cytokine levels for one of the lower viral                
internalization values (0.1), where there is a rapid growth in cytokine levels followed by a long                
decay (Figure 5C).  

 
Clearance time measures the earliest time until the end of the simulation at which no               

infected cells are found inside the simulation domain (Figure 5D). Higher viral internalization is              
generally associated with smaller clearance times for immune response rates below the            
baseline and with higher clearance times for immune response rate above the baseline. With              
respect to the immune response, clearance times show varying regimes, but in general there is               
a slow increase in clearance times for smaller immune response rates, and a sharp decrease in                
clearance times for higher immune response rates. Viral internalization controls at which level of              
immune response rate the sharp decline in clearance times starts. The decline in clearance              
times occurs at slower immune response rate for viral internalization below the baseline and              
higher immune response rates for values above the baseline. 

Magnitude of the rate of viral replication reduction and its timing           
shows a difference in disease outcomes 
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Figure 6. Evaluation of the system-level response of a hypothetical drug treatment reducing viral RNA               
replication as a function of molecular-level efficacy and time of initiation of treatment . A: example of the                 
reduction event of . Before the event (600 MCSs - 600/30 hours - in B) is at the baseline value, afterwards it   rmax             rmax         
is reduced by the multiplier (0.25x multiplier in B). B: A parameter sweep of the reduction in baseline viral replication                    
rate ( , vertical) and the time of its application (dashed lines, horizontal) showed distinct regions of widespread rmax                 
cell death or containment (orange and green shaded regions, respectively). Even a complete disabling of viral                
replication (top row) was incapable of containing widespread cell death if applied too late in the progression of                  
infection (top right). The same was true for immediate delivery (left column) of an ineffective reduction (bottom row,                  
reduction of 12.5%). Time is displayed in MCSs where one MCS corresponds to 1/30 hours. 
 

Variation in the rate of RNA replication also drives the system toward distinct        rmax        
qualitative outcomes (see Equation (7) in Models and methods). We generated a series of              
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simulations by reducing the viral replication rate of the baseline parameter set by different              
factors, and by varying the time in simulation at which the reduction is applied (labeled “viral                
replication multiplier” and “time delay of application”, respectively, in Figure 6, 7 - Figure 6A               
shows the reduction event and exemplifies “time delay of application”). Parameter variation            
produces two distinctive qualitative outcomes of the simulation as measured by the final number              
of dead cells: containment (Figure 6, 7 green shaded regions) and widespread infection (Figure              
6, 7 orange shaded panels).  

 
Containment of initial infection is observed for reduction factors between 0.0 and 0.625             

and for timing of variation between 0 and 500 simulation steps (0-500/30 hours). Reduction at               
the beginning of the simulation results in no spreading of the infection for reduction factors               
below 0.625. Reduction at the 500th simulation step (500/30 hours) produces containment for             
reduction factors below 0.375. The final number of dead cells and the variability between              
simulation replicates increases proportionally with increased factor and timing to variation.           
Reducing viral replication by a factor of only 0.875 or applying the reduction as late as the 700th                  
simulation step (750/30 hours) invariably results in widespread infection. In this           
regime,variability between simulation replicates increases with decreasing reduction factor and          
time delay of application. For intermediate values, results are undetermined by the end of the               
simulation. 
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Figure 7. The combination of efficacy and time of delivery of reduced viral replication critically affects total                 
environmental virus . The parameter sweep of the reduction in baseline viral replication rate ( , vertical) and the             rmax     
time of its application (dashed lines, horizontal) demonstrated the capacity of the simulation tissue sample to infect                 
surrounding tissue. Effective containment of infection (green shaded region) from efficacious (upward rows) and early               
(leftward columns) reduction in viral replication produced tissue samples with lower environmental virus. High total               
environmental virus late in simulation demonstrated spread of infection (orange shaded regions) except in simulations               
where massive cell death occurred very rapidly (top right). Time is displayed in MCSs where one MCS corresponds                  
to 1/30 hours 
 

The different outcomes caused by changing can also be seen in the total diffusive       rmax          
virus in the environment (Figure 7). For the cases where the infection is contained, viral load                
peaks either at or shortly after the replication rate reduction event, after which the total virus in                 
the environment decreases (Figure 7 green shaded region). When the replication rate reduction             
event happens at the beginning of the simulation and the replication rate is sufficiently reduced,               
very small amounts of viral particles are released to the extracellular environment. In the              
widespread infection regime, most of the results show that diffusive virus is still being released               
by the end of the simulation, or decreasing due to the early widespread death of the infected                 
cells (Figure 7 orange shaded region).  

Discussion 

In this paper we presented a spatial multicellular model of the viral infection of an               
epithelial tissue that includes key aspects of infection, replication and immune response. This             
model, while highly simplified, provides a number of very compelling results. We showed that              
the viral production peaks before tissue damage occurs as seen in other viral diseases like               
influenza. In the baseline simulation cell death occurred far from the initial site of infection by                
200 MCSs (200/30 hours), indicating cytotoxic killing by the immune cells (as secondary             
infection has occurred by this point but not enough time has passed for virally induced apoptosis                
to occur in the subsequently infected epithelial cells). We also showed that recruitment of              
immune cells can continue even after most epithelial cells have died. The model makes this               
possible by representing both a resident immune cell population (e.g., 5 or so early immune               
cells for all parameter sets) and additions to that population due to recruitment by long-distance               
signaling (e.g., large numbers of immune cells seen during widespread infection). 

 
We showed that multiple model outcomes (e.g., control or spread of infection) can occur              

according to the values of key parameters of the model, like those controlling viral              
internalization. By performing multidimensional parameter sweeps of the model we showed that            
the interplay between immune response and viral spread can lead to conditions in which the               
virus is uncontrolled, rapidly controlled, or controlled after substantial damage. Specifically,           
simulations revealed that decreasing viral internalization and increasing immune response          
consistently drive the system towards containment of the infection. We also showed that             
multiple model outcomes can result from the same set of parameters for simulation replicates              
(with different realizations of the random number sequence), owing to stochasticity of the             
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processes and the ability of even a single infected epithelial cell to (re)ignite the infection cycle                
(i.e., internalization, replication, secretion). This behavior is characteristic of the (unshaded)           
transition regions in the results tables obtained from multi-parameter sweeps in the above             
Figures 4, 6, and 7. 

 
Finally, we studied the influence of timing in possible drug therapies. We showed that              

drugs that interfere with viral replication, like remdesivir [58], need to be administered as soon               
after initial infection as possible. We showed that drugs with this mode of action can improve                
viral control if administered early and that their effectiveness decreases when administered later             
after infection (by reducing widespread viral replication and thus promoting containment). This            
implies that drugs interfering with virus replication will be more effective as a prophylactic than               
as a treatment and could be administered to health workers and other workers at high risk of                 
coming into contact with infected individuals.  
 

The above observations critically depend on the model’s ability to resolve the spread of              
virus and immune response spatially. Most of the underlying processes are intrinsically            
stochastic and therefore the spatial patterns of the increasingly varied and fractal infection front              
and distribution of tissue damage are nontrivial. The immune response leads to a spectrum of               
outcomes depending not only on parameter values but also on the emergent spatial patterns of               
cytokine and virus fields (e.g., variations within the infection front expose different numbers of              
(un)infected epithelial cells to the immune response). Predictions based on the correct spatial             
representation of intrinsically stochastic and interdependent events often differ from those based            
on the mean cell population dynamics, as captured, e.g., by physiologically based            
pharmacokinetic (PBPK)  models, alone.  

Model limitations 

 
While we are able to represent many key facets of viral infection and immune response               

in an epithelial tissue, we recognize that our overall model architecture is incomplete in many               
respects, from the number and types of immune cells and cytokines to the processes we are                
including (e.g., the cytokine signals from an infected cell can alert uninfected cells to viral               
challenge and increase their rate of apoptosis or reduce their rate of virus production after               
infection). The current model uses a simplified view of the cellular adaptive immune system that               
neglects antibodies, which are critical to actual viral clearance in respiratory infections and             
tissue recovery after damage. The milieu of simulated viral infection in this work is also not                
without its limitations, particularly concerning the assumption that the interface of an epithelial             
layer and mucous layer provides an appropriate setting for representing infection events in an              
epithelial layer. Still, these simplified models are informative of global outcomes. We are working              
with a wide variety of biological researchers to determine the additional components we should              
prioritize to add to our high-level model structure.  
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The primary objective of future development of the model is to improve the biological              
realism of the mechanisms within each module (components and processes), and across the             
model framework as a whole. Many of the modules of our model are proof-of-concept versions,               
meaning that they are simple approximations to the complex biological mechanisms related to             
viruses like SARS-CoV-2. However, they are useful as stand-in-place modules that represent            
the same events (e.g., extracellular virus becomes intracellular according to the module            
describing internalization) and can generate distinct and biologically relevant outcomes. The           
incorporation of these proof-of-concept modules serves two purposes: to facilitate the           
integration of previously developed models (e.g., viral replication) into a stable, working            
modeling and simulation environment of spatiotemporal dynamics, and to provide functional           
outlines for incorporating supportable and improved versions of individual modules. Modules           
that are readily accessible for improvement include viral internalization, viral replication and            
immune response. We are currently working on implementing mechanisms within immune cell            
response to model virus-scavenging of macrophages and local IFN-gamma signalling from           
infected to non-infected epithelial cells, which would act to drastically reduce their rate of viral               
production, as well as calibrating the viral replication module to existing experimental data. 

Future perspectives 
 

Developing our framework to support the modeling and simulation of multi-region           
disease progression and immune response at multiple scales will allow us to study the systemic               
effects of possible therapies with known molecular modes of action, (e.g., remdesivir—an            
analog of the nucleoside adenosine which blocks viral RNA synthesis [58]). Nucleoside analog             
drugs reduce the rate of RNA synthesis and thus, the rate of viral replication (as seen in                 
Results, we can already model the effects of viral RNA synthesis rate reduction in a small tissue                 
area at arbitrary times in simulation). Allowing such therapies to be evaluated in a simulated               
context prior to performing human trials could lead to more effective and rapid drug discovery,               
as well as provide meaningful insight on possible mechanisms that might otherwise go             
undetected. Further, by modeling the effects of immune stimulation and repression at different             
stages of infection, we could provide a more detailed account of how immunomodulators work              
on different temporal scales, enabling physicians to better optimize the dosage and timing of              
treatments. 
 

Another possible application for our model is indicated by its potential to assist in              
studying the origins of population variability in disease progression. By modeling the effects of              
hypertension, immunosuppression and diabetes, we can develop better predictive metrics that           
can be used to evaluate factors involved in the timing of critical outcomes, and to assist in                 
calculating patient-specific treatments. We can also use the model as an experimental tool in              
order to gain a deeper understanding of the basic mechanisms of disease. By exploring the               
model’s ability to simulate immune clearance under a variety of different situations (e.g., effect              
of initial viral load, locus on disease progression in a patch, immune excitability, delay in               
signalling to lymph nodes), we can identify key periods in which the progression of infection is                
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susceptible to particular types of manipulation (e.g., slowing viral replication after 3 days             
generally has little effect on outcome in influenza models).  
 

Going forward, we plan to integrate our model with established and validated nonspatial             
models of infection, immune response and clearance. We are working to implement these             
nonspatial models of viral infection and immune response, and to replace specific            
scalar-represented objects in these models (e.g., viral production, cytokine secretion or tissue            
damage) with the appropriate spatial components of our model. By starting with a validated              
model that uses ordinary differential equations and adding spatial components gradually, we            
can calibrate our spatial models and validate our results. We can also conduct simultaneous              
validation by building multiple implementations of the conceptual and quantitative models           
independently and simultaneously. We are currently performing cross-platform validation of the           
conceptual model originally presented here (and originally implemented in CompuCell3D) with           
working implementations in Chaste [59,60] and Morpheus [61] multicellular modeling platforms.           
This near-simultaneous model replication and its lessons for model design and implementation            
will be the subject of a future study.  
 

The current pandemic has shown that classic sequential methods for model           
development in scientific research are too slow and do not easily encourage transdisciplinary             
scientific collaboration. Our model is open-source and organized into modules that are freely             
available to extend, reuse and adapt. We are reaching out to members of multiple scientific               
communities to encourage them to extend, replace and improve these modules, as well as to               
develop new modules describing mechanisms that are critical to understanding and predicting            
specific aspects of viral infection but not presently described. We are working to develop model               
sharing workflows and tools to facilitate parallel, independent module development, as well as             
guidelines for model specification and sharing.  

 
On the theoretical side, we are eager to support and collaborate with groups modeling              

viral replication, cell death due to viral replication, local cytokine signalling effects and systemic              
immune response. On the experimental side, we are motivated to help experimental, drug             
discovery and therapy development teams adapt and refine this base model to their specific              
applications. We would like to work with groups with relevant experimental data to validate              
individual modules and the overall framework. We would furthermore be happy to discuss             
approaches to integrating this model framework as a component of whole body- and             
population-level models. To support such projects, we will continue developing compartmental           
models that can be integrated as modules that act to transport viruses, cytokines and immune               
cells throughout the body. By identifying model parameters corresponding to specific critical            
tissue (e.g., nasopharyngeal, alveolar) and physiological compartments (e.g., throat, upper and           
lower respiratory tracts), we can particularize the current model and integrate it into complex,              
multi-organ simulations that yield predictive capabilities over several scales.  

 
The COVID-19 crisis has shown that drug discovery and therapy development both            

require predictive capabilities that improve their effectiveness and efficiency. We have           
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developed our framework to further the understanding of the basic mechanisms of various viral              
infections, and factors determining the outcome of infectious diseases like COVID-19. Going            
forward, we hope to develop our framework - and support its development by others - to provide                 
predictive capabilities that support determining optimal, patient-specific treatments, and         
developing novel drug therapies to combat existing and new viruses.  

Models and methods 
First we present the model as a high level conceptual model where we detail each               

process considered and present details of the process in a model agnostic manner. Following              
this we present details of our particular implementation of our model which uses a Cellular Potts                
representation of cellular dynamics. 

Conceptual model: biological hypotheses and assumptions 
As discussed in the Results we consider four interacting components: 

● the Epithelial cell component; 
● the Lymph node component; 
● the Immune cell component; and  
● the Extracellular environment component. 

For each of these components a number of processes govern how the system evolves. Details               
of these processes and their interactions are given in the following subsections and their              
connections are illustrated in Figure 1. 

Epithelial cell component 
At the epithelial cell component, the model accounts for binding and uptake (subsuming             

endocytosis-dependent and -independent routes) of viral particles, intracellular replication and          
exocytosis to the extracellular environment, as well as for induced apoptosis from viral             
replication associated damage.  

E1 - Viral internalization  
Model of extracellular virus binding to epithelial cell receptors, uptake (subsuming           

endocytosis-dependent and -independent routes) and release of viral genetic material into the            
cytoplasm. Internalization of viral particles involves binding of the viral spike protein to target cell               
surface receptors, truncation by surface proteins and receptor-mediated endocytosis or fusion           
with the host plasma membrane. We assume the dynamics of internalization can be captured by               
focusing on the dynamics of virus-surface receptor binding, determined by the densities of             
extracellular virus and target surface receptors, and the binding affinity between them (T1-E1).             
Also, the dynamic depletion of unbound target surface receptors is modeled per cell.             
Internalized, viral particles initiate the viral replication process (E1-E2). This internalisation is            
shown in Figure 8 
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E2 - Viral replication 
Model of viral replication cycle inside the host cell. Single-stranded positive RNA viruses             

can initiate replication after unpacking of viral genetic material and proteins into the cytosol              
(E1-E2). The viral RNA-dependent RNA polymerase transcribes a negative RNA strand from the             
positive RNA strand. This negative strand is used as a template to produce more positive RNA                
strands and smaller positive strand subgenomic sequences. Subgenomic sequences are then           
translated to produce viral proteins. Positive RNA strands and viral proteins are transported to              
the ER where they are packed for release. Viral replication hijacks some of the host metabolic                
pathways and is limited by the availability of resources in the host cell. We assume we can                 
model the rate-limiting effect of resource availability as regulation at the replicating step. After              
replication, newly synthesized viral genetic material is translated into new capsid protein and             
assembled into new viral particles. These newly assembled viral particles initiate the viral             
release process (E2-E3). We assume the viral replication cycle can be modeled by defining four               
replication stages: unpacking, replicating, translating and assembling. These sub processes of           
replication, and their relation to secretion and internalization are illustrated in Figure 8. 
 

 
Figure 8: Interactions in the Viral Replication Model . Schematic representation of inputs, outputs and interactions               
between stages of the viral replication model. Extracellular viral particles are internalized by the viral internalization                
model and initiate the viral replication model. The main stages of the viral replication model are: unpacking,                 
replicating, packing and assembling. Regulation occurs at the replicating stage. The output of the viral replication                
model is passed to the viral secretion model, where newly assembled viral particles are released to the extracellular                  
environment.  
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E3 - Viral release  
Model of intracellular transport of newly assembled virions and exocytosis into the            

extracellular environment. We conceptualize the virus as moving in the extracellular fluid above             
the apical surfaces of our epithelial cells, but we can easily generalize our diffusion model to                
include basolateral transmission through the basement membrane and connective tissue if there            
is experimental evidence that such transmission is significant. After assembly inside the host,             
newly packed virions are transported to the ER where they are packed into vesicles and               
transported to the cell membrane for release into the extracellular environment (E2-E3). We             
assume that no regulation occurs after assembling of new virus particles, that exocytosis into              
the extracellular environment can be modeled as a single-step process (E3-T1). 

E4 - Virally induced apoptosis  
Model of induced apoptosis due to super-threshold viral infection. Production of viral            

proteins interferes with various of the host cell’s metabolic, regulatory and delivery pathways,             
ultimately inducing apoptosis via the caspase cascade. Instead of modeling each cytotoxic            
pathway individually, we model induction of apoptosis by linking cell death directly to the viral               
particles produced in the viral replication cycle (E2-E4). 

Lymph node component 

L1 -  Immune cell recruitment 
Model of immune cell recruitment and infiltration into the tissue by signaling molecules             

produced in response to viral replication in infected cells. Infected cells secrete signaling             
molecules to the extracellular environment, which alerts resident immune cells and recruits new             
immune cells from distant lymph nodes and bone marrow. We model long distance signaling by               
assuming that cytokine molecules in the extracellular environment exfiltrate the infection site            
and are transported to lymph nodes to initiate immune cell maturation (T2-L1). Recruited             
immune cells are then transported and infiltrate the infection site (L1-Immune Cell). 

Immune cell component 
In the immune cell component, the model accounts for activation and chemotaxis of             

immune cells due to cytokine signaling and the cytotoxic effects of immune cells on epithelial               
cells due to antigen recognition or oxidizing agents.  

I1 - Immune cell activation:  
Model of immune cell maturation due to cytokine signaling. Immune cells mature at the              

recruitment site before being transported to the infection site. Additionally, we assume that upon              
infiltration, immune cells need to be exposed to local cytokine signals before exhibiting active              
immune cell behavior (T2-I1). Once activated, immune cells amplify immune signaling by            
releasing cytokine molecules into the extracellular environment (I1-T2). 
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I2 - Immune cell chemotaxis:  
Model of immune cell local recognition and motility towards infection sites. We assume             

that upon activation (I1-I2), immune cells move preferentially towards higher concentrations of            
the local cytokine concentration field (T2-I2). 

I3 - Immune cell direct cytotoxicity and bystander effect  
Model of immune cell cytotoxicity by recognition of antigen-presenting surface          

complexes. Immune cells identify target cells by recognizing antigens presented at the cell             
surface as indicators of viral infection. Upon recognition, immune cells induce the caspase             
cascade resulting in apoptosis of the target cell. We model direct immune cytotoxicity by              
assuming that immune cells move towards infected cells (I2-I3) and trigger cell death of infected               
cells upon contact (I3-E4).  

I4 - Immune cell oxidizing agent cytotoxicity  
Model of immune cell cytotoxicity by recognition of high levels of diffusive cytokines in              

their local environment. Immune cells release an oxidizing agent into the environment upon             
sensing high local levels of diffusive cytokine, which in turn indiscriminately kills epithelial cells.  

Extracellular environment component 
In the tissue component, the model accounts for the extracellular transport of viral             

particles, cytokine signaling molecules, and an oxidizing agent.  

T1 - Viral transport  
Model of diffusion of viral particles in the extracellular environment. Viral particles are             

transported by different mechanisms (ciliated active transport, diffusion) and media (air, mucus)            
at different physiological locations and through different types of tissue (airway, nasopharyngeal            
track, lung). We assume that we can generalize these mechanisms by representing transport of              
viral particles as a diffusive chemical field in the extracellular environment. We model transport              
on a thin layer above the apical surfaces of epithelial cells where viral particles are deposited                
and transported. Infection of susceptible cells occurs when the diffusive viral field comes into              
contact with the cell surface and a finite uptake of virus results (T1-E1). Infected cells with                
internal assembled virus above a threshold release viral particles to the extracellular            
environment as a result of the viral replication cycle (E3-T1).  

T2 - Cytokine transport 
Model of diffusion of small immune signaling molecules in the extracellular environment.            

The immune response involves multiple signaling molecules acting upon different signaling           
pathways, but we assume that the complexity of immune signaling can be functionally             
represented using a single chemical field diffusing in the extracellular environment. Once            
infected, epithelial cells secrete signaling molecules to alert the immune system (E3-T2).            

 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 7, 2020. ; https://doi.org/10.1101/2020.04.27.064139doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.27.064139
http://creativecommons.org/licenses/by/4.0/


Cytokine signaling has both local and distant effects. Locally, exposure to cytokine signaling             
results in activation of newly recruited immune cells (T2-I1). Upon activation, immune cells             
further infiltrate the tissue towards infection sites guided by the cytokine molecules (T2-I2).             
Lastly, active immune cells amplify the immune signaling by further secreting cytokines into the              
extracellular environment (I1-T2). We model long range effects by assuming cytokine exfiltrate            
tissue and is transported to immune recruitment sites (T2-L1). We assume that the local              
strength of the cytokine signal causes an increase in the strength of the signal at the immune                 
recruiting sites. We model transport of cytokines through the lymphatic system and bloodstream             
with delays to account for exfiltration and recruitment. 

T3 - Oxidizing agent burst 
Model of diffusion of a general oxidizing agent. One of the cytotoxic mechanisms of              

immune cells is the release of different oxidizing agents, reactive oxygen species (ROS) like              
H2O2 and nitric oxide (NO). The mechanism of action of such agents varies depending on the                
agent but we assume we can generalize such effects by modeling a single diffusive oxidizing               
agent field in the extracellular environment. The oxidizing agent is secreted by active immune              
cells after persistent exposure to cytokine signals (I4-T3). We assume that the range of action of                
the oxidizing agent is short. Cell death is induced in epithelial cells when they come into contact                 
with the oxidizing agent (T3-E4).  

Quantitative model and implementation 
For our model construction and integration we use the open-source multicellular           

modeling environment CompuCell3D (www.compucell3d.org ) which allows rapid and compact         
specification of cells, diffusing fields and biochemical networks using Python and the Antimony             
language [36,62]. Compucell3D is specifically designed to separate model specification          
(conceptual and quantitative models) from the details of model implementation as a simulation             
and to make simulation specification accessible to biologists and others not specialized in             
software development. In this work we have specifically designed the Python modules and their              
cross-scale integration to have clear and stable APIs, allowing the model elements to be rapidly               
swapped out by collaborating developers. CompuCell3D runs on Windows, Mac and Linux            
platforms without change of model specification. Recent versions allow cluster execution for            
parameter exploration. 

Cellular Potts model (CPM) 

Cell types 

Cells are divided into two classes‒epithelial and immune‒and assigned a phenotype by            
which various modules behave. These phenotypes can change according to outcomes of            
various modules, and a module specifying such an event describes both the initial and final               
phenotypes of the transition, as well as the conditions of its occurrence. As such, a cell                
phenotype in the model framework is not a phenotype in the biological sense (e.g., epithelial               
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cell), but rather serves as an identifier for the various states that a particular cell class can take                  
(e.g., dead epithelial cell) due to events defined by the modules. Epithelial cells can adopt one                
of three different phenotypes: uninfected, infected and dead. The specific behaviors of each cell              
phenotype are defined per module as relevant to their purpose. When an epithelial cell changes               
to a dead type, all epithelial modules are disabled and the cell is generally inactive.  

Cellular dynamics 
Cellular spatial dynamics is modeled using the Cellular Potts model (also known as             

CPM, or Glazier-Graner-Hogeweg model), which represents generalized cells and medium as           
occupying a set of sites in a lattice [63]. Cell random motility is modeled as the stochastic                 
exchange of sites at the interface of cells and medium so to minimize the system’s effective                
energy  that governs various behaviors, ℋ   

 

  (1) (v ) .  ℋ = ∑
 

σ
λvolume (σ) − V (τ )(σ) 2 + ∑

 

x
∑
 

x∈N (x)′
1( − δσ(x), σ(x )′ ) J (τ τ )(σ )(x) ,  (σ )(x )′ + ℋchemotaxis  

 
Here is the identification of a cell and is the type of cell . and are the σ         τ (σ)       σ  v (σ)   V (σ)    
current and target volumes of cell , respectively, and is a volume constraint coefficient.      σ    λvolume       

is the neighborhood of site , is the Kronecker-delta, and is the effectiveN (x)       x  δi, j       J (τ , τ ) ′     
contact energy between types and . The final term models directed motility by    τ   τ ′      ℋchemotaxis      
chemotaxis, and is prescribed by modules. For every spin flip attempt, a site in the lattice is             x      
randomly selected, as is a site in its neighborhood. The change in the effective system      x′       ℋ  Δ      
energy is calculated due to the identification at being changed (i.e., “flipped”) to the  ℋ         x        
identification at the neighborhood site , and the spin flip occurs with a probability according to     x′            
a Boltzmann acceptance function,  
 

                                            (2).  Pr (σ )(x) → σ (x )′ = e−max 0, 
 

{ ℋ*
Δℋ}  

 
Here the intrinsic random motility controls the stochasticity of spin flips, and spin flips that      ℋ*            
reduce the effective system energy are always accepted. The unit of simulation time is the               
Monte Carlo step (MCS)‒taken to be 1/30 hours in this work‒which demarcates the             
accomplishment of having considered a number of spin flips equal to the number of lattice sites.                
For full details of CPM see [63]. 

Epithelial modules 
The four processes E1-E4 capture epithelial cell functions as defined below. Each of             

these processes governs the progression of an uninfected epithelial cell through infection and             
on to apoptosis. This progression is illustrated in Figure 9.  
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Figure 9: State diagram and interactions of epithelial cells . Epithelial cells can adopt one of four ‘cell types’:                  
uninfected, infected, infected secreting and dead. Uninfected cells transition to infected cells when the viral uptake                
model internalizes viruses from the extracellular environment. Early infected cells continue uptaking virus from the               
extracellular environment and transition to infected secreting cells when the viral replication model produces sufficient               
newly assembled virions. Infected secreting cells secrete viruses according to the viral secretion module and secrete                
cytokines directly into the extracellular environment. Infected secreting cells can transition to dead cells if the                
conditions of the viral cell death model are met.  

E1 - Viral internalization 
Internalization of virus is a discrete process by which a viral particle binds to one or more                 

cell receptors. To capture the stochasticity associated with discrete binding events, we assign             
each uninfected and infected cell a probability of absorbing diffusive viral particles from the              
extracellular viral field. The uptake probability for each cell is given by a Hill      (Uptake(cell) )  Pr > 0          
function of the total amount of diffusive viral particles in the domain of the cell , the               (cell)cvir   
number of unbound cell surface receptors  and the binding affinity between them.R(cell)  S   

 

  where                          (3)(Uptake ) ,Pr > 0 =  (c (cell))vir
hupt

(c (cell)) +Vvir
hupt

upt
hupt

V . upt =
R ko of f

2k V ol(cell)SR(cell)on
 

 
Here is a Hill coefficient, is the initial number of unbound cell receptors, is the hupt      Ro           kon    
association constant between virus and cell surface receptors, is the dissociation constant         kof f      
and is the cell volume. At each simulation time step the uptake probability is evaluated ol(cell)V                
against a uniformly distributed random variable. When uptake occurs, the uptake rate is             
proportional to the local amount of the viral field, and the probability of uptake is used to                 
describe the efficiency by which uptake occurs,  
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                                           (4)ptake (Uptake )cU = 1

Δt Pr > 0 vir (cell) ,  
 

                                                           (5)− ptake.dt
dSR(cell) = U  

 
Here is the time of one MCS. The amount absorbed by each cell is uniformly subtracted from tΔ                  
the viral field over the cell’s domain and the number of unbound receptors and passed to the                 
cell’s instance of the viral replication model according to conservation of species. We assumed              
that epithelial cells continue uptaking viral particles from the environment after infection until cell              
receptors are depleted.  

E2 - Viral replication  
Our simple proof-of-concept viral replication model was inspired by discussions with Paul            

Macklin and has a form similar to that published by Macklin and coworkers but differs in                
equations and parameters [57]. It represents the replication of a generic virus and does not               
include several aspects of viral replication specific to coronaviruses and their timescales. The             
system of ordinary differential equations modeling the viral replication process is assigned as an              
independent copy to each uninfected and infected cell. The model contains four variables             
representing different states of the viral replication process: unpacking , replicating ,         U   R  
packing , and assembly of new virion capsids .P A   
 

                                                         (6)ptake U ,dt
dU = U − ru   

 
                                                   (7)U  R  R,dt

dR = ru + rmax
rhalf

 

R +rhalf
− rt  

 
                                                             (8)R P ,dt

dP = rt − rp  
 

                                                        (9)P ecretion.dt
dA = rp − S  

 
Here is the unpacking rate, is the maximum replication rate, is the translation rate and  ru      rmax       rt      

is the packing rate. is defined in E1 and is defined in E3. The regulation of rp     ptake  U       ecretion  S         
replication is represented by a Michaelis-Menten function of the amount of replicating viral             
material , where is the amount of at which the replication rate is . The viral

rhalf
 

R +rhalf
   rhalf      R      2

rmax    

replication model is specified as a readily sharable Antimony string that can be implemented as               
a standalone using the Tellurium package. The number of newly assembled virion capsids is              
passed to the cell’s instance of the viral release model. See Figure 8 for a schematic of the viral                   
replication process. 
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E3 - Viral release  
Infected-secreting cells secrete diffusive viral particles into the extracellular viral field.           

The amount released is proportional to the state variable for assembled virions from the viral               
replication model,  
 

                                                         (10)ecretion A.  S = rs  
 

Here is the secretion rate of viral particles and is the level of assembled virus in the cell  rs          A           
(defined in E2). The total amount released by each cell is subtracted from the cell’s state          AΔt  rs        
variable for assembled virions once per simulation step and passed to the source term of the                
extracellular viral field according to conservation of species.  

E4 - Virally induced apoptosis 
Each infected-secreting cell can initiate apoptosis once per simulation step (along with            

other death methods) as a stochastic function of the state variable for assembled virions from               
the viral replication model. Infected-secreting cells change cell type to dying cell and their              
instances of the viral internalization, replication and release models are disabled. The probability             
of virus-induced apoptosis per unit time is a Hill equation of the current load of assembled virus                 
(in future versions could also depend on a health state of cell, on the total number of virus                  
produced and on the current rate of production of virus),  
 

           (11),Pr (Type ying|Type nfected Secreting)(cell) → D (cell) = I = (A(cell))hapo

(A(cell)) +Vhapo
apo

hapo  

 
where is the number of assembled virions, is a Hill coefficient and is the (cell)A        hapo      V apo    
amount of assembled virions at which the apoptosis probability is 0.5 per simulation step.  

Lymph node modules 

L1 - Immune cell recruitment 
The total immune cell population is governed by an ordinary differential equation of a              

dimensionless state variable that represents immune response due to local conditions and    S           
long-distance signaling. Our convention is that when , immune cells are recruited to the        S > 0        
simulation domain; likewise, immune cells are removed from the simulation domain when .             S < 0  
We accomplish this by imposing probability functions describing the likelihood of immune cell             
seeding and removal,  
 

                                         (12)rf   S  Pr (add immune cell) = e (α S)immune ,  > 0  
                                    (13)rf  S  Pr (remove immune cell) = e (− S)αimmune ,  < 0  
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Here the coefficient controls the sensitivity of immune cell addition and removal to the   αimmune             
state variable . The dynamics of are cast such that, in a homeostatic condition, a typical   S      S            
number of immune cells can be found in the simulation domain, and production of cytokine in                
the simulation domain results in additional recruitment via long-distance signaling (i.e., with            
some delay). We accomplish this by using the feedback mechanisms of the total number of               
immune cells in the simulation domain and a fraction of the total amount of decayed  N immune               
cytokine . Here is the total amount of decayed cytokine in the simulation domain and δαsig   δ              

models signaling by transmission of cytokine to some far-away source of immune0 < αsig < 1              
cells. With these mechanisms, we write the rate of change of  as S   
 

                                    (14)dt
dS = N α δ S.  βadd − βsub immune + βdelay sig − βdecay  

 
Here and control the number of immune cells in the simulation domain under  βadd    βsub             
homeostatic conditions, controls the delay between transmission of the cytokine and   βdelay           
immune response, and  controls the return of  to an unperturbed state (i.e., ). βdecay  S  S = 0  
At each simulation step the seeding probability is evaluated against a uniformly distributed             
random variable. To determine the seeding location, the simulation space is randomly sampled,             
and immune cells are seeded at the unoccupied location with the highest amount of the viral                
field. If no location is unoccupied, then the immune cell is not seeded. The removal probability is                 
evaluated against a uniformly distributed random variable for each immune cell at each             
simulation step. Immune cells are removed by setting their volume constraint to zero.  

Immune cell modules 
Four processes I1-I4 capture immune cell functions which are defined below. These            

processes control how immune cells are activated, move, and kill other cells. Their interactions              
with epithelial cells and other model components are illustrated in Figure 10. 
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Figure 10: State diagram and interactions of Immune cells. Immune cells can adopt two different generalized                
states: inactive and active. Inactive immune cells are recruited by the cytokine levels according to the immune                 
recruitment module. Transition from inactive to active immune cells is determined by the immune activation module                
when cells are exposed to cytokine. Active immune cells amplify the cytokine signal by secreting cytokines to the                  
extracellular environment. Active immune cells induce death of epithelial cells by direct cytotoxicity when coming into                
contact with infected cells, bystander effect by killing neighbors of infected cells and by releasing cytotoxic oxidizing                 
agents into the extracellular environment.  

I1 - Immune cell activation 
Immune cells have an associated boolean activity state. All cells are initialized as             

inactive. The activated state becomes true with a probability according to a Hill equation of the                
total cytokine bound to the cell ,Bcyt (immune cell, t)   

 

   (15).Pr (activated rue|activated alse)(immune cell, t) = T (immune cell, t t) − Δ = F =
B (immune cell, t)( cyt )hact

B (immune cell, t) +V( cyt )hact act
hact

 

 
After one hour, an activated immune cell is deactivated, in which case evaluations of activation               
recommence. The immune cells “forget” a percentage the cytokine they have bound each time              
step while taking up an amount of cytokine ( ),ωcyt (immune cell, t)  
 

              (16)BBcyt (immune cell, t) = ρcyt cyt (immune cell, t Δt) −  + ωcyt (immune cell, t) .  

I2 - Immune cell chemotaxis 
Activated immune cells experience a motile force as a response to a signaling field. The               

immune cells chemotax on the chemical field representing cytokine signaling molecules. The            
chemotactic function measures the local gradient of the cytokine field and computes the             
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effective energy associated with the gradient according to a prescribed chemotactic   ℋchemotaxis           
sensitivity parameter and calculated chemotactic force . The contribution of  λchemotaxis      F chemotaxis     

to the change in the system’s total effective energy is calculated using when ℋchemotaxis              F chemotaxis   
considering spin flips. The chemotactic force is saturated by normalizing the chemotactic            
sensitivity parameter by the local concentration ,(cell)ccyt  
 

                                                         (17)∇c .F chemotaxis = λchemotaxis
1+c (cell)cyt cyt  

I3 - Immune cell direct cytotoxicity and bystander effect 
Immune cells, whether activated or not, kill infected cells by direct contact. At each              

simulation step, neighbors of infected cells are evaluated. Apoptosis is triggered in an infected              
cell if it has an immune cell as one of its neighbors, in which case the cell changes type to dead.                     
When an infected cell is killed by direct cytotoxicity, each of its first order neighbors is evaluated                 
for bystander effect cytotoxicity. The neighbors have a probability of dying from bystander effect: 
 

        (18).  Pr (Type ying | Neighbor irect Cytotoxicity True )(cell) → D (cell)D =  = kbystander  
 
Here is the probability of a neighbor cell dying from bystander effect as a result of  kbystander                 
contact direct killing of an infected cell. 

I4 - Immune cell oxidizing agent cytotoxicity 
Immune cells when detecting a high cytokine concentration will release a short-range,            

diffusive oxidizing agent. The oxidizing agent kills any epithelial cell when its concentration             
inside the cell exceeds a minimum concentration for death, .τ oxi

death   

Extracellular environment modules 

T1 - Viral transport 
The change in concentration of the viral field is calculated at each location in the        cvir        

simulation domain by solving a reaction-diffusion equation using the following partial differential            
equation,  
 

          (19)Δc c (x)∂t
∂c (x)vir = Dvir vir − γvir vir + 1

V ol(Cell(x)) (Secretion ptake )(Cell )(x) − U (Cell )(x) .  
 
Transport parameters such as the diffusion constant and decay rate are estimated       Dvir     γvir    
from the literature. Conversion factors are used to translate experimental parameter values to             
internal simulation parameters. Uptake and secretion by a cell at each location are determined              
using the viral internalization (E1) and the viral secretion (E3) modules, and are uniformly              
applied over all sites of the domain of the cell.  
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T2 - Cytokine transport 
The change in concentration of the cytokine field is obtained by solving a        ccyt       

reaction-diffusion equation of the following general form,  
 

                                                  (20)Δc c .∂t
∂ccyt = Dcyt cyt − γcyt cyt + scyt  

 
The decay term represents cytokine leaving the simulated domain (e.g., in immune   cγcyt cyt           
recruitment). Infected cells secrete cytokine with a maximum rate , immune cells in         σcyt (infected)     
an activated state secrete cytokine with a maximum rate , and immune         σcyt (immune activated)    
cells (irrespective of their activated state) consume cytokine with a rate to model           ωcyt (immune)    
the binding of cytokine. The amount of cytokine released is mediated by a Hill equation. The                
input for the Hill equation for the infected cells is the internal viral load while for the activated                  
immune cells it is the cytokine field being sensed, 
 

 where                                      (21) σ(type) H(input; ζ),  scyt =    (x;  ζ)  .H  = x2

x + ζ2 2  

 
Here  is the dissociation coefficient.ζ   

T3 - Oxidizing agent transport 
The oxidizing agent field secreted by immune cells with an activated state diffuses             

according to the transport equation,  
 

                                                 (22)Δc c .∂t
∂coxi = Doxi oxi − γoxi oxi + soxi  

 
Bursts of oxidizing agent are implemented as a source term for one time step at a rate of                  

, which is uniformly mapped onto the source term . An oxidizing(immune activated oxi)  σoxi −            soxi    
burst occurs in immune cells with an activated state when the cytokine in the immune cell’s                
domain exceeds a threshold .τ oxi

sec  

Initial and boundary conditions 
All simulations consisted of a domain of dimension 90 x 90 x 2 lattice sites. The initial                 

cell configuration consisted of a 30 x 30 sheet of uninfected epithelial cells, each of size 3 x 3,                   
on the lower layer of lattice sites. Epithelial cells were “frozen”, in that they were not permitted to                  
translocate, leaving the remaining 90 x 90 subdomain for occupancy by recruited immune cells.              
For cellular dynamics and mass transport, periodic boundary conditions were applied in the             
plane of the epithelial sheet, and Neumann conditions were applied along the direction             
orthogonal to the epithelial sheet. All field solutions for the diffusive viral, cytokine and oxidizing               
agent fields were initialized as zero everywhere.  
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At each first simulation step, the epithelial cell in the center of the sheet was set to                 

infected, and its unpacking state variable of the viral replication model was set to a value of      U             
one. All epithelial cells were initialized with a number of unbound surface receptors . All              SR = Ro   
immune cells, when introduced to the simulation by recruitment, were initialized not in an              
activated state, and with a boundy cytokine value equal to zero ( ). During transition of           Bcyt = 0     
an epithelial cell to the infected type, all state variables of the viral replication model were                
initialized with a value of zero. Secretion of viral particles by epithelial cells was only permitted                
for cells of Infected-secreting type.  

Simulation specifications 
Model implementation and all simulations were performed in CompuCell3D, which uses           

a non-dimensional lattice for CPM-based cellular dynamics and non-dimensional explicit time           
integration of reaction-diffusion field solutions. As such, a baseline parameter set was            
constructed for all CPM parameters and modules developed in this work (Table 1).             
Non-dimensionalization was performed on all available model parameters from the literature for            
a lattice dimension of 4 μm per pixel along each dimension, at 120 s per MCS. For remaining                  
model parameters, parameter estimation was performed such that, for the baseline set of             
parameters, spread of infection occurred throughout the domain by approximately the end of the              
simulation time. All parameter sets were simulated for ten trials, each consisting of 1,000 MCSs.               
Simulation data was collected at a frequency of 10 MCSs for all simulations, including the total                
number of cells for each type, the total number of activated immune cells, the total diffusive                
virus and cytokine, and the value of the immune response signal ( ), S   
 

Two parameter sweeps were performed for module parameters of interest. In the first             
set, the virus-receptor affinity and immune response delay coefficient were varied. In     kon        βdelay     
the second parameter sweep, the replication rate was varied. In the first parameter sweep,        rmax         
the varied baseline coefficient was multiplied by a factor in the set 10 -2, 10 -1, 10 0, 10 1, 10 2. In the                   
second parameter sweep, the baseline viral replication rate was multiplied by a factor in         rmax        
the set of one-eighth increments from zero to one, and the time in simulation at which the                 
baseline viral replication rate was reduced was in the set of 100 MCSs (100/30 hours)               
increments from zero to 700 MCSs (700/30 hours). As such, the first parameter sweep (Figure               
4) consisted of 25 parameter sets, and the second parameter sweep (Figures 6, 7) consisted of                
64 parameter sets, for a total of 890 simulations.  
 

Conversion Factors Value 

Simulation step t  Δ  120.0 s 

Lattice width 4.0 μm 

Scale factor for concentration 1×10-15 mol 
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Simulation parameters Value 

Cell diameter 12.0 μm 

Replication rate  rmax  1/12×10-2 s-1  

Translating rate  rt  1/18×10-2 s-1  

Unpacking rate  ru  1/6×10-2 s-1  

Packing rate  rp  1/6×10-2 s-1  

Secretion rate   rs  1/6×10-2 s-1  

Scale factor for number of mRNA per infected cell RNA  m avg  1000 cell -1 

Viral dissociation coefficient  rhalf  2000 

Viral diffusion coefficient  Dvir  0.1 μm2/s 

Viral diffusion length  λvir   36 μm 

Viral decay rate  γvir   7.71×10-5 s-1  

Cytokine diffusion coefficient  
 (IL-2 cytokine) Dcyt  

1.6 μm2/s 

Cytokine diffusion length  (IL-2 cytokine) λcyt  100 μm 

Cytokine decay rate  (IL-2 cytokine) γcyt  1.32×10-4 s-1  

Maximum cytokine immune secretion rate     
(immune activated)  σcyt  

(IL-2 cytokine) 

3.5×10-3 pM/s 

Immune secretion midpoint 1 pM 

Cytokine immune uptake rate (immune activated)  ωcyt  
(IL-2 cytokine) 

3.5×10-4 pM/s 

Maximum cytokine infected cell secretion rate (infected)  σcyt  
(IL-2 cytokine) 

3.5×10-2 pM/s 

Infected cell cytokine secretion mid-point 0.1 pM 

Immune cell cytokine activation C50  E cyt, act  1 pM 

Immune cell equilibrium bound cytokine QE ck  134.4 pM 

Immune cell bound cytokine memory  ρcyt  0.98 s-1 

Immune cell activated time 1 h 

Oxidation Agent diffusion coefficient  Doxi  6.4 μm2/s 

Oxidation Agent diffusion length  λoxi  36 μm 

Oxidation Agent decay rate  γoxi  1.32×10-4 s-1  
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Immune cell oxidation agent secretion rate      
(immune activated  σoxi oxi)  −   

3.5×10-2 pM/s 

Immune cell  threshold for Oxidation Agent release  Ccyt  τ sec
oxi  10 pM 

Tissue cell threshold for death  Coxi τ
oxi
death  1.5 pM 

Initial density of unbound cell surface receptors  Ro  200 cell -1  

Virus-receptors association affinity  kon  1.4×105  M-1s-1 

Virus-Receptors disassociation affinity  kof f  1.4×10-4 s-1 

Infection threshold 1 

Uptake Hill coefficient  hupt   2 

Virally-induced apoptosis Hill coefficient  hapo   2 

Virally-induced apoptosis dissociation coefficient  V apo   100×10-15 mol 

Immune cell activation Hill coefficient  hact   2 

Immune cell activation dissociation coefficient  V act   64×10-15 mol 

Immune response add immune cell coefficient  βadd   1 s-1  

Immune response subtract immune cell coefficient  βsub  0.2 cell -1s-1  

Immune response delay coefficient  βdelay  0.001 s-1  

Immune response decay coefficient  βdecay   0.1 s-1  

Immune response cytokine transmission coefficient  αsig   0.5 

Immune response probability scaling coefficient  αimmune  0.01 

Initial target volume 64 μm3  

Lambda volume  λvolume  9 

Initial number of immune cells 0 

Lambda chemotaxis  λchemotaxis  1 

Intrinsic Random Motility  ℋ*   10 

Contact coefficients  (all interfaces) J  10 

Table 1. Parameter values of baseline parameter set.   
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