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Abstract

Motivation: Circadian rhythms are approximately 24 hour endogenous cycles that control many biological
functions. To identify these rhythms, biological samples are taken over circadian time and analyzed using
a single omics type, such as transcriptomics or proteomics. By comparing data from these single omics
approaches, it has been shown that transcriptional rhythms are not necessarily conserved at the protein
level, implying extensive circadian post-transcriptional regulation. However, as proteomics methods are
known to be noisier than transcriptomic methods, this suggests that previously identified arrhythmic
proteins with rhythmic transcripts could have been missed due to noise and may not be due to post-
transcriptional regulation.
Results: To determine if one can use information from less-noisy transcriptomic data to inform rhythms in
more-noisy proteomic data, and thus more accurately identify rhythms in the proteome, we have created
the MOSAIC (Multi-Omics Selection with Amplitude Independent Criteria) application. MOSAIC combines
model selection and joint modeling of multiple omics types to recover significant circadian and non-circadian
trends. Using both synthetic data and proteomic data from Neurospora crassa, we showed that MOSAIC
accurately recovers circadian rhythms at higher rates in not only the proteome but the transcriptome as
well, outperforming existing methods for rhythm identification. In addition, by quantifying non-circadian
trends in addition to circadian trends in data, our methodology allowed for the recognition of the diversity
of circadian regulation as compared to non-circadian regulation.
Availability: MOSAIC’s full interface is available at https://github.com/delosh653/MOSAIC.
Contact: hurlej2@rpi.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Circadian rhythms are 24-hour endogenous cycles, reinforced by external
cues. They allow an organism to optimize the timing of their cellular
physiology to regulate biological processes in anticipation of the earth’s
day/night cycle, thereby conferring an evolutionary advantage (Dunlap,
1999). Many processes, such as metabolic regulation, immune function,
and sleep, are under the regulation of the circadian clock (Decoursey

et al., 1997; Klarsfeld and Rouyer, 1998; Lévi et al., 2010; Ouyang et al.,
1998). Chronic disruption of these rhythms is strongly associated with
an increased risk of disease development, including cancer, diabetes, and
cardiovascular disease (Evans and Davidson, 2013). At the molecular level,
circadian rhythms are generated by a highly conserved circadian “clock”
comprising a transcription-translation negative feedback loop on a 24-hour
cycle (Hurley et al., 2016; Partch et al., 2014). While widespread regulation
stemming from clock components is known at the transcriptional and
translational levels, the complexity of the cellular circadian regulatory
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network is only beginning to be understood, e.g. (Hurley et al., 2014;
Robles et al., 2014; Wang et al., 2017; Mure et al., 2018).

To determine what elements of cellular physiology are under the
regulation of the circadian clock, large-scale "omics" datasets are gathered
in order to quantify RNA expression (transcriptomics) or protein levels
(proteomics) over time. Within these time courses, circadian rhythms
manifest as oscillatory expression patterns, rising and falling throughout
the day. As such, previous methods to identify circadian rhythms
have compared changes in transcript or protein levels to reference
fixed amplitude cosine waves (Wu et al., 2016; Hughes et al., 2010;
Hutchison et al., 2015). However, these methods could not account for
the prevalence of rhythms whose amplitudes change over time. This led
to the development of the Extended Circadian Harmonic Oscillator model
(ECHO), which introduced an amplitude change (AC) coefficient to the
standard cosine model in order to capture these changing rhythms (De los
Santos et al., 2020, 2019).

Recently, large-scale proteomics studies have shown that, though
the central dogma of biology implies that rhythmic RNA would lead
to rhythmic protein, transcript levels are often poorly correlated with
protein levels, e.g. (Schwanhäusser et al., 2011). Moreover, we know from
circadian proteomics analyses, e.g. Hurley et al. (2018), that rhythmic
RNA expression does not necessarily imply rhythmic protein expression
and vice versa (Hurley et al., 2018), These data suggest that there may be
extensive post-transcriptional regulation in the clock’s output and beyond.
The exact mechanisms of this regulation are currently unknown, though
translation and degradation are predicted to be involved (Hurley et al.,
2018; Lück et al., 2014; Collins et al., 2020).

In addition to the predicted sources of post-transcriptional regulation,
it is known that the experimental methods used to gather proteomic data
are noisier than those used to gather transcriptomic data (Hurley et al.,
2018; Crowell et al., 2018). Thus, it is possible that circadianly-timed
proteins may be missed due to higher background experimental noise
rather than a true lack of circadian oscillation in the protein. However,
if one could gain information from the underlying model for each gene in
the transcriptome, one may be able to use that to bolster our confidence
in the protein rhythmicity, or lack thereof, of the proteome (Misra et al.,
2019; Subramanian et al., 2020). In the past, multiomics data has been
used for the creation of biological networks in circadian biology and
previous multiple omics studies have identified rhythms in each omics
types separately before comparison, rather than jointly modeling them
(Hurley et al., 2018; Hughes et al., 2009; Rund et al., 2011; Patel et al.,
2012). This is likely due to the fact that, while many methods exist to
identify circadian rhythms in a single omics type (e.g. (De los Santos
et al., 2020; Hughes et al., 2010; Wu et al., 2016; Hutchison et al., 2015)),
none exist that leverage multiple omics types to identify rhythms that may
be masked by technical noise.

Further, though guidelines outlined by the circadian community for
analyzing genome-scale experiments call for statistically quantifying
arrhythmicity, traditional analyses of circadian rhythms in omics datasets
do not quantify the significance of arrhythmic trends (Hughes et al.,
2017). There is no wide-spread application for the analysis of model types
beyond oscillatory models, as previous studies that utilized arrhythmic
models applied their research only to single omics datasets with specifically
tailored models (Wang et al., 2018; Hor et al., 2019; Keily et al., 2013).
This suggests that the effects of significant rhythms can be overstated, as
circadian-regulated processes that may also be controlled by arrhythmic
genes cannot be quantified.

To address both of the above-described problems, we introduce
MOSAIC (Multi-Omics Selection with Amplitude Independent Criteria).
MOSAIC extends and augments the ECHO model by performing model
selection on circadian omics data, including both non-circadian (linear and
exponential) and circadian (ECHO and ECHO with a linear trend) models.

MOSAIC then bridges multiple omics types through joint modeling,
taking advantage of the transcriptome’s lower noise to identify rhythms
previously not recovered in the proteome. Using both synthetic data and
proteomic data from Neurospora crassa, we show that MOSAIC’s joint
modeling approach accurately recovers rhythms at higher rates in the
proteome. MOSAIC’s model selection also highlights the difference and
extent of circadian regulation in different omics types. By accounting for
universal trends, MOSAIC provides a more advantageous algorithm to
allow for the mining of more accurate omics technologies (RNA-seq) to
inform whether missed oscillations in less accurate omics technologies
(proteomics, phosphoproteomics, metabolomics, etc.) level are due to
technical noise or post-transcriptional regulation.

2 Methods
We created MOSAIC (Multi-Omics Selection with Amplitude Independent
Criteria), which utilizes less-noisy omics data to inform rhythms in more-
noisy omics data through a 4-stage workflow (Fig. 1). In stage 1, we
identified the most probable model for each gene in the omics type, in
this case the transcriptome and proteome, though other types of data are
possible. We then moved to stage 2, where we jointly modeled both the
proteome and the transcriptome based on those previously selected models.
In stage 3, we then tested these new joint models against their previous
independent models for improvement, and then moved to stage 4, where
we evaluated goodness of fit for dataset analysis.

Fig. 1. MOSAIC bridges multiple omics types to determine novel non-circadian and
circadian trends. Overview of MOSAIC’s 4-stage workflow, comprised of Model Selection,
Joint Modeling, Comparing for Improvement, and Goodness of Fit Evaluation. Data from
(Hurley et al., 2014, 2018).
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2.1 Stage 1: Model Selection

In our first stage, we identify the most probable models for each gene in
each dataset. To do this, we select from a combination of oscillatory and
non-oscillatory models:

Linear:
x(t) = αt+ y (1)

Exponential:
x(t) = Aert + y (2)

ECHO:
x(t) = Ae

−γt
2 cos(ωt+ φ) + y (3)

ECHO Linear:

x(t) = Ae
−γt
2 cos(ωt+ φ) + αt+ y (4)

where the parameters are as follows: x(t) is the resulting change in output;
t is time in hours;α is slope; y is equilibrium shift;A is initial amplitude; r
is growth rate; γ is the amplitude change (AC) coefficient; ω is frequency;
φ is phase shift. It should be noted that these models are nested, such that
(1 - 3) are special cases of (4) with specific parameters set to 0.

Linear and exponential models are commonly used as examples of
non-oscillatory data trends in the circadian literature (Deckard et al.,
2013; De los Santos et al., 2020), while the ECHO model is a commonly
used model for identifying circadian rhythms while taking into account
amplitude change (De los Santos et al., 2020). We have extended the ECHO
model to account for baseline changes over time, adding a linear term that
was previously accounted for via preprocessing methods. Representative
trends for each of these models appear in Supplemental Fig. 1.

By including both non-oscillatory and oscillatory models, we are able
to encompass the majority of noted trends in circadian omics data (De los
Santos et al., 2020; Wu et al., 2016; Deckard et al., 2013), providing for
a more accurate comparison between both individual genes and the genes
between different omics datasets. While constant models are absent from
the model selection set, the prevalence of noise in biological data means
that the slope of any omics data will realistically never be 0. Further,
difficulty in estimating goodness of fit via p-value for constant models
(as they are often the baseline implicit in null models) necessitates their
disinclusion.

2.1.1 Fitting Models to Experimental Data
To find the parameter values for (1, 2, 3, 4), we use the method of
least squares. Given experimental data for each gene in each omics type
(t, x(t)) = (t1, x(t1)), (t2, x(t2)), ..., (tn, x(tn)) and parameters β,
the method of least squares minimizes the squared difference between
experimental and fitted data as follows:

min
β

n∑
i=1

(x(ti)− f(ti, β))
2 (5)

where n is the total number of data points and f(ti, β) refer to the
equations and parameters in (1, 2, 3, 4). For the linear model, the
parameters are β = (α, y); for the exponential, β = (A, r, y); for ECHO
β = (A, γ, ω, φ, y); for ECHO Linear, β = (A, γ, ω, φ, α, y).

We use an ordinary linear least squares algorithm for the linear model
(1), since it contains no nonlinear parameters. As this always results in the
globally optimal solution, there is no need for the starting points required
by the nonlinear method; we simply use the lm function in R.

All the other models, however, are nonlinear, necessitating the use of a
nonlinear least squares algorithm. We find local solutions to this problem
using the nls.lm algorithm, implemented minpack.lm package in R,
which uses the Levenberg-Marquadt algorithm for nonlinear least squares.

Adjustments for multiple replicates for nonlinear equations are made as
in (De los Santos et al., 2020), using weighted nonlinear least squares with
weights at each time point equal to the inverse variance at each time point
(Strutz, 2010). Due to the nonconvexity of our problem, it is important we
choose the correct starting points. For each nonlinear model, we choose
starting points and final fits for our parameters based on heuristics from
the data and comparisons of different assumptions (Supplemental Section
2).

2.1.2 Model Selection for Each Gene
After all models are fit, we choose the best model for each gene using the
Bayesian Information Criterion (BIC) (Schwarz, 1978). The BIC for each
fit is specified as the following for each model fit:

BIC = −2 log(L) + log(n)k (6)

where L is the likelihood of the fit, n is the number of data points, and
k is the number of parameters. We choose the model fit with the lowest
BIC to represent the gene for the specific omics type. The two terms of
the BIC rewards a higher likelihood and penalizes a more complex model
respectively, providing a balance between choosing a highly parameterized
model and overfitting.

2.2 Stage 2: Joint Modeling

Once the best model for each gene in each omics type is selected, we seek
to address the noise in our multi-omics problem through joint modeling.
We first determine whether joint modeling is appropriate for the current
gene. If the gene is already oscillatory in both omics types, there is no
need to use joint modeling to obtain new oscillatory parameters. If the
gene is not oscillatory in either type, there is no basis for oscillations.
Thus, we joint model genes that are oscillatory in only the transcriptome
or the proteome.

If joint modeling is appropriate for a given gene, we use a joint model
in which all parameters are allowed to be free for each omics type except
for the period parameter. These are specified for each oscillatory model
using the following equations:

ECHO Joint:

xboth(tboth) = Af e
−γf tboth

2

cos(
2π

τRbR + (τR + δP )bP
tboth + φf ) + yf (7)

ECHO Linear Joint:

xboth(tboth) = Af e
−γf tboth

2

cos(
2π

τRbR + (τR + δP )bP
tboth + φf )

+ αf tboth + yf (8)

where xboth(tboth) is the concatenated experimental data for the
transcriptome and proteome for a specified gene; tboth is the concatenated
time points for the transcriptome and proteome; the subscript f indicates
parameters which are independent for the transcriptome and proteome;
τR and is the period, in hours, for the transcriptome; δP is the change
in period, in hours, for the proteome; and bR and bP are either 1 or 0
depending on whether the time point corresponds to the transcriptome or
the proteome, respectively. All other parameters retain their meaning from
(3, 4).

The specification of this joint model largely stems from the fact that we
want to "borrow" the oscillatory nature from one omics type and transfer
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it to the other. We force the proteome to maintain the same period, τR, as
the transcriptome, allowing for a slight deviation in the noisier proteome
period. This deviation is kept within the resolution of the time points;
i.e., if the time points had a resolution of 2 hours (hr), during fitting δP
would be constrained to ±2 hr. Through this joint modeling, We leave all
other parameters independent between the two omics types, as we have no
reason a priori why these should be kept the same.

We fit (7, 8) following the same procedure for nonlinear least squares
(5) as described in Section 2.1.1. The final parameter fits of the joint
model are obtained by comparing the results of two separate starting point
regimes. The first results are obtained using the starting points derived
from the averaged experimental data (Supplemental Section 2). The second
results are obtained by using the results from a completely joint fitted model
as starting points; that is, by eliminating δP in (7, 8). That completely joint
model in turn uses the starting points to obtain its fit (Supplemental Section
2). In both starting point scenarios, δP is initially set to 0. The results of
both starting point scenarios are chosen based on the fit with lowest AIC
(Akaike, 1974). While leveraging these multiple starting points seems
roundabout in theory, in practice, both starting points sets are chosen in
relatively equal measure, yielding better fits overall.

2.3 Stage 3: Model Comparison

If joint modeling has been selected for the gene, we then move to
determining whether the joint model produced a better parameter fit than
either of the data fits individually. In order to determine this, we represent
our individual models with parameters for the transcriptome and proteome
fit separately as a joint model with completely free variables, where there
is no dependence between the transcriptome and the proteome. This free
representation allows for a correct comparison based on the amount of
fitted data points. We then choose between these models using the BIC,
selecting the joined model with the lowest BIC, as in Section 2.1.2.

2.4 Stage 4: Goodness of Fit Evaluation

Once we have chosen the best models to fit the experimental data, we
need to determine whether the resulting fit approximates the data well. We
estimate this goodness of fit by computing the p-value using Kendall’s tau
rank correlation coefficient, which measures the concordance between two
series of data (De los Santos et al., 2020; Hutchison et al., 2015). We use
the p-value corresponding to the exact Kendall’s tau distribution. P-values
calculated in this manner are reported for the transcriptomic and proteomic
fits and the joint fit, if available. Further, if the selected model is linear, we
also report the slope coefficient p-value, as calculated by the standard t-test
by the lm function in R. All p-values are adjusted for multiple hypothesis
testing using the Benjamini-Hochberg method and use this adjusted 0.05
cutoff, unless otherwise noted.

2.5 The MOSAIC Application

In order to facilitate ease of use, we have built the MOSAIC functionality
into an app that allows users to find multi-omics trends and visualize the
results, built using R Shiny (Wu et al., 2014) (Supplemental Section 3, Fig.
2). This interface is available on GitHub1. When running MOSAIC through
this application, a variety of automatic preprocessing functionalities are
available, including weighted smoothing, normalization, and removal of
unexpressed genes (De los Santos et al., 2020) (Supplemental Fig. 2A).
Further, specifications for period range (including the possibility of a "free
run", where no period range is specified) and changes to AC coefficient
cutoffs for oscillatory models are also available. Automatic visualization
for MOSAIC results include summary graphs for omics comparisons, gene

1 https://github.com/delosh653/MOSAIC
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Fig. 2. MOSAIC recovers models accurately regardless of data characteristics. A. AUCs for
all models for synthetic transcriptome and proteome data at the best (2 hour resolution, low
set noise) and worst (6 hour resolution, high set noise) sampling conditions for either one or
two replicates. B. Heat map of how many oscillatory genes were recovered after the addition
of joint modeling in MOSAIC, for varying noise and resolutions with 1 replicate using the
synthetic transcriptomic and proteomic data. Annotations in each condition indicate the
amount of oscillatory genes added after joint modeling.

expression plots, heat maps, and parameter density graphs (Supplemental
Fig. 2B - F).

3 Results

3.1 MOSAIC Accurately Recovers Disparate Models
Through Model Selection and Joint Modeling

To evaluate MOSAIC’s effectiveness, we applied MOSAIC to generated
synthetic datasets with each of our represented model types (Supplemental
Section 4.1). We generated 12,000 genes for each omics type and condition,
in a ratio of 2:1 non-circadian to circadian (8000 linear and exponential,
4000 of ECHO, ECHO linear, and their joint models) in order to mimic
genome-wide datasets. These datasets were varied in sampling resolution
(2, 4, 6 hours), replicates (1, 2, 3), and noise (low, medium, and high sets).
To simulate the higher noise in proteomic data, we adjusted the synthetic
"proteomic" data to have consistently higher noise than the "transcriptome"
at all levels, hence creating noise "sets" (Supplemental Section 4.1.1).

To evaluate the efficacy of our modeling, we began by estimating
AUCs for each model type using the ROC for the synthetic data
(Fig. 2A, Supplemental Section 4.2, Tables 3 to 8). As expected, all
models decreased in accuracy as noise increased and resolution/replication
decreased, with larger decreases in the protein datasets. However, not
all models decreased in accuracy at the same rate. Exponential models
maintained the highest accuracy relative to other model classifications.
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Fig. 3. MOSAIC recovers more circadian genes than other analysis methods. A. F1-scores
from several noise, resolution, and replicate levels in synthetic data for all tested methods,
evaluated at a BH p of 0.05. B. Scatter plots of (1-FDR) versus TPR at three BH p cutoffs
for synthetic transcriptome and proteome data, calculated at the best (2 hour resolution,
LS) and worst (6 hour resolution, HS) sampling conditions for one and two replicates. LS
= Low Noise Set, MS = Medium Noise Set, HS = High Noise Set.

ECHO linear models showed the lowest accuracy rate. With increased
replicates, accuracy increased throughout all models, though this was
especially seen in linear model accuracy rates.

To explain this accuracy, we looked at the model misclassifications for
each condition and omics type (Supplemental Section 4.2, Fig.s 4 to 6). At
one replicate, the misclassification percentage increased with increasing
noise and decreasing resolution at higher levels in the protein, as one
would expect. However, several notable trends emerged. First, we noted
that synthetic ECHO and ECHO Linear data were only misclassified into
the other oscillatory model category, indicating that MOSAIC accurately
identifies oscillatory models and explaining the supposedly low accuracy
rate of ECHO linear models. Further, among most model types with the
exception of exponential models, if the data was classified by the correct
model, the BH-adjusted p-value was almost always below the 0.05 cutoff.
With increasing replicates, these notable trends largely held and overall
misclassification decreased.

We also investigated the ability of MOSAIC to jointly model and
recover proteins by observing how many oscillating synthetic proteins
were recovered before and after joint modeling at varying conditions
(Fig. 2B, Supplemental Section 4.2, Fig. 7). With only one replicate,
more oscillating proteins were recovered as noise increased and resolution
decreased, with as many as 45 oscillating proteins rescued in the synthetic
datasets, demonstrating the value of MOSAIC in high noise and low
replicate situations (i.e. those found commonly in real omics data).
These trends largely held with increasing replicates (Supplemental Fig,
7). However, when holding fixed resolution and varying the amount
of replicates, we noted a boomerang effect; the amount of recovered
proteins by joint modeling increased overall from one to two replicates,
then decreased from two to three replicates. This phenomena suggests
just enough information was added by two replicates to enhance joint
modeling, but at three replicates, enough information was added to have
high recovery in initial modeling. This explanation is bolstered by the
overall counts of oscillatory genes before and after joint modeling in all
scenarios. Surprisingly, though largely unaffected, at high noise levels,
joint modeling was also able to rescue several oscillating transcripts.
Overall, this demonstrated that joint modeling recovers large amounts of
genes in the proteome, while losing little in the transcriptome.

3.2 MOSAIC Exceeds Common Methodologies in
Recovering Circadian Rhythms

MOSAIC can be reduced to a circadian rhythm identification method
by classifying its models as oscillatory and non-oscillatory. With this
reduction, we used our synthetic data to compare MOSAIC to other
commonly used methods for circadian rhythm identification: ECHO
(De los Santos et al., 2020), JTK_CYCLE (JTK) (Hughes et al., 2010),
and MetaCycle (Wu et al., 2016).

We first determined the F1-scores, a measure of accuracy ranging
from 0 to 1, of all the methods at several BH-adjusted p-value cutoffs
(Fig. 3A, Supplemental Section 4.2, Fig.s 8 to 10). The F1-scores of
all methods decreased with increasing noise and resolution, though in
different patterns. MOSAIC demonstrated high F1-scores regardless of
condition, with a slight decrease with increasing sample resolution, though
these decreases were mitigated by increasing replication. ECHO also
maintained high F1-scores. JTK’s F1-scores were strongly impacted by
increasing noise, and decreasing resolution and replication, decreasing to
0 as noise increased and resolution decreased to one replicate. Though
not as strongly as JTK’s, MetaCycle’s F1-scores decreased in a similar
manner.

To understand what accuracy tradeoffs we are making by using
MOSAIC, we observed how BH-adjusted p-value cutoffs affected true
positive rates (TPR) and false discovery rates (FDR) for each model (Fig.
3B, Supplemental Section 4.2, Fig.s 11 to 13). These rates were measured
at different levels of noise, resolution, and replication. In general, all
methods follow the pattern of decreasing overall accuracy as a balance of
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TPR and FDR as noise increases and resolution and replication decrease.
Regardless of omics type, noise level, resolution, or replication, MOSAIC
maintained a very high, if not perfect, TPR (Fig. 3B). However, increasing
resolution had a strong impact on the MOSAIC FDR, though this effect was
largely mitigated by increasing replicates. MOSAIC did not experience
significant variation in TPR or FDR with increasing BH-adjusted p-value
cutoffs, indicating low and stable p-values. While it did not have as high a
TPR as MOSAIC, ECHO had a high TPR while maintaining a low FDR
throughout all conditions (Fig. 3B). Increases in the BH-adjusted p-value
cutoff were most impactful at high noise and low resolution/replication.
JTK retained an extremely low FDR in all conditions (Fig. 3B). However,
this came at the cost of a very low TPR, which decreased steeply with
decreasing resolution and replication until the TPR became 0. MetaCycle
largely followed JTK’s trends, though with a higher TPR (Fig. 3B).
This shows that, at all conditions, MOSAIC recovers more true circadian
genes than other methods in both omics types, with false positives in the
worst conditions mitigated by increasing by even one replicate. As such,
MOSAIC is the optimal method for the recovery of true circadian genes,
with the caveat that this comes with the tradeoff of an increased FDR.

3.3 MOSAIC Increases Recovery and Understanding of
Circadian Regulation in Neurospora crassa

To demonstrate MOSAIC’s efficacy on real data, we applied our method
to publicly available transcriptomic and proteomic data from Neurospora
crassa (Hurley et al., 2014, 2018) (Supplemental Section 4.3). Of the
4741 genes in common between the transcriptomic and proteomic datasets,
prior to joint modeling MOSAIC found 4281 (90.3%) significant trends
in the transcriptome and 2946 (62.1%) significant trends in the proteome.
After joint modeling, MOSAIC found 4302 (90.7%) significant trends in
the transcriptome and 3124 (65.9%) significant trends in the proteome,
resulting in a total increase of 21 (0.4%) and 178 (3.8%) significant trends
in the transcriptome and proteome respectively.

We next focused on joint modeling’s effects on increasing the
identification of significant oscillatory trends. Before joint modeling,
MOSAIC identified 3281 (69.2%) oscillating transcripts and 1132 (23.9%)
oscillating proteins. After joint modeling, both omics types saw an increase
in oscillatory trends, with joint modeling identifying 3324 (70.1%)
oscillating transcripts and 1465 (30.9%) oscillating proteins, resulting
in a total increase of 43 (0.9%) and 333 (7.0%) significant oscillatory
trends in the transcriptome and proteome, respectively. Notably, we found
increased identification not only at the proteomic level, but also in the
transcriptome, suggesting that the incorporation of multiple omics types
helps the recovery of oscillations from all types of omics data. Further, as
there were more oscillatory rhythmic trends rescued than the total increase
in significant trends, this suggests that the identification of oscillatory
trends is bolstered by joint modeling.

RNA (4302 total) Protein (3124 total)
Linear 640 1148

Exponential 338 511
ECHO 1051 625

ECHO Joint 133 125
ECHO Linear 1883 465

ECHO Linear Joint 257 250
Table 1. Model distributions suggest differential circadian regulation
throughout the central dogma. Counts of significant model fits in transcriptomic
and proteomic data from Neurospora crassa, as determined by MOSAIC,
shows significant differences in the numbers of oscillating and non-oscillating
transcripts and proteins.

When examining the overlap of circadian transcripts and proteins,
we found that 1193 were oscillatory at both the transcriptomic and
proteomic levels, while 2131 were oscillatory only in the transcriptome,
and 272 were oscillatory only in the proteome, meaning that 18.5% of
the identified proteome oscillates independently of the transcriptome.
Hurley et al. (2018) found that 40% of the potential proteome oscillated
independently of the transcriptome. Our joint modeling suggests that some
of this discrepency came from noise in the proteomic data set. However,
the maintenance of a 18.5% discrepancy between the transcriptome and
proteome, despite recovering more genes than in the original proteomics
study, solidifies the vital role of post-transcriptional regulation on circadian
rhythms (Hurley et al., 2018).

We also noted that there were distinct distributions of model types
between the transcriptome and proteome (Table 1). Of the 4302 transcripts
whose trends we successfully modeled, the vast majority of the models
were oscillatory (77.2%). By contrast, the proteins we successfully
modeled had a much smaller percentage of oscillatory models (46.8%).
Instead, the proteome was best modeled by linear and exponential models,
with linear models representing the majority of non-oscillatory models.
This discrepancy between the transcriptome and the proteome suggests
that the circadian clock may more broadly regulate RNA as compared to
protein.

To further understand the difference in circadian regulation between
the transcriptome and proteome, we performed gene ontological (GO)
analysis (Supplemental Section 4.3). GO analysis revealed several notable
trends in the distributions of biological process parent categories between
non-circadian and circadian transcripts and proteins (Fig. 4). Principally,
though metabolic processes and localization were the primary parent
processes in all categories, oscillatory transcripts and proteins controlled a
more diverse range of biological processes than non-oscillatory transcripts
and proteins (Fig. 4A, B). Non-oscillatory transcripts were exclusively
enriched in the parent processes of reproduction and developmental
process, while oscillatory transcripts were more varied, with enrichment
in parent processes related to response to stimulus, growth, rhythmic
processes, and several others (Fig. 4A). In the proteome, parent
processes exclusive to oscillating proteins showed a diverse set of
physiological processes, including response to stimulus, rhythmic
processes, reproduction, and multicellular organismal processes (Fig. 4B).
Meanwhile, non-oscillating proteins were more limited in unique GO term
categories, with only localization uniquely enriched.

Parental process distribution differences between non-oscillatory
and oscillatory transcripts and proteins were further emphasized when
examining the third-level children of the parent process (Fig. 4C and
D). Oscillatory transcripts were exclusively enriched in many third-level
children, including circadian rhythm (BH p = 3.9e − 2), response to
stress (BH p = 9.7e − 9), and cellular component biogenesis (BH p =

2.1e−15) (Fig. 4C). Non-oscillatory transcripts were exclusively enriched
only for asexual reproduction (BH p = 3.5e − 2). In the proteome,
response to stress (BH p = 2.0e − 4), regulation of biological quality
(BH p = 3.1e − 2), and asexual reproduction (BH p = 9.21e − 3)
were uniquely enriched in oscillatory proteins (Fig. 4D). Non-oscillatory
proteins were exclusively enriched in cellular localization (BH p =

2.3e− 6) and macromolecule localization (BH p = 9.6e− 5).

4 Discussion and Conclusion
We present MOSAIC, a novel method that can utilize joint modeling in
multi-omics datasets to enhance the discovery of oscillating trends in
circadian data, overcoming the noisiness that can hinder the discovery
of oscillatory proteins in proteomic datasets (Fig. 1). Further, MOSAIC
allows for the identification of non-oscillatory trends in omics data, thus
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Fig. 4. MOSAIC reveals distinct effects of circadian regulation between the Neurospora transcriptome and proteome. A and B. Percentages of significant GO terms, categorized by their
second-level parent, for the circadian and non-circadian transcriptome (A) and proteome (B) in Neurospora crassa. Labeled numbers correspond to the second-level parent category, and
numbers in parentheses indicate the total amount of significant terms corresponding to the category. C and D. Bar plots of negative log BH-adjusted p-values of third-level GO terms in
transcriptome (C) and proteome (D), colored by second-level parent and with borders indicating circadian or non-circadian status.

providing a more-complete view of cellular regulation across circadian
time in omics datasets. By building MOSAIC into an easy to use
application, we have made this method accessible for any biologists
interested in exploring the trends in their omics data over time (Section 3,
Supplemental Fig. 2).

Synthetic data demonstrated MOSAIC’s efficacy in both model
recovery and joint modeling (Fig. 2), as MOSAIC robustly recovered all
potential models in the data and oscillatory gene recovery was enhanced
by joint modeling (Fig. 2A, Supplemental Fig.s 4 to 6) 2B). Synthetic
data also confirmed MOSAIC’s superior oscillatory trend identification,
as MOSAIC retained higher F1-scores and true positive rates than other
oscillatory identification methods (Fig. 3) (De los Santos et al., 2020;

Hughes et al., 2010; Wu et al., 2016). However, while false discovery
rates remained comparable to other oscillatory identification methods for
most conditions, at 6 hour resolution with one replicate, MOSAIC’s FDR
significantly increased. We therefore recommend following the guidelines
laid out in Hughes et al. (2017) as closely as possible when using MOSAIC
(Hughes et al., 2017).

In real biological data, the analysis of transcriptomic and proteomic
data from Neurospora crassa by MOSAIC identified over 300 novel
oscillatory proteins as well as 43 oscillatory transcripts. This suggests that,
despite higher overall noise levels in the proteome, jointly modeling the
transcriptome and proteome can have a mutually beneficial relationship.
This may be due to the fact that, while noise is generally higher in the
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proteome, it is not always higher in a one-to-one association, meaning a
low noise protein could help a high noise transcript. (Supplemental Fig.
3). In addition, the nonconvexity of nonlinear least squares means that
the formulation of a joint model may have allowed for the discovery of
a lower local minimum that was not found when each of the omics types
were specified separately.

MOSAIC’s use of non-oscillatory models also allows for the
exploration of truly non-oscillatory elements in a dataset, not allowed for
by other methods (De los Santos et al., 2020; Hughes et al., 2010; Wu et al.,
2016). This permitted non-oscillatory enrichment beyond the absence of
oscillatory enrichment. MOSAIC’s identification of both non-oscillatory
and oscillatory trends illuminated a broader regulation of the trancriptome
by the circadian clock as compared to the proteome in Neurospora (Table
1). Gene ontological analysis showed differences extended to biological
output, where oscillatory genes regulated a more diverse set of processes
than non-oscillatory genes (Fig. 4). While the difference in enrichment
between omics types had been previously reported (De los Santos et al.,
2019), the extension to non-circadian trends confirms this significant
difference. Further, the use of MOSAIC’s joint modeling has confirmed
that, while the extent is somewhat less than predicted, a discrepancy
between oscillatory transcripts and proteins still existed, demonstrating
the importance of post-transcriptonal regulation (Hurley et al., 2018).

In summary, we have shown MOSAIC to be a functional tool to identify
oscillations masked by technical noise in multi-omics datasets through
joint modeling. The ability of MOSAIC to identify both non-oscillatory
and oscillatory trends allows for a fuller comprehension of circadian
regulation. Though we here apply MOSAIC only to the transcriptome and
proteome and investigate circadian biology, this multi-omics workflow
could be easily extended to other omics types, e.g. phosphoproteome
or metabolome, as well as other oscillatory processes, e.g. the cell
cycle. As multi-omics circadian data becomes more prevalent (Collins
et al., 2020; Campbell et al., 2020; Hughes et al., 2017), MOSAIC will
provide an important role in finding and understanding both oscillatory
and non-oscillatory trends in a variety of organisms and processes.
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