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Abstract 

During the initial stages of mitosis, multiple mechanisms drive centrosome separation and 

positioning. How they are functionally coordinated to promote centrosome migration to 

opposite sides of the nucleus remains unclear. Imaging analysis software has been used to 

quantitatively study centrosome dynamics at this stage. However, available tracking tools are 

generic and not fine-tuned for the constrains and motion dynamics of centrosome pairs. Such 

generality limits the tracking performance and may require exhaustive optimization of 

parameters. Here, we present Trackosome, a freely available open-source computational tool 

to track the centrosomes and reconstruct the nuclear and cellular membranes, based on 

volumetric live-imaging data. The toolbox runs in MATLAB and provides a graphical user 

interface for easy and efficient access to the tracking and analysis algorithms. It outputs key 

metrics describing the spatiotemporal relations between centrosomes, nucleus and cellular 

membrane. Trackosome can also be used to measure the dynamic fluctuations of the nuclear 

envelope. A fine description of these fluctuations is important because they are correlated with 

the mechanical forces exerted on the nucleus by its adjacent cytoskeletal structures. Unlike 

previous algorithms based on circular/elliptical approximations of the nucleus, Trackosome 

measures membrane movement in a model-free condition, making it viable for irregularly 

shaped nuclei. Using Trackosome, we demonstrate significant correlations between the 

movements of the two centrosomes, and identify specific modes of oscillation of the nuclear 

envelope. Overall, Trackosome is a powerful tool to help unravel new elements in the 

spatiotemporal dynamics of subcellular structures. 

KEYWORDS: tracking subcellular structures; centrosomes movement correlations; membrane 

reconstruction; nuclear envelope fluctuations; mitosis; open-source software  
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1. Introduction 

Mitosis is a highly regulated stage of the cell cycle where multiple subcellular structures take 

part in a complex chain of events that culminate in chromosome segregation. As cells prepare 

to enter mitosis, adhesion complexes disassemble (Dao et al. 2009) and the cytoskeleton 

reorganizes (Matthews et al. 2012; Mchedlishvili et al. 2018). At the same time, duplicated 

centrosomes need to migrate along the nuclear envelope so that a bipolar spindle can form 

(Tanenbaum and Medema 2010). This process requires the activity of multiple players, such as 

microtubule-associated motors kinesin-5  (Whitehead et al. 1996) and dynein (Raaijmakers et 

al. 2012), but also actin (Cao et al. 2010) and myosin II (Rosenblatt et al. 2004). How the dynamic 

changes in all these events are coordinated in space and time to ensure efficient centrosome 

separation and spindle assembly remains unknown.  

Recent advances in live-cell imaging and image analysis techniques made it possible to access 

the subcellular environment and quantitatively examine its underlying mechanisms. Commercial 

imaging software, like Imaris and Metamorph, are equipped with automatic particle tracking 

functions  which have been used to track centrosome pairs in 3-dimensions (Collins et al. 2014; 

Yamashita et al. 2015; De Simone et al. 2016). In alternative, the open-source freeware ImageJ   

(Eliceiri et al. 2012) with its particle tracking plugin Trackmate (Tinevez et al. 2017), has also 

been used for centrosome tracking in several studies (Boudreau et al. 2018; Mahen 2018; 

Boudreau et al. 2019). However, these generic tracking tools are not fine-tuned for the 

appearance and motion dynamics/constraints of centrosome pairs, which limits their tracking 

performance often requiring exhaustive parameter optimization, particularly when high-quality 

videos are not available. Moreover, when studying the dynamics of spindle formation, it is often 

necessary to analyze centrosomes movement in reference to the cellular and nuclear membrane 

(and therefore, in a non-canonical coordinates system). To the best of our knowledge, the 

available computational tools do not directly allow the analysis of the coordinated changes 

between different structures, in specific subcellular frames of reference.  

The nuclear envelope (NE) also exhibits rich spatiotemporal dynamics, displaying measurable 

oscillations that correlate with the forces exerted by chromatin, nuclear lamina and the 

cytoskeleton  (Chu et al. 2017; Schreiner et al. 2015; Stephens et al. 2017) and strongly influence 

nuclear functions (Stephens et al. 2019; Jahed and Mofrad 2019). One way to study this complex 

interplay between cytoskeletal forces imposed on the nucleus and the resistive forces triggered 

by chromatin and nuclear lamina is by measuring the dynamics of NE membrane fluctuations 

(Chu et al. 2017; Schreiner et al. 2015; Hampoelz et al. 2011) which allow the distinction 
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between thermally-driven and active fluctuations (Chu et al. 2017). Importantly, during mitotic 

entry, chromosomes condense (Antonin and Neumann 2016) and the nuclear lamina 

disassembles (Georgatos et al. 1997). How these events affect the pattern of NE oscillations and 

impact other aspects of early spindle assembly remains to be determined.  Current methods 

used to calculate NE fluctuations were developed under the assumption that each point of the 

membrane oscillates radially around its time-averaged position (Almonacid et al. 2019), (Chu et 

al. 2017), (Caragine et al. 2018), (Schreiner et al. 2015), (Blanchoud et al. 2010). However, 

describing the membrane deformations as a radial displacement is a coarse approximation that 

can lead to erroneous results. Also, to the best of our knowledge, there are no available 

toolboxes to calculate these membrane fluctuations. 

Driven by these computational limitations and the need to better characterize the crosstalk 

between subcellular structures during mitotic entry, we developed the open-source software 

Trackosome. This novel computational tool enables a quantitative analysis of the spatiotemporal 

dynamics of three cellular components: centrosomes, nuclear envelope and cellular membrane. 

Trackosome relies on live-cell imaging datasets, where the structures of interest are 

independently tagged. The tool has two modules: 1) centrosome dynamics, used for tracking the 

centrosomes (or other subcellular organelles) in 3D and study their spatiotemporal relations 

with the nucleus and cell membrane; 2) nuclear envelope fluctuations, used to reconstruct, 

measure and analyze the dynamic fluctuations of the nuclear membrane (or other membranes) 

in 2D. The accurate 3D reconstruction of the centrosomes trajectories relative to the nucleus 

and cell membranes (in ellipsoidal coordinates) allowed us to unravel and quantify a significant 

correlation between centrosomes trajectories, not previously characterized. In addition, the 

nuclear envelope fluctuations module allowed us to observe and quantify distinct patterns of 

membrane oscillations in 2D in different stages of the cell cycle. 

 

Trackosome is made publically available as a platform-independent MATLAB toolbox, and can 

be downloaded from https://github.com/Trackosome  
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2. Results 

2.1 Dynamics of cellular reorganization during early spindle assembly 

Tracking and trajectory analysis of centrosomes is performed in the Trackosome toolbox through 

the centrosomes dynamics module. This module has a graphical user interface (Figure 1A and 

S1) that provides useful feedback about the automatic tracking status, and allows for manual or 

semi-automatic corrections whenever needed. The accuracy of the tracking algorithm was 

tested and validated in synthetic data, created with imposed controlled conditions. The videos 

generated had two centrosome-like objects moving in 3D with biologically realistic dynamics 

(coordinates taken from real centrosomes trajectories), in a noisy environment. We set three 

levels of tracking difficulty by varying the signal-to-noise ratio (Figure 1B). The coordinates 

obtained by the Trackosome algorithm were then compared with the original coordinates used 

to create the videos (Figure 1C). Our tool was able to track the centrosomes with high fidelity 

even in highly noisy environments - signal-to-noise ratio (SNR) of 0.7 - where the particles were 

almost indistinguishable from the background. For all videos analyzed, the root mean squared 

error associated with the tracking (Figure 1C) is at the subpixel level (1 pixel = 0.189 µm).  

 

Figure 1. Evaluation of centrosome tracking. (A) User Interface for centrosome tracking showing the XY, 

XZ and YZ maximum projections for a video of a mitotic cell with the corresponding automatically 

identified centrosome positions (red and blue dots). (B) Frame extracted from the three synthetic videos 

with varying levels of SNR. Centrosomes are inside the red and blue circles. Scale bar: 10 µm. (C) Original 

trajectory (black) and trajectory obtained by Trackosome (red) for the centrosome on the left in B (red 

circle), and associated error obtained for both centrosomes. Scale bar:  1 µm. 

We then recorded cells seeded on line micropatterns to normalize cell and nuclear shape 

(Versaevel et al. 2012). Taking advantage of the precision provided by Trackosome, we 

quantified specific spatiotemporal relations between three cellular structures during mitotic 

entry, namely centrosomes pair and nuclear and cell membranes. We chose this stage of the cell 
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cycle as it involves extensive dynamic reorganization of the entire cell (Champion et al. 2017), 

providing a good benchmark to test the ability of Trackosome to detect these dynamic changes. 

Here, Trackosome was able to reconstruct the membranes’ surface, together with the 

centrosomes trajectories in 3D (Figures 2A, B). Based on their relative positions, the software 

was able to output different quantitative metrics, such as the distance and angles between 

centrosomes (Figures 2C, D), the eccentricity of the nuclear and cellular membranes (Figure 2E) 

and the angles between the major axis of the nucleus, cell and centrosomes (Figure 2F). These 

metrics describe the intracellular reorganization that occurs as cells enter mitosis, such as 

movement of the centrosomes to opposite sides of the nucleus (Figure 2B-D) and nucleus-

centrosomes axis reorientation (Figures 2B,F), which we previously described (Nunes et al. 

2020).  

 

Figure 2. Spatiotemporal relations between cellular structures during early mitosis. (A-F) Example of 

Trackosome outputs for a representative cell in mitosis. (A) Three dimensional reconstruction of the 

cellular membrane (green), nuclear envelope (yellow) and centrosomes (red and blue dots). Scale bars: 

10 µm. (B) Nuclear membrane and centrosomes at three distinct time stamps. The centrosomes 

trajectories (red and blue lines) evidence their migration to opposite poles of the nucleus followed by a 

progressive nuclear deformation. Scale bars: 10 µm. (C) Distance between centrosomes over time. The 

distance increases gradually during centrosome migration and decreases once the centrosomes start 

compressing the nucleus. (D) Angles formed between the centrosomes and the nucleus centroid over 

time. Note how the decrease in the distance between the centrosomes (C) occurs after centrosomes are 

on opposite sides of the nucleus, corresponding to the highest value for the centrosomes-nucleus angle. 

(E) Eccentricity of the cellular (green) and nuclear (orange) membranes evidencing that, while the cellular 

membrane remains morphologically stable, the nuclear membrane undergoes conformational changes 

after the centrosomes start deforming the nucleus. (F) Angles formed between: centrosomes axis and the 
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nucleus major axis (orange); centrosomes axis and the cell major axis (green); the nucleus major axis and 

the cell major axis (brown). The centrosomes pair progressively move towards a disposition perpendicular 

to the major axis of the nucleus and cell. (G-J) Trajectories of centrosome pairs are spatiotemporally 

correlated. (G) Centrosomes positions across time (color-coded for elapsed time) surrounding the nucleus 

(gray). Scale bars: 5 µm. (H) Correlation matrix of the movement components (in ellipsoidal coordinates) 

for the trajectories shown in (G). (I) Example of the correlated features highlighted in (H, red square), 

corresponding to the longitude components of both centrosomes, which suggests a potential mechanical 

coupling between both structures. (J) Median of the absolute correlation matrices obtained from videos 

of different cells (n = 5), thresholded at 0.3 for visualization purposes, showing consistent correlations 

between centrosome trajectories across different cells. 

2.2 Centrosomes trajectories are not independent  

HeLa or U2-OS cells labelled with histone H2B-GFP/alpha-tubulin-RFP/SiR-actin or EB3-

GFP/Lifeact-mCherry/SiR-DNA, respectively, were tracked until nuclear envelope breakdown 

(NEB). During this stage, nuclear shape remained approximately constant and correlated with 

the labelled chromatin, allowing us to define the median nucleus membrane (Figure 2G, grey 

mask) based on the 3D reconstructions of the nuclear envelope. The centrosomes, on the other 

hand, exhibited complex trajectories that resemble a search/adaptive path around the nucleus 

(Figure 2G). For this reason, to infer about the coordination of movement between the 

centrosomes, their trajectories were analyzed using the nucleus as a reference. An ellipsoid was 

fitted to the median nuclear membrane, setting the frame of reference for the new coordinate 

system (Figure S2). Each point of the centrosomes trajectory was defined by a latitude ϕ, 

longitude λ and height h, the respective ellipsoidal velocities ϕ’, λ’, h’ and velocity norm |v|, and 

the ellipsoidal accelerations ϕ’’, λ’’, h’’ and acceleration norm |a|. We calculated the correlation 

matrix of these features for each centrosome pair (Figure 2.H), revealing which components are 

temporally correlated between the two trajectories. Our results indicate a considerable degree 

of similarity and synchrony among trajectory pairs, with correlation values as high as 0.7, in 

contrast to a previous report (Waters et al. 1993). By calculating the median of the absolute 

correlation matrices obtained, we produced a map of the most consistent correlations (Figure 

2.J). Interestingly, the positions of the centrosomes, ϕ, λ, h, and the acceleration norm, |a|, 

showed significant correlations. The latter is particularly relevant, because the acceleration of a 

particle reflects the force applied to it, suggesting a synchronous variation of the forces applied 

to both centrosomes, likely driven by kinesin-5 (Whitehead et al. 1996) or dynein (Raaijmakers 

et al. 2012). It is worth emphasizing that if the centrosomes movement had been described in 

Cartesian coordinates (i.e. ignoring the nuclear surface constraint), the observed correlations 

would not be evident. 
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2.3 Dynamics of nuclear envelope fluctuations driving mitotic entry 

The dynamic morphology of the NE was analyzed using Trackosome’s membrane fluctuations 

module (Figure S4). The membrane oscillations are determined by calculating the orthogonal 

displacement of each point of the membrane with respect to its medial position (Figure S5). Our 

method does not rely on prior assumptions regarding the nucleus shape. We believe that this 

approach leads to a more realistic description of the membrane displacements than the radial 

displacement approximations (with respect to the membrane’s centroid) usually done in the 

literature (Chu et al. 2017; Caragine et al. 2018; Schreiner et al. 2015; Blanchoud et al. 2010; 

Almonacid et al. 2019). The radial displacements are particularly flawed for irregularly shaped 

nucleus with wide fluctuations (Figure 3A), which generally limits its use to cells in interphase. 

Here we were able to quantify and compare the nuclear deformations for cells in interphase and 

mitosis. 

As before, we recorded cells seeded on line micropatterns. From our analysis, it is possible to 

confirm that in interphase, cells present subtle but measurable nuclear membrane movements 

(Figure 3B, C). As a negative control, fluctuation measurements were made for interphase cells 

fixed with formaldehyde, which showed a significant decrease of undulations upon fixation 

(Figure 3.B, C).  

 

Figure 3. Nuclear membrane fluctuations captured with Trackosome. (A-C) The perpendicular membrane 

displacements measured with Trackosome are sensible to subtle membrane movements. (A) Membrane 

segmentation (red) of a representative nucleus in prophase (left) and a detailed view of the upper region 

of the membrane (right) illustrating the difference between defining the fluctuations (black vectors) as 

perpendicular (top right) or radial (bottom right) movements of the current membrane (red) around the 

median membrane (black). For the radial displacements, the centroid of the median membrane is used as 
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origin. Perpendicular displacements offer a more realistic description of the membrane movement around 

its basal position. Scale bars: 2 µm. (B) Representative examples of the nuclear membrane fluctuations 

(red vectors) of a cell in interphase (top) and a cell fixed in formaldehyde (bottom). The small fluctuations 

measured for the cell in interphase are clearly larger than those obtained for the fixed cell, suggesting 

that they are the result of subtle membrane movements. (C) Distributions of the maximum fluctuation 

per frame, Max ut (left), and the root mean square of the fluctuation per frame, RMS ut (right), for cells in 

interphase (44 cells with approximately 600 frames each) and formaldehyde (4 cells with approximately 

500 frames each). With logarithmic scales, the distributions are approximately Gaussian and easily 

distinguishable. (D-G) Typical nuclear fluctuations results obtained with Trackosome for a cell in prophase. 

(D) Two frames of the original video. Scale bar: 5 µm. (E) Centered nucleus membrane extracted from the 

video in (D) at different time stamps (colored scale), with vectors (gray) indicating the arc in micrometers 

around the median membrane (black), pointing in the direction along which the fluctuations are 

calculated. (F) Map of the fluctuations amplitude, u, obtained for all the frames. The y axis corresponds 

to the arc around the median membrane, marked by the vectors in (E). (G) Majorant of frequency 

dependent fluctuations, uf, obtained by finding the maximum amplitude of the spatial Fourier Transform 

(FT) for each frequency across frames. This FT curve shows the maximum fluctuation amplitude of each 

wavelength, thus, its peaks reveal the amplitude and wavelength of the most significant curvatures of the 

nuclear envelope, evidenced both in (F) and (G).   

During mitotic entry, chromosomes condense (Antonin and Neumann 2016) and the nuclear 

lamina disassembles (Georgatos et al. 1997). Whether these events change nuclear behavior 

remains to be determined. We analyzed nuclear membrane fluctuations of cells using 

Trackosome (Figure 3D-G). After segmenting and registering (centering on centroid) the NE 

(Figure 3E), the fluctuations u of each frame are calculated assuming normal displacements 

(Figure 3A, top). The values obtained were concatenated frame-by-frame and filtered in time 

and space with a 2D Gaussian kernel. The resulting fluctuations map reveals how the envelope 

curvatures are dominated by specific wavelengths (Figure 3F). These wavelengths are 

determined by calculating the spatial Fourier Transform (FT) of the fluctuations, uf, for each 

frame and then obtaining the maximum magnitude of each wavelength across frames (Figure 

3G). Calculating the majorant for each frequency component uf has the advantage of highlighting 

the most well defined spatial frequencies, even if they occur for a limited number of frames. On 

the other hand, averaging the FT curves of all frames would attenuate these components and 

the magnitude of the final FT peaks would not correspond to the magnitude of the actual 

membrane waves that originated them, thus providing a less intuitive readout. 

The FT curve allowed us to identify and quantify the most prominent spatial frequencies and 

obtain relevant information about the dynamics of NE fluctuation. For the cell in prophase 
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exemplified in Figure 3D-G, the highest FT peak, with a wavelength of 25 µm (half of the nucleus 

perimeter), is the result of the large membrane displacement seen around the 15 and 40 µm arc 

landmarks in Figure 3E, F. As prophase progresses, exertion of compression forces in these two 

separate points makes the nuclear membrane wobble with a wavelength which is half of the 

membrane perimeter (Figure S5). In addition, the FT analysis allowed the identification of 

membrane “wrinkles” with a spatial signatures defined by wavelengths of approximately 10, 5 

and 4 µm (Figure 3F,G). Trackosome captures these spatial signatures with high accuracy even 

for curvatures with amplitudes at the subpixel level under noisy backgrounds (Figure S5). 

To help uncover the processes behind these observed spatial frequencies, membrane 

fluctuations were calculated for cells in early mitosis and interphase (Figure 4A, B). We 

calculated the majorant uf for all cells (as in Figure 3G) and then the median curve across trials 

for each group. Our results show a significant difference in the FT curves of the two groups 

(Figure 4B). In interphase, the magnitude of the fluctuations is very low through the entire 

spectrum of wavelengths, indicating that the membrane barely deviates from its basal position. 

Still, the uf magnitude is above the noise floor stablished by the formaldehyde curve. This 

behavior changes in prophase, as there is an increase of the fluctuations amplitude for the entire 

range of wavelengths. This increase is particularly significant for the low frequency components, 

reflecting the occurrence of nucleus-wide deformations as described above.   

Fluctuations of the NE are known to depend on the cytoskeleton and, in particular, on the 

microtubule (MT) network (Chu et al. 2017; Hampoelz et al. 2011). To assess whether 

Trackosome was sensitive to detect these changes, we treated cells with low doses of 

nocodazole (NOC) to suppress the polymerization of MTs without affecting overall cell structure. 

Interphase cells treated with NOC had an FT curve similar to the control curve obtained for 

interphase cells treated with DMSO only (Figures 4A, C). On the other hand, nuclear fluctuations 

of mitotic cells were significantly altered with the addition of NOC. The FT obtained for this 

experimental condition showed a decrease in the low-frequency peak when compared with the 

control group. This suggests that the disruption of the MT cytoskeleton led to a decreased 

nuclear compression, which is in agreement with the fact that the MTs induce large-scale 

deformations of the nucleus envelope (Hampoelz et al. 2011; Schreiner et al. 2015). The 

frequency components beyond the peak were also severely attenuated, which means that the 

shorter membrane “wrinkles” were mitigated as well. Most of these effects can be qualitatively 

evaluated examining the nuclei images directly (Figure 4A), but Trackosome provides a precise 

quantification. 
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Biological membranes exhibit passive fluctuations, thermally excited at physiological 

temperatures. The equilibrium properties of these undulating systems can be modeled by 

Helfrich-type models (Helfrich 1978). To evaluate the spectral dependencies in line with Helfrich 

theory, we calculated the average FT of the squared fluctuations for each cell, <uf
2>, and then 

the median curve across cells for each group. The curves of the fluctuations obtained for the 

NOC and control groups show regions with distinct spectral dependencies (Figure 4D). For 

frequencies above 1.5 µm-1 (wavelengths below 0.7 µm) the FT curves follow a f-4 power law, 

consistent with what is expected for thermally driven fluctuations at short wavelengths (Brandt 

et al. 2011). At lower frequencies, each group follows a different power law, ranging from close 

to f0 for formaldehyde, up to f-1.5 for the control group in mitosis. These can be attributed to 

different nonequilibrium active forces governing each system. It is important to note that in 

Helfrich theory these spectral dependencies are defined in terms of the adimensional 

wavenumber q, and not spatial frequency. However, for the frequency ranges marked by the 

solid lines in Figure 4D, the slopes are equivalent in both scales (Figure S7). 

Finally, we compared the fluctuations amplitude (in terms of Log RMS ut as in Figure 3C right) 

for all the groups (Figure 4E). NOC led to a significant decrease on the fluctuations amplitude 

during prophase. Importantly, this decrease was not caused by the vehicle DMSO, since 

prophase cells in the presence of DMSO had higher fluctuations than the untreated prophase 

cells. Also, the fluctuations obtained for the interphase cells are similar among the different 

groups and the range of amplitudes is consistent with what was already described in the 

literature (Schreiner et al. 2015).  

Overall, our results indicate that nuclear membrane fluctuations increase as cells transition from 

interphase to mitosis and that interfering with the MT network significantly reduces the large 

scale deformations of the nucleus during this stage.  
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Figure 4. Nuclear membrane fluctuations vary with the stage of the cell cycle and the physiological 

treatment. (A) Representative nucleus of each group. The phase of the cell cycle is evidenced by the 

marked histone (red), taken from the first frame of each video. The nuclear envelope (green) is shown at 

two different times stamps to illustrate the degree of membrane undulations in each group. Scale bar: 5 

µm. (B) Median of the majorant frequency dependent fluctuations, uf, obtained for groups of cells in 

interphase and early mitosis. The curve for cells fixed with formaldehyde was also included to set the 

noise limit. (C) Median of the majorant uf obtained for groups of cells in interphase and mitosis, treated 

with DMSO, nocodazole (NOC) and fixed with formaldehyde. NOC caused a significant decrease of the 

membrane fluctuations in mitosis. (D) Median across cells of the average FT of the squared fluctuations 

of each cell, <uf
2>, for the groups represented in (C). In logarithmic scales, the <uf

2> curves show regions 

dominated by different frequency dependencies, limited by the solid lines with slopes f0, f-1.5 and f-4. (E) 

Mean and standard deviation of the log RMS of the fluctuations for all the tested groups. Using a 

logarithmic scale, the RMS fluctuations distributions are approximately normal and can thus be described 

by their mean value and standard deviation. 
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3. Discussion 

Recent developments in light microscopy have generated extensive datasets that allow 

unprecedented access to subcellular events with high spatiotemporal resolution. Here, we 

report on Trackosome, a new open-source software that enables an automated quantitative 

analysis of the spatiotemporal dynamics of subcellular structures even in conditions of low SNR.  

During the transition from G2 to mitosis, chromosomes condense (Antonin and Neumann 2016), 

cells round up (Matthews et al. 2012) and centrosomes separate (Whitehead et al. 1996). Under 

this context, the extent of centrosome separation at the time of NEB remains a matter of debate. 

While some reports show that cells can enter mitosis with unseparated centrosomes (Kaseda et 

al. 2012; Whitehead et al. 1996), others indicate that centrosomes are fully separated at NEB 

(Magidson et al. 2011; Mardin et al. 2013; Nunes et al. 2020). These discrepancies highlight the 

need to carefully determine how the events leading up to mitosis are coordinated to ensure 

efficient spindle assembly. By using the different modules available on Trackosome, we were 

able to accurately correlate centrosome movement and centrosome-nucleus axis reorientation 

during mitotic entry. Our results, using cells seeded on fibronectin micropatterns, indicate that 

centrosomes are fully separated before NEB and that their movement is coordinated to optimize 

their positioning on opposite sides of the nucleus (Nunes et al. 2020), contrarily to previous 

observations (Waters et al. 1993). This coordination was evidenced using elliptical coordinates 

to describe the centrosome trajectories around the nucleus. Interestingly, the high correlation 

scores between movement components of both centrosomes strongly indicates a mechanical 

coupling between the two structures. This coupling could be provided by specific pools of dynein 

on the cell cortex (Kotak et al. 2012; Woodard et al. 2010) or at NE (Bolhy et al. 2011; Splinter et 

al. 2012), which are known to generate pulling forces on centrosomal microtubules to position 

asters (Laan et al. 2012). Determining the exact nature of this mechanical coupling between the 

centrosomes during mitotic entry will be of interest in the future. 

The mechanical properties of the nucleus depend on the chromatin condensation state 

(Stephens et al. 2017; 2018) and the nuclear lamina (Lammerding et al. 2006). Given that Lamin 

A levels (Chu et al., 2017; Moir et al. 2000) and chromatin compaction (Hinde et al. 2012) change 

throughout the cell cycle, it is possible that the mechanical properties of the nucleus change 

accordingly. In agreement, nuclear envelope fluctuations, which reflect forces imposed on the 

nucleus, were shown to vary depending on the cell cycle stage (Chu et al. 2017). However, 

whether the mechanical properties of the nucleus change during the transition from G2 to 

mitosis, when mitotic chromosomes are condensing and the nuclear lamina disassembles, 
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remains unclear. Here, we report on a new tool to analyze NE fluctuations during mitotic entry 

that measures orthogonal displacements relative to the medial position of the nuclear 

membrane. We reveal that chromosome condensation, together with microtubules, trigger 

significant changes in the spatial pattern of NE fluctuations as cells prepare to enter mitosis. To 

the best of our knowledge, it is the first time that the transition from G2 to prophase is 

characterized in terms of nuclear envelope fluctuations. In the future, it will be interesting to 

determine how these fluctuations reflect the mechanical properties of the nucleus.  

The algorithms compiled in the computational toolbox Trackosome provide a reliable and 

accurate instrument to help uncover new elements in the spatiotemporal dynamics of 

subcellular structures. Importantly, this toolbox has the potential to be adapted to other 

experimental conditions such as the study of cell migration and cell polarity, where the capacity 

to analyze dynamic datasets with high accuracy is highly relevant.  

 

Data deposition: Trackosome is made publically available as a platform-independent MATLAB 

toolbox, and can be downloaded from https://github.com/Trackosome 
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4. Materials and Methods  

4.1 Biological methods  

Cell culture 

Cell lines were cultured in Dulbecco's Modified Eagle Medium (DMEM; Life Technologies) 

supplemented with 10% fetal bovine serum (FBS; Life Technologies) and grown in a 37˚C 

humidified incubator with 5% CO2. HeLa POM121-3xGFP/H2B-mCherry cell line was a kind gift 

from Katharine Ullman. HeLa cell line expressing histone H2B-GFP/mRFP-α-tubulin was 

generated in our lab using lentiviral vectors. 

Micro-patterning  

Micro-patterns to control individual cell shape and adhesion pattern were produced as 

previously described (Azioune et al. 2009). Briefly, glass coverslips (22 X 22mm No. 1.5, VWR) 

were activated with plasma (Zepto Plasma System, Diener Electronic) for 1 min and incubated 

with 0.1 mg/ml of PLL(20)-g[3,5]-PEG(2) (SuSoS) in 10 mM HEPES at pH 7.4, for 1 h, at RT. After 

rinsing and air-drying, the coverslips were placed on a synthetic quartz photomask (Delta Mask), 

previously activated with deep-UV light (PSD-UV, Novascan Technologies) for 5 min. 3 µl of MiliQ 

water were used to seal each coverslip to the mask. The coverslips were then irradiated through 

the photomask with the UV lamp for 5 min. Afterwards, coverslips were incubated with 25 μg/ml 

of fibronectin (Sigma-Aldrich) and 5 μg/ml of Alexa546 or 647-conjugated fibrinogen (Thermo 

Fisher Scientific) in 100 mM NaHCO3 at pH 8.6, for 1 h, at RT. Cells were seeded at a density of 

50.000 cells/coverslip and allowed to spread for ~10-15h before imaging. Non-attached cells 

were removed by changing the medium ~2h-5h after seeding. 

Time-lapse microscopy 

For time-lapse microscopy, 12-24 h before the experiments, 5x104 cells were seeded on 

coverslips coated with FBN (25μg/ml; F1141, Sigma). Prior to each experiment, cell culture 

medium was changed from DMEM with 10% FBS to Leibovitz’s-L15 medium (Life Technologies) 

supplemented with 10% FBS and Antibiotic-Antimycotic 100X (AAS; Life Technologies). When 

SiR-dyes were used, they were added to the culture medium 30min-1h before acquisition (20nM 

Sir-tubulin or 10nM Sir-DNA; Spirochrome). Where stated, nocodazole was added to the cells 30 

min before the experiment (20 nM; Sigma-Aldrich). Live-cell imaging was performed using 

temperature-controlled Nikon TE2000 microscopes equipped with a modified Yokogawa CSU-
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X1 spinning-disc head (Yokogawa Electric), an electron multiplying iXon+ DU-897 EM-CCD 

camera (Andor) and a filter-wheel. Three laser lines were used for excitation at 488, 561 and 

647nm. For nuclear membrane fluctuations, an oil-immersion 100x 1.4 NA Plan-Apo DIC (Nikon) 

was used. All the remaining experiments were done with an oil-immersion 60x 1.4 NA Plan-Apo 

DIC (Nikon). Image acquisition was controlled by NIS Elements AR software. For centrosome 

tracking, 17-21 z-stacks with a 0.5µm separation were collected every 20 sec or, to analyze 

centrosome correlations, every 10 sec. For nuclear envelope fluctuation measurements, a single 

z-stack was collected every 100 msec. 

 

4.2 Trackosome toolbox: Centrosome Dynamics  

Tracking algorithm  

A 3D Laplacian of a Gaussian filter is applied to the centrosomes video to highlight centrosome-

like blobs. The user must then select the approximate position of the two centrosomes in a XY 

maximum projection of the first frame. These are the seeding points for the tracking loop that 

follows. For each frame, two 3D regions of interest (ROI) are centered at the coordinates of the 

centrosomes obtained for the previous frame (for the first frame, it uses the coordinates 

selected by the user). The ROI are large enough to accommodate the centrosomes dislocations 

in-between frames. Each ROI is thresholded to isolate the regions of high intensity, and then 

iteratively shortened until it confines a peak of intensity with the dimensions of the centrosome. 

Once each centrosome is enclosed by a mask, the centroids are found by projecting the masked 

intensities along the three axis and fitting a Gaussian to each intensity profile – the coordinates 

of the centroid correspond to the peaks of the fitted Gaussians (Figure S3).  

 

Nuclear and cellular membrane reconstruction 

The images from each video (nucleus and cellular membrane) are binarized and submitted to an 

iterative set of morphological operations intended to create a closed, smooth, binary volume. 

The membrane of each structure corresponds to the outer pixels of their binary volume. The 

major axis of the cell and nucleus are obtained by calculating the principal components of the 

binary volumes for each frame.  
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4.3 Correlation of centrosomes trajectories   

The correlations among centrosomes displacements were evidenced by defining their 

movement as two ellipsoidal trajectories surrounding the approximately ellipsoidal nucleus 

(Figure S3). The nucleus was centered assuring a common centroid among frames. The median 

nucleus was obtained by calculating the median binary volume across time. The videos were 

analyzed until the nuclear envelope breakdown. An ellipsoid was fitted to each median nucleus, 

setting the coordinate system used to define the ellipsoidal trajectories. The trajectories of the 

centrosomes were normalized with regards to the centroid of the nucleus for each frame. The 

transformed trajectories were converted to ellipsoidal coordinates, using the fitted ellipsoid as 

a referential of the coordinate system. The trajectories were also characterized by the norm of 

the ellipsoidal velocity and acceleration, and their decomposition along the latitude, longitude 

and altitude directions at each point. Once all the features of both centrosomes trajectories are 

calculated, the correlation matrix can be directly obtained. We only included videos with long 

and changing centrosome trajectories, since short monotonic trajectories would invariantly 

have high, but misleading, correlation coefficients. We also excluded videos with non-stationary 

nucleus because a moving referential would lead to fallacious correlation values. 

 

4.4 Trackosome toolbox: membrane fluctuations 

We consider that the points of the membrane move in a direction perpendicular to its surface. 

Therefore, we define the fluctuations as being the distance from each point of the median 

membrane to the membrane at a given frame, along a direction normal to the median 

membrane. The membranes are segmented for all frames and then centered assuring a common 

centroid among frames. To calculate the basal position (the reference membrane) of the nuclear 

envelope, we calculated the median projection of the centered frames and segmented the 

resulting membrane. Each point of the reference membrane is associated with a normal vector 

which defines the direction of the membrane displacements. The fluctuations are then 

measured by calculating the distance from the reference membrane to the membrane of each 

frame, along the directions defined by the normal vectors (Figure S5). 
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Figure S1. Trackosome User Interface: Centrosome Dynamics module. (A) Main menu to open 

the windows shown in B, C, D and E. (B) Load data window, where the user can import the 3D 

live-cell imaging videos from the centrosomes, nuclear membrane and cellular membrane (.tiff, 
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.mat, .nd2). It is also possible to load .mat files previously exported by Trackosome. These 

populate the entire interface with the data contained in the file, allowing the user to reexamine 

previous analysis. (C) Pre-processing window to filter the centrosomes channel, trim the videos, 

and select the approximate initial coordinates of the centrosomes. (D) Centrosomes tracking 

window. The user can follow the tracking results for each frame in real-time. The algorithm can 

be stopped at any time to correct eventual mistakes. There are two modes of coordinates 

correction: 1) “Change ROI”: move and resize the regions-of-interest to guarantee that they 

contain the centrosomes (option currently selected in the shown image); 2) “Change Coords 

Manually”: manual selection of the new 3D coordinates of a centrosome. The algorithm can 

proceed from the corrected frame. These corrections can also be done after analyzing the full 

video. The array of blue buttons at the bottom allow the user to navigate between frames and 

provide visual feedback regarding the tracking status of each frame: blue - ok; yellow - problem 

finding the centrosomes; red - forced break due to error; gray - coordinates manually changed. 

The user can also discard specific frames from the analysis. (D’) Window to change the main 

settings of the tracking algorithm. (E) Results window where the user can inspect and save the 

results obtained. The results can be exported as .xlsx, .csv files and also a .mat file that stores all 

the data from the interface. The .mat file allows the user to reload the full Trackosome interface 

with the stored data. Also, the user can access relevant stored variables (such as the membrane 

reconstructions) by loading this .mat file directly on the Matlab command window.   

 

 

Figure S2. Compile Data module. (A) The toolbox includes a separate module to compile data 

from different .csv files exported by Trackosome. (B) Resulting excel sheet with the data 

compiled from different videos. Each metric is attributed to a different sheet. The data of each 

file (filename, time step in seconds and metric values) are concatenated side-by-side in each 

metric sheet. 
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Figure S3. Centrosome tracking with Trackosome and definition of elliptical coordinates to 

unravel trajectory correlations. (A) Intensity projections of the initial region-of-interest (ROI) 

obtained for a centrosome at a given frame. The ROIs are centered in the coordinates of the 

centrosome obtained in the previous frame. Each dimension of the initial ROI is iteratively 

shortened until it confines a blob with the dimensions of the centrosome. The final 3D 

coordinates of the centrosome are found by fitting a Gaussian curve to the intensity profiles 

along the X, Y and Z axis. The (x,y,z) position of the centrosome corresponds to the mean value 

of each Gaussian. (B) Ellipsoid (blue) fitted to the median nucleus (grey) used as referential for 

the ellipsoidal coordinates. (C) Conversion from cartesian (x,y,z) to ellipsoidal (ϕ, λ, h) 

coordinates. (D) Each point of the centrosomes trajectories is associated with an orthonormal 

basis defined by a latitude versor (red), longitude versor (black) and height versor (blue). These 

indicate the direction along which the ellipsoidal velocities and accelerations are calculated for 

each position. 
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Figure S4. Trackosome User Interface: Membrane Fluctuations module. (A) Main menu to load 

the 2D videos (.tiff, .mat, .nd2). The loading function used is uipickfiles (https://www.mathworks 

.com/matlabcentral/fileexchange/10867-uipickfiles-uigetfile-on-steroids). If only one video is 

selected, the user is directed to the window shown in B. If multiple files are selected, the user is 

directed to batch analysis mode, shown in D. It is also possible to open previously exported files 

and load the entire interface with the imported data. (B) Window to perform membrane 

segmentation. The user can edit the video before segmenting the membranes. The edit options 

include cropping the frames, drawing masks to guide membrane segmentation, and removing 
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manually drawn regions from specified frames (to eliminate, for example, high intensity noise 

blobs located near the membrane). It is possible to preview the segmentation of any frame to 

optimize parameters before starting the segmentation of the entire video. (C) Results window 

where the user can inspect, correct and export the results obtained. The corrections include 

editing the reference membrane and adjusting the spatiotemporal filters applied to the 

membrane fluctuations. (D) Window for batch analysis, opened if the user selects multiple 

videos in the Main Menu. In the window shown, five files were selected. Each file is associated 

with a set of buttons to edit parameters, show the results obtained, edit the membrane 

segmentation (opens window B), edit fluctuation results (opens window C), and 

activate/deactivate exporting.  

 

 

 

Figure S5. Nuclear membrane fluctuations algorithm. (A) Overview of the four main steps of 

the algorithm: 1) membrane segmentation and centering; 2) median projection of the centered 

frames; 3) segmentation of the membrane obtained in 2, defining the reference membrane and 

the associated normal vectors; 4) calculating the membrane fluctuation for each frame as the 
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distance between the reference membrane and the membrane of the current frame, along the 

direction defined by the vectors orthogonal to the reference membrane. (B) Detail of the 

membrane segmentation algorithm for a given frame: 1.1) filter and mask the image; 2) the 

points that constitute the two borders of the mask are connected by the shortest segment; 3) 

find the pixel with maximum intensity for each segment defined in 1.2; 4) filter the positions of 

the pixels found in 1.3.  

 

 

 

Figure S6. Validation of the membrane fluctuations algorithm using synthetic video. (A) 

Unfolding the distance between the current membrane (red) and the reference membrane 

(black) generates a waving signal (bottom) with characteristic wavelengths. For a compression 

fluctuation, the associated unfolded fluctuations have a wavelength (λ) of half perimeter. (B) 

Unfolded fluctuation used between frames 1 and 100 to create the synthetic validation video. 

The full synthetic video has a total of four sinusoidal components: f1 = 0.05 µm-1, Amp1 = 0.2 µm; 

f2 = 0.1 µm-1, Amp2 = 0.1 µm; f3 = 0.2 µm-1, Amp3 = 0.05 µm; f4 = 0.3 µm-1, Amp4 = 0.025 µm. The 

fluctuations created between frames 1 and 100 have the components: {f1, Amp1}, {f2, Amp2} and 

{f3, Amp3}. (C) Unfolded fluctuation used between frames 101 and 200. The signal has three 
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sinusoidal components: {f1, Amp1}, {f3, Amp3} and {f4, Amp4}. (D) First frame of synthetic 

membrane (back), waving around the median membrane (white). E) Expected fluctuation map 

of the entire video. The fluctuations (B, C) added to the reference membrane were continuously 

propagating around the nucleus in order to create a dynamic membrane. This generates the 

descending pattern shown in E. (F) Majorant of frequency depend fluctuations, uf, obtained for 

the map E. The peaks of this curve reveal the amplitude and wavelengths of the sinusoidal waves 

used to create the fluctuations. (G) Final synthetic video created by adding noise to the original 

video (D). (H) Fluctuations map obtained by analyzing the noisy video (G) with Trackosome. The 

map is very similar to the expected result (E), clearly showing the two different fluctuation 

patterns. (I) Majorant uf obtained with Trackosome for the noisy video (G), revealing the four 

expected peaks: f1* = 0.044 µm-1, Amp1* = 0.26 µm; f2* = 0.11 µm-1, Amp2* = 0.12 µm; λ3* = 0.22 

µm-1, Amp3* = 0.065 µm; λ4* = 0.33 µm-1, Amp4* = 0.032 µm. Trackosome is able to detect 

fluctuations with amplitudes at the subpixel level. 

 

 

 

 

Figure S7. Equivalence between slopes using wavenumber (q) and Spatial frequency. (A) In 

logarithmic scales, q and Spatial frequency are equivalent for frequencies above 0.1 µm-1, 

making the slope analysis viable for the considered range. (B) Representative example of the 

average FT of the squared fluctuations, <uq
2>, for a given cell plotted against q, and the slopes 

of the linear fits (solid lines) at low and high frequencies. (C) Same <uf 
2> curve as in B, but plotted 

against the associated spatial frequency. The slopes of the linear fits are very similar to those 

obtained in B. 
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