Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Functional data analysis techniques to improve the generalizability of near-infrared spectral data for monitoring mosquito populations

View ORCID ProfilePedro M. Esperança, Dari F. Da, Ben Lambert, Roch K. Dabiré, View ORCID ProfileThomas S. Churcher
doi: https://doi.org/10.1101/2020.04.28.058495
Pedro M. Esperança
1MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London W21PG, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Pedro M. Esperança
Dari F. Da
2Institut de Recherche en Sciences de la Santé, Direction Régionale, 399 Avenue de la liberté, Bobo Dioulasso, 01 01 BP 545, Burkina Faso
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ben Lambert
1MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London W21PG, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Roch K. Dabiré
2Institut de Recherche en Sciences de la Santé, Direction Régionale, 399 Avenue de la liberté, Bobo Dioulasso, 01 01 BP 545, Burkina Faso
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Thomas S. Churcher
1MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London W21PG, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Thomas S. Churcher
  • For correspondence: thomas.churcher@imperial.ac.uk
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Article usage

Article usage: May 2020 to May 2023

AbstractFullPdf
May 20201721665
Jun 202031122
Jul 202010215
Aug 202038524
Sep 202037215
Oct 202015317
Nov 202023424
Dec 20208519
Jan 202111424
Feb 20218319
Mar 202130328
Apr 20215227
May 202112240
Jun 202111318
Jul 20216216
Aug 202121313
Sep 202117521
Oct 20214416
Nov 2021141021
Dec 2021862
Jan 2022766462
Feb 2022921
Mar 20221036
Apr 202226812
May 20227419
Jun 20229015
Jul 20221329
Aug 202212211
Sep 202214313
Oct 20221368
Nov 20222046
Dec 202236315
Jan 20231136
Feb 202312812
Mar 2023435
Apr 20231148
May 2023642
Back to top
PreviousNext
Posted April 29, 2020.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Functional data analysis techniques to improve the generalizability of near-infrared spectral data for monitoring mosquito populations
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Functional data analysis techniques to improve the generalizability of near-infrared spectral data for monitoring mosquito populations
Pedro M. Esperança, Dari F. Da, Ben Lambert, Roch K. Dabiré, Thomas S. Churcher
bioRxiv 2020.04.28.058495; doi: https://doi.org/10.1101/2020.04.28.058495
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Functional data analysis techniques to improve the generalizability of near-infrared spectral data for monitoring mosquito populations
Pedro M. Esperança, Dari F. Da, Ben Lambert, Roch K. Dabiré, Thomas S. Churcher
bioRxiv 2020.04.28.058495; doi: https://doi.org/10.1101/2020.04.28.058495

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Bioinformatics
Subject Areas
All Articles
  • Animal Behavior and Cognition (4382)
  • Biochemistry (9591)
  • Bioengineering (7090)
  • Bioinformatics (24856)
  • Biophysics (12600)
  • Cancer Biology (9956)
  • Cell Biology (14349)
  • Clinical Trials (138)
  • Developmental Biology (7948)
  • Ecology (12105)
  • Epidemiology (2067)
  • Evolutionary Biology (15988)
  • Genetics (10925)
  • Genomics (14738)
  • Immunology (9869)
  • Microbiology (23659)
  • Molecular Biology (9484)
  • Neuroscience (50856)
  • Paleontology (369)
  • Pathology (1539)
  • Pharmacology and Toxicology (2681)
  • Physiology (4013)
  • Plant Biology (8657)
  • Scientific Communication and Education (1508)
  • Synthetic Biology (2394)
  • Systems Biology (6433)
  • Zoology (1346)