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ABSTRACT 
 
Childhood experiences play a profound role in conferring risk and resilience for brain and 
behavioral development. However, how different facets of the environment shape 
neurodevelopment remains largely unknown. Here we sought to decompose heterogeneous 
relationships between environmental factors and brain structure in 989 school-aged children from 
the Adolescent Brain Cognitive Development Study. We applied a cross-modal integration and 
clustering approach called ‘Similarity Network Fusion’, which combined two brain 
morphometrics (i.e., cortical thickness and myelin-surrogate markers), and key environmental 
factors (i.e., trauma exposure, neighborhood safety, school environment, and family environment) 
to identify homogeneous subtypes. Depending on the subtyping resolution, results identified two 
or five subgroups, each characterized by distinct brain structure-environment profiles. Notably, 
more supportive caregiving and school environments were associated with increased myelination, 
whereas less supportive caregiving, higher family conflict and psychopathology, and higher 
perceived neighborhood safety were observed with increased cortical thickness. These subtypes 
were highly reproducible and predicted externalizing symptoms and overall mental health 
problems. Our findings support the theory that distinct environmental exposures differentially 
influence neurodevelopment. Delineating more precise associations between risk factors, 
protective factors, and brain development may inform approaches to enhance risk identification 
and optimize interventions targeting specific experiences. 
 
Keywords: brain development, adversity, environment, childhood, neuroanatomy, subtyping 
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INTRODUCTION  
 
Experiences during childhood play a crucial role in shaping the developing brain, behavior, and 
risk for psychopathology (Chen & Baram, 2016; Gee, 2016; McLaughlin et al., 2017; Nelson & 
Gabard-Durnam, 2020; Opendak et al., 2017; Tottenham, 2012). A nuanced understanding of how 
early experiences alter structural brain development is critical to elucidating the mechanisms by 
which childhood adversity confers risk for psychopathology, and protective environmental factors 
buffer that risk. Early adverse experiences have been shown to disrupt neurodevelopment on a 
cellular level (Abbink et al., 2019; Bath et al., 2016; Bordner et al., 2011; Johnson & Kaffman, 
2018), and a growing literature has identified alterations in structural brain features such as gray 
matter volume (De Bellis et al., 1999; Hair et al., 2015; Hanson et al., 2012; Hodel et al., 2015; 
Kribakaran et al., 2020; Mackes et al., 2020; McEwen, 2016; Noble et al., 2015; Sheridan et al., 
2012; Teicher et al., 2016; Tottenham et al., 2010), cortical thickness (Gold et al., 2016; Kelly et 
al., 2013; Lim et al., 2018; McLaughlin et al., 2014; Monninger et al., 2019), white matter tract 
integrity (Bick et al., 2015; Hanson et al., 2013; Ho et al., 2017; Howell et al., 2013; Kircanski et 
al., 2019), and myelination (Bath et al., 2016; Bordner et al., 2011; Juraska & Kopcik, 1988; 
Makinodan et al., 2012) following adversity. 
 
Much of the existing knowledge about environmental influences on brain development has 
stemmed from research focusing on a single type of experience (e.g., physical abuse, neglect, 
exposure to violence) or aggregating across different types of exposures to adversity (De Bellis et 
al., 1999; Mehta et al., 2009; Tomoda et al., 2009, 2012). While such evidence has been 
foundational in establishing the deleterious effects of early adversity, there is vast heterogeneity 
in both the nature of adversity exposure and in outcomes (Cohodes et al., 2020). The frequent co-
occurrence of adverse experiences (Green et al., 2010) and additional complexity of family, 
neighborhood, and school environments present further challenges to precisely linking 
environmental factors with variation in brain structure. 
 
Dimensional approaches have increasingly focused on key aspects of early adversity (Cicchetti & 
Toth, 1995; Cohodes et al., 2020; Everaerd et al., 2016; McCoy, 2013; McLaughlin et al., 2014; 
Pynoos et al., 1999),  including the type of adversity experienced (Dennison et al., 2019; Machlin 
et al., 2019; McLaughlin et al., 2014; Miller et al., 2018; Sheridan et al., 2017). Previous work 
directly comparing distinct types of exposures (e.g., physical abuse, sexual abuse, physical neglect, 
emotional neglect) has demonstrated differential impacts on brain structure (Cassiers et al., 2018; 
Edmiston et al., 2011; Heim et al., 2013; Tomoda et al., 2009, 2012; van Harmelen et al., 2010). 
Examining findings across studies of specific types of adversity has also suggested unique 
associations with brain structure. For example, distinct regional patterns of reduced cortical 
thickness have been observed among children exposed to severe neglect in institutional care 
(Hodel et al., 2015; McLaughlin et al., 2014) versus children exposed to abuse (Busso et al., 2017; 
Gold et al., 2016; Lim et al., 2018).  
 
While much of the literature on environmental influences has focused on adversity, a growing 
body of research has examined normative variation in environmental factors. The relationship 
between child and primary caregivers is thought to be particularly influential in shaping 
neurodevelopment (Tottenham, 2018; Gee et al., 2016), with longitudinal evidence that positive 
and negative parenting behaviors are associated with differential change in brain development in 
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adolescents (Whittle et al., 2014, 2016). Positive, more sensitive parenting has been found to 
predict accelerated cortical thinning in the anterior cingulate in males, and orbitofrontal cortex 
(Whittle et al., 2014), as well as increased volume in the posterior insular cortex (Matsudaira et al., 
2016) and across the whole brain (Kok et al., 2015, 2018). Negative, more aggressive parenting 
has been shown to predict increased thickening of the superior frontal gyrus and lateral parietal 
lobe in males (Whittle et al., 2016), and has been associated with larger anterior cingulate and 
orbitofrontal cortex volumes (Whittle et al., 2009). While null effects of caregiving on cortical 
thickness have also been reported (Avants et al., 2015; Leblanc et al., 2017), accumulating 
evidence highlights the importance of the caregiver/child relationship and demonstrates that both 
positive and negative caregiving experiences impact structural brain development (Deane et al., 
2020). Factors such as greater neighborhood disadvantage (Whittle et al., 2017) and positive 
school environments (Piccolo et al., 2019) have also been independently associated with increases 
in cortical thickness during development. However, less is known about the ways in which 
neighborhood and school contexts may interact with other environmental factors to influence brain 
structure. 
 
Variations in cortical thickness and volume have been widely studied in the literature and may 
reflect processes such as synaptic pruning and remodeling (Huttenlocher, 1979; Huttenlocher et 
al., 1982; Huttenlocher & Dabholkar, 1997) or stress-induced neuronal atrophy (Horchar & 
Wohleb, 2019; Wellman et al., 2020). Though less studied in humans, myelination is thought to 
increase throughout development (Lebel & Deoni, 2018) and is sensitive to adversity in rodent 
models (Bordner et al., 2011; Carlyle et al., 2012; Makinodan et al., 2017). However, no studies 
to our knowledge have investigated differential effects of early environmental exposure type on 
cortical thickness and myelination. As both of these processes undergo marked maturational 
changes during childhood (Dean et al., 2015; Lyall et al., 2015) and have been implicated in 
various psychopathologies that often emerge during development (Hanford et al., 2016; Norbom 
et al., 2019; Schmaal et al., 2017; van Erp et al., 2018), understanding how cortical thickness and 
myelination are shaped by specific aspects of early environments is an important gap to address. 
 
Given the complexity of associations between early experiences and brain development, 
multivariate approaches capable of handling high-dimensional data show promise for elucidating 
associations between adversity and brain structure. One such data-driven approach is subtyping, 
which aims to identify subgroups of individuals with similar neural and behavioral characteristics, 
and to examine differential outcomes between these subgroups. This approach has been applied 
effectively in studies examining subtypes of individuals with psychiatric disorders (Fair et al., 
2012; Hong et al., 2018, 2019; Sun et al., 2015), but not yet within the context of the childhood 
environment and brain development. 
  
In the current study, we aimed to decompose heterogeneous relationships between specific 
environmental exposures and brain structure during development. To address this goal, we 
leveraged a novel multimodal data integration framework, similarity network fusion (SNF) (Wang 
et al., 2014), and applied it to openly shared, large-scale data derived from the Adolescent Brain 
Cognitive Development (ABCD) Study (Casey et al., 2018). Compared to traditional unimodal 
approaches, this framework allowed us to take into account environmental factors and structural 
brain features simultaneously in clustering, thus unveiling differential subtypes that are more 
readily interpretable in both environmental and neurobiological domains. Following SNF, we then 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 30, 2020. ; https://doi.org/10.1101/2020.04.28.063461doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.28.063461


 

 

5 

tested the validity of those subtypes by predicting clinical symptoms (which were not used for 
subtyping) based on brain imaging features of each subtype in a replication dataset. We 
hypothesized that differential patterns of myelin and cortical thickness would be associated with 
discrete measures indexing the childhood environment, resulting in subtypes representing co-
occurrence of specific structural variation and environmental exposures. By exploring more 
precise associations between environmental exposures and structural variation in a large, 
population-based, demographically diverse sample, we aim to enhance understanding of how 
environmental and brain structural variation co-occur and relate to mental health during childhood.  
 
 
METHODS AND MATERIALS 
 
Subjects. Participants in our study were 989 school-aged youth (9-10 years old), whose data were 
obtained from the Adolescent Brain Cognitive Development (ABCD) Study (Casey et al., 2018). 
This ongoing project aims to recruit over 11,000 children from 21 different sites based on 
harmonized protocols (Casey et al., 2018) and follow them over ten years to comprehensively 
characterize psychological and neurobiological development from pre-adolescence to young 
adulthood. Parents provided written informed consent, and children provided verbal assent for 
study participation. Full details of ethics and oversight in the ABCD Study have been previously 
published (Clark et al., 2018). We applied a set of inclusion and exclusion criteria to select a 
subsample from this broader pool of participants: i) included only participants with all data of 
interest, including T1- and T2-weighted MRI scans indexing brain structure, 8 phenotypic scores 
related to environmental conditions for youth, and 3 scores indexing different facets of mental 
health (see Environmental data and Clinical data), ii) if there were siblings, only the oldest child 
in each family was included, and iii) excluded those participants with diagnoses of autism spectrum 
disorder or epilepsy. Apart from these criteria, participants affected by the error related to structural 
MRI data reported in Known Issues with Data Release 2.0 
(https://nda.nih.gov/edit_collection.html?id=2573) were excluded. Finally, we excluded 
participants with a lower quality of MRI and preprocessing results based on the ABCD Study’s 
FreeSurfer quality control conducted by trained technicians to identify data showing evidence of 
excessive motion, pial overestimation, white matter underestimation, inhomogeneity, or artifacts 
(Hagler et al., 2019). Based on these criteria and external quality control screening, there were 
2379 remaining participants, collected across 13 sites and 2 different scanners. To reduce the 
computational cost in processing such high-volume data, we randomly selected 1000 participants 
for inclusion in the present study. We internally performed quality control procedures on these 
1000 participants’ data, which consisted of visual inspection of remaining cases for the FreeSurfer 
processing derivatives (e.g., cortical surface) as well as the z-scores of imaging features to identify 
outliers (see later paragraphs for details of quality control processes). This internal quality control 
procedure excluded 11 participants, resulting in a final n=989. The final sample was randomly 
split into 495 discovery and 494 replication cases. Among these, 230/213 participants 
(discovery/replication) were drawn from the first release of the ABCD Study (NIMH Data Archive 
Release 1.1, DOI: 10.15154/1412097) and 265/281 participants (discovery/replication) from the 
second release of the ABCD Study (DOI: 10.15154/1503209). All details of this participant 
sampling process are summarized in the Supplementary Material and Table 1. The discovery 
and replication samples did not show differences in any demographic data including age, sex, data 
collection site, race, ethnicity, parental education, and household income. These profiles are 
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reported in Table 1. Further details about the brain imaging and behavioral data collected in the 
ABCD Study can be found in the original data descriptor papers (Barch et al., 2018; Casey et al., 
2018).  
 
Table 1. Demographic characteristics of included participants 

 Discovery 
(n=495) 

Replication 
(n=494) 

p 
value 

Age (months; mean ±SD) a 119.4±7.3 119.4±7.0 p=0.86 
Sex (male/female) b 258/237 254/240 p=0.82 

Site n (1st-13th sites in order) 32/48/28/50/12/31/39/16/35/31/
92/23/58 

34/28/30/55/16/30/46/12/34/36/
93/24/56 p=0.79 

Race b, c 349W, 69B, 9A, 20O, 45M, 3NA 353W, 58B, 8A, 15O, 56M, 4NA p=0.79 
Ethnicity b, d 96H, 393nH, 6NA 104H, 387nH, 3NA p=0.86 
Education level of parent b, e 58E/M/H, 310B, 127G 64E/M/H, 302B, 128G p=0.80 
Household income b, f 110L, 150M, 203H, 32NA 112L, 145M, 210H p=0.90 
a. Group comparison was based on independent samples t-test. 
b. Group comparisons were based on Chi-square test (all frequencies ³5) or Fisher’s exact test (any frequency <5) of the 

contingency table. 
c. W (White), B (Black), A (Asian), O (Other race), M (Mixed race), NA (Not answered or refused to answer); Details about 

race can be found here: https://nda.nih.gov/data_structure.html?short_name=pdem02. 
d. H (Hispanic), nH (non-Hispanic), NA (Not answered or refused to answer). 
e. E/M/H (Elementary/middle/high school), B (Bachelors), G (Graduate [Masters/PhD/Specialized degree such as MD]; 

Education information was based on the parent who completed the survey. 
f. L(Low): <$50,000; M(Middle): $50,000≤income<$100,000; H(High): ≤$100,000; NA (Not answered or refused to answer). 

Household income was based on the sum of the past 12 months of gross pay for both parents. 
 
Imaging data. Structural imaging data consisted of T1-weighted (T1w) and T2-weighted (T2w) 
MRI, both acquired using a 3T Siemens Prisma scanner. Specifically, the T1w acquisition was 
based on a 3D inversion prepared RF-spoiled gradient echo scan (TE=2.88ms, TR=2500ms, flip 
angle = 8°, 1mm isotropic voxels, 2x parallel imaging) using prospective motion correction 
(Tisdall et al., 2012; White et al., 2010). The T2w acquisition was carried out based on a 3D T2w 
variable flip angle fast spin echo sequence (TE=565ms, TR=3200ms, 1mm isotropic voxels, 2x 
parallel imaging), also with prospective motion correction. 
 
Environmental data. Environmental factors were selected to characterize youth environment with 
regard to trauma exposure, caregiver behaviors, family functioning, neighborhood safety, and 
school environment. Six of these factors were assessed using measures from the ABCD Culture 
and Environment Sum Scores: neighborhood safety (mean score of the ABCD Parent 
Neighborhood Safety/Crime Survey Modified from PhenX), school environment (‘school 
environment’ subscale from the ABCD School Risk and Protective Factors Survey), parental 
support (mean score of first five items from the ABCD Children's Report of Parental Behavioral 
Inventory), caregiver support (mean score of second five items from the ABCD Children's Report 
of Parental Behavioral Inventory), parental monitoring (mean score of the ABCD Parental 
Monitoring Survey), and family conflict (‘family conflict’ subscale from the ABCD Youth Family 
Environment Scale-Family Conflict Subscale Modified from PhenX) (Hoffman et al., 2019). 
Trauma exposure was assessed by computing a summed score across the 17 categories queried in 
the Traumatic Events measure of the ABCD Parent Diagnostic Interview for DSM-5 [Kiddie 
Schedule for Affective Disorders and Schizophrenia (KSADS) (Kaufman et al., 1997)]. This 
section of the semi-structured interview assesses events such as physical and sexual abuse, 
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exposure to domestic violence, and exposure to community violence. Family history of mental 
health problems was assessed via the sum of endorsements for substance use, criminal activities, 
and mental health concerns across all immediate family members (mother, father, full siblings) 
queried in the ABCD Family History Assessment. Further details on all eight environmental 
measures can be found in the Supplementary Material.  
 
Clinical data. Three measures of psychiatric symptoms (T-scores indexing symptoms of 
internalizing problems, externalizing problems, and total problems) were selected from the parent-
reported Child Behavior Checklist (CBCL; Achenbach & Rescorla, 2001) to evaluate clinical 
profiles of the identified subtypes.  
 
Image preprocessing and feature extraction. The acquired individual T1w and T2w MRI data 
underwent an established processing pipeline from the Human Connectome Project (HCP) 
(Glasser et al., 2013). This contains multiple optimized preprocessing steps for cortical surface 
extraction and volume/surface alignment processes, details of which can be found in the original 
pipeline paper (Glasser et al., 2013). Briefly, this pipeline consists of three main stages: i) the 
‘PreFreeSurfer’ stage to produce an undistorted native structural volume space for each participant, 
align the T1w and T2w images, perform a bias-field correction, and register the participant's native 
structural volume space to MNI space, ii) the ‘FreeSurfer’ stage (using the version 5.3 FreeSurfer 
software) to segment the volume into predefined structures, reconstruct white and pial cortical 
surfaces, and perform FreeSurfer's standard folding-based surface registration to their surface atlas, 
and finally iii) the ‘PostFreeSurfer’ stage to produces all necessary NIFTI volume and GIFTI 
surface files, along with applying the surface registration and creating the final brain mask.  
 
To probe heterogeneous relationships between environmental conditions and brain development, 
we analyzed two widely employed structural MRI features, namely cortical thickness and 
T1w/T2w ratio indexing myelination. Cortical thickness has been associated with multiple cellular 
features that are closely related to neurodevelopment including neuropil volume (Schüz & Palm, 
1989), neuronal density (Collins et al., 2010; la Fougère et al., 2011), arborization (Scholtens et 
al., 2014), and intracortical connectivity (Wagstyl & Lerch, 2018). Myelination is an additional 
biological process that occurs throughout development, and supports neuronal adaptation during 
co-occurring processes such as synaptogenesis and pruning (Silbereis et al., 2016). In our study, 
myelination was indexed by a measure automatically extracted in the second ‘FreeSurfer’ stage of 
the above HCP pipeline, measured as the distance of corresponding vertices between the white and 
pial boundary. This myelin-surrogate marker was constructed in the third ‘Post-FreeSurfer’ stage 
by dividing T1w intensity by T2w intensity (thus, a T1w/T2w ratio) at each cortical point (vertex) 
across the whole brain (Glasser & Van Essen, 2011). Notably, while the original cortical surfaces 
that the HCP pipeline generated had 32,000 vertices per hemisphere, we opted to downsample this 
surface mesh to 10,242 vertices at each hemisphere in order to reduce the computational cost in 
the following subtype analyses. 
 
Once the feature preprocessing was complete, we visually inspected the reconstructed surfaces and 
cortical masks across individual brains for quality control. We also performed quantitative outlier 
detection based on vertex-wise z-score maps of both cortical thickness and myelin. Participants 
were excluded if >20% of the vertices in both features had z-scores greater than 3.09 (a threshold 
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corresponding to the p-value 0.001). This provided a final sample for discovery (n=495) and 
replication (n=494) data in the current study. 
 
Feature preprocessing. The above feature extraction resulted in two sets of 20,484 feature values 
(from the cortical thickness and myelin maps) as well as 8 phenotypic and 3 clinical scores for 
each individual. To control for possible confounds (i.e., age, sex, data collection site), we 
performed i) a statistical correction for age and sex effects on imaging features (Hong et al., 2018) 
and ii) ComBat harmonization (i.e., Combining Batch effects, a Bayesian approach based on a 
linear model to estimate and remove site batch effects)(Fortin et al., 2017), for both imaging and 
phenotypic scores. We then normalized each feature using z-scoring.  
 
Subtyping based on similarity network fusion (Figure 1). Subtyping was performed using 
similarity network fusion (SNF), an algorithm originally developed to integrate multimodal data 
in the genetic field (e.g., microRNA expression and DNA methylation) (Wang et al., 2014). This 
approach has recently been applied to neuroimaging studies to objectively subtype brain structures 
across transdiagnostic samples (Stefanik et al., 2018). SNF was performed on the measures of 
brain structure and environmental factors; the measures of clinical symptoms were not included in 
any step of SNF. Subtyping using SNF consisted of the following four steps: 
i) Calculation of unimodal affinity matrices: We first computed three between-subjects distance 
matrices for cortical thickness, T1w/T2w ratio maps, and the environmental phenotypic scores 
separately. The distance matrix was calculated consistently across the features based on the ‘cosine 
similarity’ kernel, which was then used to generate between-subjects affinity matrices (each cell 
representing the similarity of distance profiles between two given participants) using a scaled 
exponential similarity kernel. The mathematical details of this kernel can be found in the original 
algorithm paper (Wang et al., 2014).  
ii) Fusion of multimodal affinity matrices: The resulting three between-subjects affinity matrices 
(each from cortical thickness, myelin, and environmental phenotypic scores) were then input to 
SNF to generate a single fused affinity matrix. Three parameters were employed in SNF (i.e., k: 
number of nearest neighbors used to fuse the affinity matrices [how many local neighbors used to 
calculate the between-subjects similarity in SNF], T: number of iterations in SNF algorithms, and 
μ: hyperparameters related to the scaling process of each feature). We selected those parameters 
as the original paper recommended (k=30, T=20, μ=0.5) (Wang et al., 2014). As detailed further 
below, these parameters resulted in the most reproducible subtype findings between the discovery 
and replication datasets.  
iii) Spectral clustering to identify subtypes: The generated single fused affinity matrix was input 
to the spectral clustering algorithm to identify homogeneous subtypes. Of note, to obtain more 
reproducible and outlier-robust subtype findings, we performed the above SNF process 1000 times 
iteratively, based on the bootstrapped samples (90% of cases resampled without replacement) and 
constructed a consensus matrix, varying the clustering number (C) from 2 to 20. Each individual 
cell of this consensus matrix represents how consistently a given pair of participants was grouped 
together among 1000 iterations at a given clustering number (2-20).   
iv) Clustering solution evaluation: We used a previously established approach, ‘cumulative 
consensus distribution’, to determine the clustering solution. Detailed information regarding the 
mathematical principle and motivation can be found in the original paper (Monti et al., 2003). 
Briefly, systematically evaluating C from 2 to 20, this approach evaluated up to which value C 
increased the degree of consensus for the clustering solution, compared to the previous C (i.e., C-
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1). Using this criterion, we selected the C with the highest subtyping stability across differently 
sampled cases. 
Importantly, the entire subtyping process (i-iv) was performed two separate times for the discovery 
and replication datasets to independently assess the reproducibility of findings.  
 

 
Figure 1. General method for subtyping based on Similarity Network Fusion (SNF). Two brain 
structural features and eight environmental factors were used to create a between-subjects similarity network at each 
modality. The resulting similarity graphs were then entered into SNF which performs iterative non-linear fusion 
processes to combine them, resulting in a single ‘fused similarity network’. Spectral clustering was then applied to 
find homogeneous subgroups. To find the most reproducible clustering results, we bootstrapped 90% of the samples 
and repeated the above SNF subtyping. This procedure was iterated 1000 times, and the subtype results were 
aggregated to construct a consensus clustering matrix. The final clustering result was obtained based on spectral 
clustering of the consensus matrix. The optimal clustering solution was determined by an established consensus index 
(Monti et al., 2003). To assess the significance of identified subtypes, two prediction analyses were conducted of 
subtype membership classification and clinical symptoms. These analyses aimed to demonstrate both generalizability 
and utility in predicting clinical symptoms using independent samples.  
 
 
Subtype profiling. The identified subtypes were then evaluated in terms of brain and environmental 
features. For quantitative evaluation, we performed analysis of covariance (ANCOVA) on cortical 
thickness, myelin maps, and environmental phenotypic scores for main group effects (i.e., subtypes) 
while statistically correcting for age, sex, and data collection site. The family-wise error due to 
multiple comparisons for phenotypic scores was controlled by the false discovery rate (FDR; 
Benjamini & Hochberg, 1995). For brain features, we additionally included the global mean (i.e., 
whole brain averaged cortical thickness and T1w/T2w ratio) as a nuisance variable to highlight 
region-specific subtype differences across the brain. To focus on only reproducible findings, we 
mapped significant clusters from ANCOVA that overlapped between the discovery and replication 
datasets. For these overlapping regions, we evaluated their spatial patterns and profiles of cortical 
thickness and T1w/T2w ratio across subtypes. The family-wise error due to massive univariate 
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vertex-wise multiple comparisons was controlled by random field theory (RFT; Worsley et al., 
1999) at 0.05 (cluster-defining threshold=0.025). Beyond the regional effects, we also performed 
ANCOVA on the whole-brain mean values, as they reflect global effects from more diffuse 
biological substrates. 
 
Prediction analysis. To validate our subtype results, we carried out two prediction analyses: i) 
subtype classification and ii) prediction of clinical symptoms for each subtype. To ensure the 
generalizability of our findings, the training of each analysis was conducted based on the discovery 
dataset, whereas the test was based on the independent replication dataset. 
i) Classification of subtype membership. This analysis aimed to assess how generalizable the brain 
and environmental phenotypic profiles of identified subtypes were to unseen cases. To do this, we 
trained a multiclass support vector machine algorithm by using the full imaging features (2×20,484 
for cortical thickness and myelin maps) and 8 environmental phenotypic scores of the 495 
discovery cases as predictors and their subtype information as a responder. The accuracy of the 
classification was measured by entering the same imaging and phenotypic features of the 494 
unseen replication cases into the trained classifier and comparing the predicted subtype with that 
which resulted from the SNF analysis based on the entire 989 cases.  
ii) Prediction of clinical symptoms. Our second prediction analysis sought to associate the brain 
imaging features with clinical symptoms (i.e., internalizing, externalizing, and total problem) for 
each identified subtype. Of note, these clinical variables were not used in the SNF subtyping. We 
trained the support vector regression for each subtype based on brain imaging features of the 
discovery cases to predict their clinical symptom scores. For feature selection, we performed a 
linear regression between each feature and targeted clinical symptom scores of the discovery 
dataset and entered only those showing a significant correlation (|t|>2) into the classifier to reduce 
the feature dimensionality and optimize the training quality. We then tested this subtype-specific 
classifier using the independent replication dataset, entering the same brain imaging features. The 
prediction accuracy was measured by a non-parametric Spearman correlation between the original 
clinical symptom scores and the predicted scores across internalizing, externalizing symptoms, 
and total problems. To test the utility of our subtyping approach, we also conducted the same 
prediction of clinical symptom scores but without subtype information. In other words, we trained 
the classifier using the 495 discovery cases and tested it based on the 494 replication cases. This 
analysis aimed to address whether identifying subgroups provides a more homogeneous predictor-
responder relationship, thereby improving prediction accuracy. 
 
Data and code availability. All data analyzed in this study are accessible through an official 
request to the NIMH Data Archive (https://nda.nih.gov/abcd). All other relevant materials (e.g., a 
participant list) and code used for data sampling, SNF, and statistical analyses are publicly 
available at https://github.com/Yale-CANDLab/ ABCD_Env_Subtyping. 
 
 
RESULTS 
 
Subtyping based on SNF. Based on the area under the curve for a cumulative distribution function 
(CDF) of consensus values (Supplementary Figure 1B), we focused on the subtyping results at 
clustering numbers C=2 and C=5, given that these Cs made the largest increases (ΔCDF>0) of 
consensus degree in both the discovery and replication datasets. Indeed, for these solutions, high 
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stability of between-subject subgroups across bootstrapped samples was observed in the consensus 
matrices (Supplementary Figure 1A), and the subtyping patterns were highly reproducible in the 
replication data (Figure 2 and 3). Notably, resulting subtypes in the discovery dataset did not 
show any differences in age, sex, site, race, ethnicity, parental education, or annual household 
income in both the C=2 and C=5 solutions (Table 2; see also Supplementary Table 2 for the 
replication dataset in which there were no differences for any variables except for household 
income). 
 

Table 2. Demographic profiles of 2- and 5-subtype solutions (Discovery) 

2-subtype profiling Subtype 1 
(n=258) 

Subtype 2 
(n=237) p value 

Age (months; mean ±SD) a 119.7±7.3 119±7.3 p=0.27 
Sex (male/female) b 136/122 122/115 p=0.75 

Site n (1st-13th sites in order) b 14/23/13/23/5/15/19/10/15/19/ 
53/11/38 

18/25/15/27/7/16/20/6/20/12/ 
39/12/20 p=0.60 

Race b, c 190W, 36B, 4A, 8O, 20M  159W, 33B, 5A, 12O, 25M, 3NA p=0.26 
Ethnicity b, d 55H, 200nH, 3NA 41H, 19nH, 3NA p=0.26 
Education level of parent b, e 31E/M/H, 168B, 59G 27E/M/H, 142B, 68G p=0.33 
Household income b, f 58L, 80M, 104H, 16NA 52L, 70M, 99H,  16NA p=0.97 
    
5-subtype profiling Subtype 1 

(n=82) 
Subtype 2 
(n=106) 

Subtype 3 
(n=112) 

Subtype 4 
(n=93) 

Subtype 5 
(n=102) p value 

Age (months; mean ±SD) a 119.4±7.4 119.9±7.5 119.8±7.6 118.8±6.9 118.9±7.1 p=0.71 
Sex (male/female) b 39/43 51/55 64/48 51/42 53/49 p=0.60 

Site n (1st-13th sites in order) b 
8/8/6/7/2/4/ 
5/2/7/5/13/ 
4/11    

4/11/8/10/2/
8/9/1/8/5/19/ 
4/17    

11/9/5/13/1/
8/12/3/9/8/1
8/4/11    

2/7/4/13/3/4/ 
8/6/3/10/24/ 
2/ 7    

7/13/5/7/4/7/
5/4/8/3/ 
18/9/12    

p=0.75 

Race b, c 
60W, 12B, 
3A, 6M, 
1NA 

81W, 15B, 
1A, 5O, 4M 

72W, 15B, 
2A, 7O, 
15M, 1NA 

68W, 13B, 
2A, 1O, 9M 

68W, 14B, 
1A, 7O, 
11M, 1NA 

p=0.39 

Ethnicity b, d 15H, 66nH, 
1NA 

25H, 79nH, 
2NA 21H, 91nH 18H, 74nH, 

1NA 
17H, 83nH, 
2NA p=0.77 

Education level of parent b, e 6E/M/H, 
57B, 19G 

16E/M/H, 
64B, 26G 

14E/M/H, 
69B, 29G 

11EMH/61B
/21G 

11EMH/59B
/32G p=0.69 

Household income b, f 22L, 24M,  
29H, 7NA 

25L, 32M, 
43H, 6NA 

21L, 34M. 
47H, 10NA 

18L, 32M,  
37H, 6NA 

24L, 28M, 
47H, 3NA p=0.81 

a. Group comparison was based on independent samples t-test. 
b. Group comparisons were based on Chi-square test (if all frequencies ³5) or Fisher’s exact test (if any frequency <5) of the 

contingency table. 
c. W (White), B (Black), A (Asian), O (Other race), M (Mixed race), NA (Not answered or refused to answer); Details about 

race can be found here: https://nda.nih.gov/data_structure.html?short_name=pdem02. 
d. H (Hispanic), nH (non-Hispanic), NA (Not answered or refused to answer). 
e. E/M/H (Elementary/middle/high school), B (Bachelors), G (Graduate [Masters/PhD/Specialized degree such as MD]; 

Education information was based on the parent who completed the survey. 
f. L(Low): <$50,000; M(Middle): $50,000≤income<$100,000; H(High): ≤$100,000; NA (Not answered or refused to 

answer). Household income was based on the sum of the past 12 months of gross pay for both parents.	
 
 
 
i) Two-subtype solution: The number of participants classified into each of these two subtypes was 
balanced (Subtype 1 n=258, Subtype 2 n=237), suggesting that their subtype-specific brain 
imaging and environmental phenotypic profiles were equally well represented across the sample. 
The brain imaging profiles revealed inverse patterns between cortical thickness and myelin across 
the two subtypes (Figure 2 ‘structural imaging profile'). Indeed, Subtype 1 displayed slightly 
reduced cortical thickness across the whole brain (z-score: -0.4 to -0.2), and increased myelin (z-
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score: 0.20-0.35), particularly in the posterior cortical areas (relative to Subtype 2). Subtype 2 
displayed opposite features of increased cortical thickness and reduced myelination (relative to 
Subtype 1). An ANCOVA analysis (in this case, equivalent to a two-sample t-test, given there 
were two subtypes) confirmed these subtype-specific characteristics at both the global and regional 
level (FIGURE 4A). Specifically, both cortical thickness and T1w/T2w ratio measures showed 
marked global differences in the whole-brain mean (discovery/replication: decrease in Subtype 1 
vs. increase in Subtype 2, F1, 478=430/660, p<0.0001 for cortical thickness;  increase in Subtype 1 
vs. decrease in Subtype 2, F1, 478=52/10.2, p<0.0002 for T1w/T2w ratio). The subsequent 
ANCOVA targeting regional differences between the subtypes (i.e., ANCOVA statistically 
correcting for whole-brain mean) also showed such differential patterns, with two overlapping 
clusters that were significant in both the discovery and replication data. Indeed, the T1w/T2w ratio 
showed overlapping clusters (i.e., reproducible subtype differences) in the right paracentral lobule 
and left superior frontal cortices (pRFT<0.05). There were no regional differences between the 
subtypes in cortical thickness.  
 
Individuals in Subtype 1 versus Subtype 2 differed in the extent to which their environments were 
characterized by parental support, caregiver support, and neighborhood safety (ANCOVA: 
FDR<0.05; Figure 2 ‘Environmental phenotype profile’), but there were no differences in trauma 
exposure, family history of mental health problems, parental monitoring, or school engagement. 
Specifically, individuals in Subtype 1, characterized by reduced cortical thickness and increased 
myelination, had higher support (e.g., positive evaluation and affection) displayed by parents and 
caregivers and lower perceptions of neighborhood safety than individuals in Subtype 2. Subtypes 
1 and 2 did not significantly differ in CBCL T-scores for internalizing symptoms, externalizing 
symptoms, or total problems (uncorrected p>0.05). 
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Figure 2. 2-subtype solution – Discovery and Replication. The two-subtype solution is presented for 
both discovery (A) and replication (B) datasets. Profiles of cortical thickness and T1w/T2w ratio measures are shown 
for each subtype. The spider plots display multidimensional profiles (z-score) of environmental factors for each 
subtype, with an asterisk indicating a significant difference between the subtypes. The raw data for these significant 
differences in environmental factors are shown in the violin plots.  
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ii) Five-subtype solution: Similar to the two-subtype solution, the number of participants classified 
in a given subtype was also relatively balanced across the identified subtypes (Subtype 1: 82, 
Subtype 2 n=106, Subtype 3 n=111, Subtype 4 n=93, Subtype 5 n=103). However, there was 
greater variability across their brain imaging and environmental phenotypic profiles, suggesting 
that a higher number of subtyping solutions might present a more detailed picture of complex 
relationships between environmental factors and brain structure (Figure 3). Specifically, Subtype 
1 showed more highly myelinated whole-brain patterns and a slight increase in cortical thickness 
in lateral temporo-occipital regions. Subtype 5 presented largely opposite patterns in both imaging 
features, demonstrating markedly decreased whole-brain myelin and mild cortical thinning in the 
right lateral frontal area. Subtypes 2-4 showed gradual changes in myelin patterns from high 
(Subtype 1) to low whole-brain T1w/T2w z-scores (Subtype 5) across multiple brain areas (Figure 
3 ‘Structural imaging profile'). The cortical thickness patterns also varied across the subtypes, 
showing widespread decreased thickness in Subtype 2, relative to increased thickness in Subtype 
3, and an intermediate pattern in Subtype 4. 
 
This qualitative subtype profiling was complemented by the following statistical analysis 
(ANCOVA), where we demonstrated reproducible group effects across identified subtypes. 
Compared to the two-subtype solution, these higher-resolution subtyping results showed more 
overlap in findings between the discovery and replication datasets. First, the global mean in both 
cortical thickness and T1w/T2w ratio measures demonstrated clear subtype-specific patterns that 
were highly reproducible (discovery/replication: F4, 474=430/186, p<0.0001 for cortical thickness; 
F4, 474=81.4/10.2, p<0.0002 for T1w/T2w ratio). Moreover, regional effects were also consistent 
across the two datasets for both cortical thickness and T1w/T2w ratio (Figure 4B). Subtype 
differences in cortical thickness were localized to the superior frontal area, whereas differences in 
myelin were primarily located in the default mode and frontoparietal networks (pRFT<0.05). These 
findings suggest that brain-based changes related to heterogeneous environmental conditions may 
not stem from a single overarching developmental process, but possibly from both anatomically-
nonspecific global changes and regionally-specific modulation.  
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Figure 3. 5-subtype solution – Discovery and Replication. The five-subtype solution is presented for 
both discovery (A) and replication (B) datasets. Profiles of cortical thickness and T1w/T2w ratio measures are shown 
for each subtype. The spider plots display multidimensional profiles (z-score) of environmental factors for each 
subtype, with an asterisk indicating a significant ANCOVA effect between the subtypes. The raw data for these 
significant differences in environmental factors are shown in the violin plots.  
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Figure 4. Overlapping subtype differences across discovery and replication datasets. ANCOVA 
was performed to evaluate group differences in cortical thickness (left) and T1w/T2w ratio (right) for the two-subtype 
(A) and five-subtype (B) solutions (See ‘Subtype profiling’ in Methods and Materials for statistical details). The 

main group effect was displayed by a Cohen’s f squared value (=! !!

"#!!
) (Lakens, 2013), with black boundaries 

indicating significant clusters based on random field theory (RFT; pRFT<0.05). Brain areas with effects that survived 
RFT in both the discovery and replication results are presented (‘Overlapping significance’) to highlight the 
reproducible main group effects. For each overlapping cluster, the distribution of brain imaging features across 
individuals is shown for the identified subtypes at the right.  
 
Environmental profiles also varied across the subtypes for parent and caregiver support, family 
conflict, neighborhood safety, and school environment (ANCOVA: FDR<0.05) (Figure 3 
‘Environmental phenotype profile’). However, there were no differences in trauma exposure 
between the subtypes. Similar to observed patterns in the two-subtype solution (see Figure 2), 
Subtype 1 was characterized by higher myelination and increased parental and caregiver support. 
Although the opposite association was seen in Subtype 4 (i.e., reduced myelination and increased 
parental and caregiver support; Figure 3 for discovery data), the degree of reduction in myelination 
was slight, and this group also had more severe family conditions (e.g., family mental health 
problems and criminal history) and lower parental monitoring than Subtype 1. More importantly, 
the Subtype 4 patterns, especially for parent and caregiver support, were not clearly observed in 
the replication dataset. Another notable association between environmental and brain features was 
observed in Subtype 3. Specifically, this subgroup was characterized by less favorable conditions 
in almost every domain of environmental factors (i.e., lower parental and caregiver support, lower 
parental monitoring, a more significant family history of mental health problems, less favorable 
school environment, and higher family conflict) and relative cortical thickening without alterations 
in myelination. Importantly, the majority of these findings in both the two- and five-subtype 
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solutions were reproduced in the independent replication data, confirming their high 
generalizability. 
 
Finally, we examined differences in clinical symptom scores between subtypes using a general 
linear model, controlling for age and sex, and correcting for site of acquisition (see 
Supplementary Figure 3). Given the number of pairwise tests conducted, we only report results 
that survived FDR comparison. For internalizing symptoms, Subtype 3 was observed to have 
higher scores than Subtype 1 (p=0.012). For externalizing symptoms, Subtype 3 had higher scores 
than subtypes 1 (p<0.0001), 4 (p=0.0027), and 5 (p=0.007), and Subtype 2 had higher scores than 
Subtype 1 (p=0.0044). With regard to total problem scores, Subtype 3 again had higher scores than 
Subtype 1 (p=0.002), Subtype 4 (p=0.0114), and Subtype 5 (p=0.0018). These patterns largely 
replicated in the independent dataset, with Subtype 3 having higher scores across internalizing 
symptoms, externalizing symptoms, and total problems than other subtypes (p<0.001). 
 
Of note, SNF findings based on either brain imaging or phenotypic scores alone did not yield 
comparable subtype profiles. When subtyping based on only brain imaging data, the imaging 
features revealed similar structural profiles across the identified subtypes compared to our main 
findings (e.g., opposite cortical thickness and myelin patterns between the two subtypes). However, 
there were no between-subtype differences on environmental factors, and we were unable to 
predict clinical scores based on subtypes derived from brain imaging data alone. When subtyping 
based on only environmental data, SNF detected statistically more robust subtype-specific 
environmental profiles. However, brain structural features did not differ across the subtypes. These 
findings suggest that the SNF approach considering multimodal data effectively extracted unique 
brain-environment relationships, which could not be captured by unimodal approaches.  
 
Subtype validation. To validate the significance of identified subtypes, we performed two 
independent prediction analyses. The first analysis assessed how generalizable the brain structural 
and environmental phenotypic profiles for each subtype were in unseen cases through subtype 
classification. The second analysis validated the subtypes by using the brain imaging features to 
predict clinical symptom scores in unseen cases.  
i) Prediction of subtype membership classification (Figure 5A): For the two-subtype solution, the 
prediction result based on the replication data showed correct subtype classification in 86% of the 
cases (chance level estimated by a permutation test: 48%; p<0.001), suggesting that the brain 
structural and environmental profiles learned from the discovery dataset for each subtype were 
highly generalizable. Notably, mapping the weight of the features learned by a support vector 
machine revealed that regions of the sensorimotor and default networks had particularly high 
influence in distinguishing the two subtypes. Although classification accuracy was lower, 
generalizable subtype-dependent data profiles were also found in the five-subtype solution, which 
revealed successful classification in 63% of the cases (chance level=19%; p<0.001). The feature 
contribution map highlighted similar brain areas (i.e., sensorimotor and default networks) as found 
in the two-subtype classification, which suggests that these anatomical regions may be particularly 
sensitive to the environment during childhood.  
ii) Prediction of clinical symptoms (Figure 5B): The prediction of clinical scores based on support 
vector regression showed marginal but significant correlation between actual and predicted scores. 
Specifically, the classifier informed by the two-subtype solution successfully predicted 
externalizing symptoms (Spearman correlation: r=0.120, p=0.0037; survived FDR comparison) 
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but not internalizing symptoms or total problems (r=-0.08/0.06, p=0.96/0.086, respectively). The 
classifier informed by the five-subtype solution successfully predicted total problem scores 
(r=0.119, p=0.0041; survived FDR comparison), but not internalizing or externalizing symptoms 
(r=0.07/0.08, p=0.054/0.03, respectively; did not survive FDR comparison). The features 
contributing to the significant prediction of externalizing problems were mainly found in the 
primary sensory and higher-order default mode systems. Notably, the feature map for the 
prediction of total problems demonstrated similar contribution profiles, implicating both lower-
level somatosensory and higher-order default mode areas. By contrast, when we performed this 
prediction across all participants without subtype information, we failed to predict any clinical 
symptom scores.  
 
To assess the robustness of our results, we iteratively performed the same prediction analysis 100 
times across bootstrapped samples (resampling 90% of cases without replacement). We found that 
indeed the majority of prediction results centered around the original prediction conducted on all 
participants, suggesting that this performance was not driven by outliers. Another noteworthy 
finding in this bootstrap analysis was that even for the non-significant prediction results (e.g., total 
problems in the two-subtype solution, externalizing symptoms in the five-subtype solution), their 
distributions showed higher prediction accuracy compared to that of the subtype-free approach 
(p<0.001; Supplementary Figure 2). These results collectively emphasize that given a highly 
heterogeneous sample, identifying more homogeneous subgroups may be an optimal strategy 
before performing brain-phenotype association analyses. 
 
Overall, these analyses demonstrate that the observed subtypes are highly reproducible, and that 
subtype classification aids in decomposing heterogeneity in brain structure and environmental 
exposures to enhance efficacy of clinical prediction. Moreover, the sensorimotor and default mode 
networks found to be influential for both subtype classification and clinical prediction may 
represent developmentally sensitive brain systems. Such systems may be readily affected by the 
childhood environment and thus related to the manifestation of mental health in school-aged 
children.  
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Figure 5. Subtype classification and clinical symptom prediction. Results are shown for the 
prediction of subtype classification (A) and clinical symptoms (B). A) The red dots in the violin plot represent 
classification accuracy in the 2- and 5-subtype solutions. To demonstrate their significance against a chance level, we 
performed permutation tests 100 times, randomly shuffling the subtype membership in the training (discovery) dataset. 
B) The correlations between actual clinical scores (upper: externalizing symptoms, lower: total mental health problems) 
and predicted scores are displayed in the scatter plot. In both (A) and (B), the feature contributions were identified 
based on the weights provided from the classifiers and mapped on the whole brain and stratified using the Yeo-Krienen 
functional community atlas (B. T. T. Yeo et al., 2011). Prediction accuracy for externalizing symptoms was informed 
by the 2-subtype solution; prediction accuracy for total mental health problems was informed by the 5-subtype solution. 
Abbreviations: VIS=visual, SM=somatosensory, DA=dorsal attention, SAL=salience, LIM=limbic, FP=frontoparietal, 
DMN=default mode network. 
 
 
DISCUSSION  
 
In this study we dissected the complex relationships between the childhood environment and brain 
structure using a fully unsupervised, multimodal data integration and clustering approach in a large 
sample of school-aged children from the ABCD Study. The method used here, Similarity Network 
Fusion (SNF), combined two well-established developmental MRI features, namely cortical 
thickness and myelin-surrogate markers, and key environmental risk and protective factors to 
identify distinct subtypes. This approach identified two viable solutions, one with two subgroups 
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and one with five (depending on the clustering resolution), each showing divergent patterns of 
brain structure and environmental exposure. Across both solutions, patterns of brain cortical 
thickness and myelination were highly replicable, with consistent global and regional differences 
in thickness and myelination observed between subtypes. Patterns of co-occurrence between 
specific environmental exposures and neural phenotypes varied across the subtypes, revealing 
particularly strong associations between brain structure and supportive caregiving and 
neighborhood safety. Importantly, by leveraging subtype classification information, we were able 
to predict externalizing symptoms and total mental health problems in independent unseen cases 
(replication data), which was not possible without subtype classifications. Finally, the lack of 
meaningful subtyping based on either brain structure or environmental factors alone highlights the 
value of integrating across modalities to better represent the relationships between neural and 
environmental factors. In sum, the present study provides a proof-of-concept demonstration of the 
value of a multimodal and fully data-driven approach to decompose heterogeneous environmental 
effects on brain development.  
 
Findings from the two-subtype solution provided novel insight into overarching associations 
among brain and environmental factors, while findings from the five-subtype solution further 
parsed heterogeneity to produce relatively more homogenous clusters of environmental exposures 
and brain structure. Overall, the two-subtype solution demonstrated reciprocal patterns across 
subtypes. In one subtype, global cortical thinning and increased myelination co-occurred with 
higher levels of parent and caregiver support as well as decreased neighborhood safety. In the other 
subtype, the inverse pattern occurred, with increased global cortical thickening, decreased 
myelination, decreased parent and caregiver support, and increased neighborhood safety. These 
findings were mostly replicated in an independent dataset, though parent support did not differ 
between the subtypes in the replication dataset. Caregiving was also central to the strongest 
findings in the five-subtype solution, where less supportive caregiving and higher family conflict 
co-occurred with globally increased cortical thickness (Subtype 3). These findings are generally 
consistent with evidence linking favorable caregiving conditions with increased cortical thinning. 
Within the five-subtype solution, differences in cortical thickness were particularly evident in the 
right superior frontal region. Prior research has shown that a higher degree of positive maternal 
behavior is associated with increased cortical thinning in the right anterior cingulate and bilateral 
orbitofrontal cortices among males (Whittle et al., 2014), whereas higher maternal aggressiveness 
has been linked with increased cortical thickening in the right superior frontal and lateral parietal 
cortices (Whittle et al., 2016). Further, supportive caregiving has been shown to buffer the effects 
of adversity related to poverty and living in a socioeconomically-disadvantaged neighborhood 
(Brody et al., 2019; Whittle et al., 2017). Specifically, male adolescents who had positive 
caregivers demonstrated relatively increased cortical thinning in dorsofrontal and orbitofrontal 
cortices compared to those who did not have supportive caregivers and were also living in 
disadvantaged neighborhoods (Whittle et al., 2017). Exposure to community violence has been 
associated with decreased gray matter volumes in adolescence (Butler et al., 2018; Saxbe et al., 
2018), but less is known about perceptions of neighborhood safety and brain structure. Our 
findings extend previous work to demonstrate that the neural correlates of caregiving and 
neighborhood safety may go beyond changes in specific brain regions and involve global shifts in 
cortical thickness. 
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Though less is known about myelination and childhood experiences, the co-occurrence of 
supportive caregiving and increased myelination across both the two- and five-subtype solutions 
may be consistent with normative development, as myelination increases throughout development 
(Lebel & Deoni, 2018). Regional differences in myelination between the five subtypes were 
observable in clusters located in the right medial and lateral frontal convexity, the posterior 
cingulate cortex and paracentral lobule, the lateral occipito-temporal area, and the insula. Within 
the five-subtype solution, despite only moderate cortical thinning, the highest levels of myelination 
co-occurred not only with high caregiving support but also with high parental monitoring, lower 
family conflict, a lesser family history of mental health problems, higher neighborhood safety, and 
a more positive school environment (Subtype 1). These patterns provide novel evidence that 
myelination and cortical thickness may be independently associated with discrete environmental 
exposures. A recent study indicated that cortical thinning throughout child development largely 
results from increasing myelination. Yet changes in myelination did not fully explain variability 
in cortical thinning, suggesting that various cellular processes also contribute to cortical 
morphology (Natu et al., 2019). Our findings appear to align with this model. Specifically, inverse 
associations between myelination and cortical thickness were observable across the two- and five-
subtype solutions. However, unique associations between specific environmental exposures and 
myelination versus cortical thickness in the five-subtype solution suggest that environmental 
exposures may differentially impact these processes.  
 
Given the demonstrated relationships between childhood experiences and psychopathology, and 
the potential for changes in brain structure to contribute to this effect, we examined the clinical 
relevance of these subtypes. Despite robust differences in neural and environmental phenotypes, 
there were no differences in clinical symptoms in the two-subtype solution. However, symptoms 
did differ between subtypes in the five-subtype solution, consistent with the idea that this solution 
may have parsed heterogeneity more finely to produce meaningful groupings of brain and 
environmental factors, and their associations with clinical symptoms. Most notably, Subtype 3 
displayed the highest internalizing, externalizing and total problems across both the discovery and 
replication datasets. The profile of this subtype, characterized by family conflict and history of 
psychopathology and globally increased cortical thickness, aligns with previous work linking 
internalizing and externalizing symptoms with reduced cortical thinning in late childhood (Whittle 
et al., 2020), and externalizing problems with attenuated cortical thinning in adolescence 
(Oostermeijer et al., 2016). By contrast, other studies have found reduced cortical thickness in 
association with externalizing (Ameis et al., 2014; Ducharme et al., 2011) and internalizing (Bora 
et al., 2012; Newman et al., 2016) disorders, highlighting the importance of future work to address 
the challenging nature of linking brain, environment, and clinical outcomes. Here we also found 
that subtyping enhanced clinical prediction, such that including subtype classification information 
enhanced the prediction of clinical symptoms based on neuroanatomical features (which was not 
possible without the inclusion of subtype information). These findings suggest that subtyping 
approaches may prove useful for understanding heterogeneity in clinical outcomes during 
development. 
 
This study leveraged the data from the ABCD Study, a large publicly available and 
demographically diverse, population-based developmental cohort, to test whether heterogeneity in 
brain structure and environmental exposures could be parsed using a multimodal data fusion and 
subtyping approach. To our knowledge, this study is the first to examine associations between 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 30, 2020. ; https://doi.org/10.1101/2020.04.28.063461doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.28.063461


 

 

22 

myelination and cortical thickness with environmental risk and protective factors across multiple 
levels (i.e., caregiver, family, school, neighborhood). A key strength of this work is the 
dimensional approach taken to assess environmental exposures. Given that much previous work 
has focused on solely adverse experiences, or examined only one facet of the environment (e.g., 
caregiving), we prioritized using a data-driven method to empirically determine patterns of co-
occurrence between different types of environmental exposures and measures of brain structure. 
Our findings demonstrated highly reproducible and robust brain-environment relationships, and 
the confirmation of our results in a held-out sample is an important strength of this work. Finally, 
we applied the subtyping of brain structure and environmental exposures to examine individual 
differences in clinical symptoms. As this study employed the first wave of ABCD data, the findings 
set the stage for future investigations of how adversity and brain structure are associated 
throughout adolescence, as well as how they may predict longitudinal changes in mental health. 
This vast potential for follow-up research is well aligned with the ABCD Study’s vision of open 
science and collaborative research to facilitate novel insight into brain and behavioral development.  
 
While this study meaningfully contributes to the literature on childhood experiences and brain 
development, there are nevertheless aspects upon which future research can improve. Here we 
employed a population-based dataset derived from communities nationwide and tested 
generalizability in unseen cases within this same sample. However, replication of these findings 
in external samples will be needed to confirm generalizability. The age range of 9-10 years old in 
this sample also represents a very specific point in childhood, and it is unknown whether similar 
brain-environment relationships would be observed at different ages during development. Given 
marked neurodevelopmental changes throughout childhood and adolescence (Casey et al., 2019; 
Gee et al., 2018; Giedd et al., 1999; Herting & Sowell, 2017; Kaczkurkin et al., 2019; Luna, 2009), 
as well as the likelihood that different environmental factors will influence the brain in unique 
ways depending on developmental stage (Cohodes et al., 2020; Gee & Casey, 2015; Lupien et al., 
2009; Tottenham & Sheridan, 2010), conducting subtyping of brain-environment relationships 
across development is a vital next step. Perhaps due to the relatively low rate of parent-reported 
trauma exposure in the current sample, childhood trauma did not meaningfully vary across 
subtypes in this study. Moreover, we were unable to examine differential effects of specific types 
of trauma given the limited variability in reported exposures. Given the well-documented link 
between childhood trauma and psychopathology (Green et al., 2010), examining trauma at later 
ages and with child self-report will be important next steps. The present study observed notable 
differences in cortical thickness and myelination between subtypes but only examined these two 
features of brain structure. In order to gain a more nuanced understanding of differential patterns 
of brain structure, future research will benefit from assessing additional measures such as white 
matter integrity or developmentally relevant morphological features (e.g., sulco-gyral profiles). 
Evaluating the clinical relevance of the current findings is another important goal for future work. 
Though our findings demonstrate that the current subtypes inform prediction of contemporaneous 
externalizing symptoms, testing prediction of future symptoms and disorder onset will be essential 
to assessing the clinical utility of these subtypes. Similarly, longitudinal data will be important for 
examining the temporal nature of changes in brain structure and externalizing symptoms across 
development, which was not possible within the current cross-sectional study. Finally, due to the 
already high-dimensional nature of the data, we limited our current investigation to brain structure, 
environmental factors, and clinical symptoms. However, future examinations employing similar 
approaches could benefit from integrating the functional neuroimaging data and genetic data 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 30, 2020. ; https://doi.org/10.1101/2020.04.28.063461doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.28.063461


 

 

23 

available in the ABCD Study to provide a deeper understanding of the biological processes related 
to the childhood environment and mental health outcomes.   
 
Taken together, the current study supports the utility of subtyping approaches for examining 
associations between brain structure and environmental exposures during development. Among 
the observed brain-environment patterns, findings highlighted the co-occurrence of supportive 
caregiving and lower family conflict with increased cortical thinning. These patterns underscore 
the importance of family functioning during middle childhood and point to caregiving as a 
potential target for interventions designed to bolster resilience in the face of adversity. Finally, this 
study demonstrates that parsing heterogeneity in brain and environmental exposures has clinical 
relevance, and provides a foundation on which future studies can leverage subtyping approaches 
to predict mental health outcomes across development.  
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SUPPLEMENTARY MATERIAL 
Supplementary Table 1. Inclusion/exclusion criteria and quality control 

 Participants 
remaining 

Sites 
remaining 

Scanners 
remaining 

ABCD Release 2.0 11500 22 5 
Participants with data of interest a 5450 14 3 

Siblings excluded 4448 14 3 
Participants with autism spectrum disorder or 

epilepsy excluded 4339 14 3 

Participants with affected sMRI images excluded b 3721 14 3 
FreeSurfer QC passed c 2379 14 3 
Final random sampling d 1000 13 2 

a. T1- and T2-weighted MRI, 8 environmental scores, 3 clinical scores.  
b. n=1137 participants had their scans incorrectly flipped; n=1 incorrectly associated with a different pGUID 
(ABCD Study: Known issues with Data Release 2.0). 
c. No presence of motion artifacts, pial mater overestimation, white matter underestimation, or field 
inhomogeneity. 
d. 1000 participants randomly sampled. 
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Supplementary Table 2. Demographic profiles of 2-/5-subtype solutions (Replication) 

2-subtype profiling Subtype 1 
(n=239) 

Subtype 2 
(n=255) p value 

Age (months; mean ±SD) a 119.3±6.9 119.6±7.1 p=0.65 
Sex (male/female) b 124/115 130/125 p=0.84 

Site (1st-13th sites in order) b 15/11/12/24/8/14/24/7/15/21/ 
49/12/27    

19/17/18/31/8/16/22/5/19/15/ 
44/12/29    p=0.97 

Race b, c 175W, 28B, 3A, 8O, 23M, 2NA 178W, 30B, 5A, 7O, 33M, 2NA p=0.86 
Ethnicity b, d 44H, 193 nH, 2NA 60H, 194nH, 1NA p=0.17 
Education level of parent b, e 40E/M/H, 148B, 51G 24E/M/H, 154B, 77G   p=0.01 g 
Household income b, f 55L, 72M, 97H, 15NA  57L, 73M, 113H, 12NA p=0.78 
    
5-subtype profiling Subtype 1 

(n=106) 
Subtype 2 
(n=107) 

Subtype 3 
(n=101) 

Subtype 4 
(n=88) 

Subtype 5 
(n=92) 

p value 
 

Age (months; mean ±SD) a 119.6±7.1 119.5±6.9 119.7±6.9 118.3±7.0 120.0±7.4 p=0.56 
Sex (male/female) b 57/49 51/56 51/50 42/46 53/39 p=0.59 

Site (1st-13th sites in order) b 
7/6/5/13/4/9/ 
9/3/9/8/19/5/

9    

7/9/5/12/3/6/
10/1/6/8/19/

7/14 

6/3/13/6/2/5/
11/1/8/8/21/

4/13    

6/3/2/12/6/2/
10/3/6/3/19/ 

5/11    

8/7/5/12/1/
8/6/4/5/9/ 

15/3/9    
p=0.83 

Race b, c 
71W, 13B, 

1A, 5O, 
14M, 2NA 

80W, 13B, 
1A, 1O, 

12M 

73W, 11B, 
2A, 2O, 

13M 

62W, 10B, 
2A, 5O, 8M, 

1NA 

67W, 11B, 
2A, 2O, 

9M, 1NA 
p=0.93 

Ethnicity b, d 28H, 78nH 
 

18H, 87nH, 
2NA 20H, 81nH 22H, 66nH 

 
16H, 75nH,  

1NA p=0.36 

Education level of parent b, e 19E/M/H, 
63B, 24G 

15E/M/H, 
68B, 24G 

2E/M/H, 
67B, 32G 

15E/M/H, 
49B, 24G 

13E/M/H, 
55B, 24G   p=0.04 g 

Household income b, f 24L, 32M,  
42H, 8NA 

25L, 28M,  
46H, 8NA 

23L, 30M,  
43H, 5NA 

18L, 23M,  
46H, 1NA 

22L, 32M,  
33H, 5NA p=0.63 

a. Group comparison was based on independent samples t-test. 
b. Group comparisons were based on Chi-square test (if all frequencies ³5) or Fisher’s exact test (if any frequency <5) of the 

contingency table. 
c. W (White), B (Black), A (Asian), O (Other race), M (Mixed race), NA (Not answered or refused to answer); Details about 

race can be found here: https://nda.nih.gov/data_structure.html?short_name=pdem02. 
d. H (Hispanic), nH (non-Hispanic), NA (Not answered or refused to answer). 
e. E/M/H (Elementary/middle/high school), B (Bachelors), G (Graduate [Masters/PhD/Specialized degree such as MD]; 

Education information was based on the parent who completed the survey. 
f. L(Low): <$50,000; M(Middle): $50,000≤income<$100,000; H(High): ≤$100,000; NA (Not answered or refused to answer). 

Household income was based on the sum of the past 12 months of gross pay for both parents. 
g. Only uncorrected significance. 
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Supplementary Figure 1. Finding a clustering solution based on consensus matrices. (A) 1000 
iterations of bootstrapping (random sampling of 90% of participants) constructed a consensus matrix for a spectral 
clustering solution, which indicates how many times a pair of participants is clustered into the same group among 
1000 iterations. (B) The degree of consensus at a given cluster number C is calculated as follows:  

𝒎(𝑪) =
𝟏

𝑵𝑪(𝑵𝑪 − 𝟏)/𝟐
+ 𝓜(𝒊, 𝒋)
𝒊,𝒋∈𝑰𝒄

 

where Ic is the set of indices of items belonging to cluster C, that is, Ic. = {j: 𝑒$ ∈ 𝐶}, Nc is the number of items in 
cluster C, and ℳ(𝑖, 𝑗) is the value of a consensus matrix at ith row and jth column. After calculating the degree of 
consensus m(C), a cumulative distribution function (CDF) can be estimated. The difference (D) of CDF between C 
and C-1 represents how much the consensus level can be increased by changing the clustering number from C-1 to C. 
We assessed which C produced the highest value in both the discovery and replication datasets, which resulted in C=2 
and C=5. Their consensus matrices are shown in (A) as examples. 
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Supplementary Figure 2. Bootstrap-based prediction analyses for clinical symptoms. To 
demonstrate generalizability of our main prediction results derived from all participants, we randomly selected 90% 
of participants, performed subtype-informed prediction for the three clinical scores (internalizing symptoms, 
externalizing symptoms, and total mental health problems), and repeated this analysis 100 times. Here we present the 
histogram of prediction accuracy from the clinical symptoms (i.e., externalizing symptoms and total mental health 
problems) showing the significance (after FDR correction) in the main analysis, which are the predictions of 
externalizing symptom (left, based on the 2-subtype solution) and total mental health problems (right, based on the 5-
subtype solution) (see Results in the main text). Although prediction analyses based on the other subtype solution did 
not reach significance (yellow [five-subtype] in the left histogram and pink [two-subtype] in the right histogram), they 
still showed higher prediction accuracy compared to a subtype-free approach (blue), suggesting that the subtyping 
(i.e., finding more homogeneous subgroups) can improve phenotypic prediction. Indeed, there were significant 
differences (t statistics>4) in prediction accuracy (from the above histograms) between all pairs of conditions (i.e., 
subtype-free, two-subtype and five-subtype).  
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Supplementary Figure 3. Group Differences in clinical symptoms in the 5-subtype solution. 
Using a generalized linear model, we conducted pairwise comparisons between each of the five subtypes, accounting 
for age and sex and controlling for site. The results shown here survived FDR correction (Benjamini & Hochberg, 
1995). 
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Environmental Factors 
 
Neighborhood Safety 
The ‘Neighborhood Safety’ variable was computed from the ABCD Parent Neighborhood 
Safety/Crime Survey Modified from PhenX (NSC). We obtained the mean score across the three 
items listed below from the ABCD Sum Scores Culture & Environment measure (parent report).  
Item Scoring 
I feel safe walking in my neighborhood, day or night.  1=Strongly Disagree, 2=Disagree, 

3=Neutral, 4 = Agree, 5 = Strongly Agree 
Violence is not a problem in my neighborhood.  
My neighborhood is safe from crime.   

 
School Environment 
The ‘School Environment’ variable is a validated subscale that was computed from the ABCD 
School Risk and Protective Factors Survey. The value of each item, listed below, was summed to 
obtain the final score. We obtained this score from the ABCD Sum Scores Culture & Environment 
measure (youth report).  
Item Scoring 
In my school, students have lots of chances to help decide things like class 
activities and rules. 

1=NO!, 2=no, 
3=yes, 4=YES! 

I get along with my teachers.  
My teacher(s) notices when I am doing a good job and lets me know about it.  
There are lots of chances for students in my school to get involved in sports, clubs, 
or other school activities outside of class. 

 

I feel safe at my school.  
The school lets my parents know when I have done something well.  

 
Trauma Exposure 
The ‘Trauma Exposure’ variable was computed by summing the total score per participant across 
the items below. This data was obtained from the ABCD Parent Diagnostic Interview for DSM-5 
(KSADS) Traumatic Events measure (parent report). 
Item Scoring 
A car accident in which your child or another person in the car was hurt bad enough to 
require medical attention 

0=No, 
1=Yes 

Another significant accident for which your child needed specialized and intensive 
medical treatment 

 

Witnessed or caught in a fire that caused significant property damage or personal injury  
Witnessed or caught in a natural disaster that caused significant property damage or 
personal injury 

 

Witnessed or present during an act of terrorism (e.g., Boston marathon bombing)  
Witnessed death or mass destruction in a war zone  
Witnessed someone shot or stabbed in the community  
Shot, stabbed, or beaten brutally by a non-family member  
Shot, stabbed, or beaten brutally by a grown up in the home  
Beaten to the point of having bruises by a grown up in the home  
A non-family member threatened to kill your child  
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A family member threatened to kill your child  
Witness the grownups in the home push, shove or hit one another  
A grown up in the home touched your child in his or her privates, had your child touch 
their privates, or did other sexual things to your child 

 

An adult outside your family touched your child in his or her privates, had your child 
touch their privates or did other sexual things to your child 

 

A peer forced your child to do something sexually  
Learned about the sudden unexpected death of a loved one  

 
Parent Support 
The ‘Parent Support’ variable was computed as the mean of the items below from the ABCD 
Children's Report of Parental Behavioral Inventory. We obtained this score from the ABCD Sum 
Scores Culture & Environment measure (youth report).  
Item Scoring 
First caregiver (caregiver participating in 
study/completing protocol). Makes me feel better after 
talking over my worries with him/her 

1 = Not like him/her; 2 = Somewhat 
like him/her; 3 = A lot like him/her 

First caregiver (caregiver participating in 
study/completing protocol).  Smiles at me very often. 

 

First caregiver (caregiver participating in 
study/completing protocol).  Is able to make me feel 
better when I am upset. 

 

First caregiver (caregiver participating in 
study/completing protocol).  Believes in showing 
his/her love for me. 

 

First caregiver (caregiver participating in 
study/completing protocol).  Is easy to talk to. 

 

 
Caregiver Support 
The ‘Caregiver Support’ variable was computed as the mean of the items below from the ABCD 
Children's Report of Parental Behavioral Inventory. We obtained this score from the ABCD Sum 
Scores Culture & Environment measure (youth report).  
Item Scoring 
Second caregiver. Makes me feel better after talking 
over my worries with him/her. 

1 = Not like him/her; 2 = Somewhat like 
him/her; 3 = A lot like him/her 

Second caregiver. Smiles at me very often.  
Second caregiver. Is able to make me feel better 
when I am upset. 

 

Second caregiver. Believes in showing his/her love 
for me. 

 

Second caregiver. Is easy to talk to.  
 
Family History of Mental Health Problems 
The ‘Family History of Mental Health Problems’ variable was computed from data obtained from 
the ABCD Family History Assessments Parts 1 and 2 (parent report).  This measure indexes 
whether family members including parents, siblings, aunts, uncles, cousins, and others have had 
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mental health concerns, struggled with substance use, or been involved with criminal activities. 
We selected immediate family members (mother, father, and full siblings), then summed the 
number of endorsements for substance use, criminal activities, and mental health concerns per 
family member. We then summed the endorsements of each family member per participant. 
Item Scoring 
Has ANY blood relative of your child ever had any problems due to alcohol, 
such as: Marital separation or divorce; Laid off or fired from work; Arrests or 
DUIs; Alcohol harmed their health; In an alcohol treatment program; 
Suspended or expelled from school 2 or more times; Isolated self from family, 
caused arguments or were drunk a lot.  
 

0=No, 1=Yes 

Has ANY blood relative of your child ever had any problems due to drugs, 
such as: Marital separation or divorce; Laid off or fired from work; Arrests or 
DUIs; Drugs harmed their  
health; In a drug treatment program; Suspended or expelled from school 2 or 
more times; Isolated self from family, caused arguments or were high a lot. 
 

 

Has ANY blood relative of your child ever suffered from depression, that is, 
have they felt so low for a period of at least two weeks that they hardly ate or 
slept or couldn't work or do whatever they usually do? 
 

 

Has ANY blood relative of your child ever had a period of time when others 
were concerned because they suddenly became more active day and night and 
seemed not to need any sleep and talked much more than usual for them? 
 

 

Has ANY blood relative of your child ever had a period lasting six months 
when they saw visions or heard voices or thought people were spying on them 
or plotting against them? 
 

 

Has ANY blood relative of your child been the kind of person who never holds 
a job for long, or gets into fights, or gets into trouble with the police from time 
to time, or had any trouble with the law as a child or an adult?  
 

 

Has ANY blood relative of your child ever had any other problems with their 
nerves, or had a nervous breakdown? 
 

 

Has ANY blood relative of your child ever attempted or committed suicide?  
 

 

 
Parental Monitoring 
The ‘Parental Monitoring’ variable was computed as the mean of the items below from the ABCD 
Parental Monitoring Survey. We obtained this score from the ABCD Sum Scores Culture & 
Environment measure (youth report). 
Item Scoring 
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How often do your parents/guardians know where you are? 

1 = Never; 2 = Almost Never; 
3 = Sometimes; 4 = Often; 5 = 
Always or Almost Always 

How often do your parents know who you are with when you 
are not at school and away from home? 

 

If you are at home when your parents or guardians are not, how 
often do you know how to get in touch with them? 

 

How often do you talk to your mom/dad or guardian about your 
plans for the coming day, such as your plans about what will 
happen at school or what you are going to do with friends? 

 

In an average week, how many times do you and your 
parents/guardians, eat dinner together? 

 

 
Family Conflict 
The ‘Family Conflict’ variable is a validated subscale that was computed from the ABCD Youth 
Family Environment Scale-Family Conflict Subscale Modified from PhenX (FES). The value of 
each item, listed below, was summed to obtain the final score. We obtained this score from the 
ABCD Sum Scores Culture & Environment measure (parent report). 
Item Scoring 
We fight a lot in our family. 1 = True; 0 = False 
Family members rarely become openly angry. 0 = True; 1 = False 
Family members sometimes get so angry they throw things. 1 = True; 0 = False 
Family members hardly ever lose their tempers. 0 = True; 1 = False 
Family members often criticize each other. 1 = True; 0 = False 
Family members sometimes hit each other. 1 = True; 0 = False 
If there's a disagreement in our family, we try hard to smooth things 
over and keep the peace. 0 = True; 1 = False 
Family members often try to one-up or outdo each other. 1 = True; 0 = False 
In our family, we believe you don't ever get anywhere by raising your 
voice. 0 = True; 1 = False 
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