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Abstract 

Background Older persons with poor sleep are more likely to develop neurodegenerative 

disease, but the causality underlying this association is unclear. To move towards 

explanation, we examine whether sleep quality and quantity are similarly associated with 

brain changes across the adult lifespan. 

Methods Associations between self-reported sleep parameters (Pittsburgh Sleep Quality 

Index;PSQI) and longitudinal cortical change were tested using five samples from the 

Lifebrain consortium (n=2205, 4363 MRIs, 18-92 years). Analyses were augmented by 

considering episodic memory change, gene expression from the Allen Human Brain Atlas, 

and amyloid-beta (Aβ) accumulation (n=1980). 

Results PSQI components sleep problems and low sleep quality were related to thinning of 

the right lateral temporal cortex. The association with sleep problems emerged after 60 

years, especially in regions with high expression of genes related to oligodendrocytes and S1 

pyramidal neurons. BMI and symptoms of depression had negligible effects. Sleep problems 

were neither related to longitudinal change in episodic memory function nor to Aβ 

accumulation, suggesting that sleep-related cortical changes were independent of AD 

neuropathology and cognitive decline. 

Conclusion Worse self-reported sleep in later adulthood was associated with more cortical 

thinning in regions of high expression of genes related to oligodendrocytes and S1 pyramidal 

neurons, but not to Aβ accumulation or memory decline. The relationship to cortical brain 

change suggests that self-reported sleep parameters are relevant in lifespan studies, but 

small effect sizes, except for a few restricted regions, indicate that self-reported sleep is not 

a good biomarker of general cortical degeneration in healthy older adults. 

 

Keywords: sleep; atrophy; cortex; aging; amyloid; gene expression 
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Introduction 

Older adults with poor sleep are more likely to develop neurodegenerative disease1-8, and in 

a recent meta-analysis it was argued that 15% of Alzheimer’s Disease (AD) diagnoses in the 

population may be attributed to aspects of sleep9. It is not known whether this relationship 

points to a causal connection between sleep and neurodegeneration, and little is known 

about the mechanisms that could mediate such a connection. For instance, the association 

might be bidirectional or reflect the operation of mechanisms (e.g.10) affecting both sleep 

problems and brain change in normal and pathological aging. Change in sleep patterns is a 

feature of normal aging
11-13

, so it is important to know whether natural variations in sleep 

quality and quantity are related to brain changes across adult life. Here, we examined the 

relationship between multiple self-reported sleep variables, including sleep problems and 

sleep duration, and cortical changes across the adult lifespan. Participants from the Lifebrain 

consortium assessed repeatedly (up to 7 assessments over 11 years) with MRIs were 

studied14. In additional analyses we tested coherence with cell-specific gene expression 

maps from the Allen Human Brain Atlas, and with changes in memory performance and 

amyloid-beta accumulation (Aβ). 

 

Several studies have reported cross-sectional relationships between self-reported sleep 

parameters and structural properties of the cerebral cortex. Poor sleep tends to be 

associated with thinner cortex or smaller cortical volume (Table 1), but with little agreement 

about the self-reported sleep measures and cortical regions involved. The largest study to 

date found daytime sleepiness to be associated with thinner cortices in all lobes15, but did 

not report results for other sleep variables. Three studies tested associations with 

longitudinal cortical change. In one, lower global sleep quality was related to greater cortical 

volume reduction widespread in frontal, temporal, and parietal regions16 in participants 

above 60 years of age. Sleep duration was not associated with atrophy, in accordance with a 

recent study where duration measured five times over 28 years17 in 613 participants did not 

relate to global or regional gray matter volume measured at follow up. In contrast, a second 

study found that sleep duration of more or fewer than 7 hours was associated with 

frontotemporal cortical thinning18. A third study of middle-aged and older adults reported 

shorter sleep duration to be related to more ventricular expansion, whereas no relationship 

was observed between a global sleep score and volumetric change in total cerebral, inferior 
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or superior frontal volume19. Thus, poor self-reported sleep tends to be modestly related to 

unfavorable cortical changes, but with little consistency across studies with regard to sleep 

parameters and brain regions.  

 

[Table 1] 

 

Here we took advantage of five longitudinal MRI studies from the Lifebrain consortium14 to 

examine which self-reported sleep parameters were related to cortical changes and 

whether these associations were stable through adult life or increased in strength with age. 

We hypothesized stronger relationships between sleep and cortical changes in older 

compared to younger adults, mainly in frontal and temporal cortices. These hypotheses 

were speculative due to few longitudinal studies and highly divergent findings in previous 

publications. In additional analyses we tested whether sleep and cortical thinning were 

preferentially associated in regions characterized by high rates of natural age changes, 

whether such relationships were stronger in cortical regions characterized by higher 

expression of genes related to specific cell types – so-called “virtual histology”20. Guided by 

results from animal experiments, overlap with regions of high expression of microglia, 

astrocytes and oligodendrocyte genes could be expected. Given that a link between poor 

sleep and the AD biomarker Aβ has been proposed21-25, we also tested the association 

between sleep problems and Aβ in samples of cognitively normal older adults (total n = 

264), as well as in 1716 Alzheimer’s Disease Neuroimaging Initiative (ADNI; 

adni.loni.usc.edu) participants across the AD spectrum. We hypothesized a positive 

relationship between poor sleep and Aβ. We also examined whether there was a 

relationship with memory decline 

 

Methods and materials 

Sample 

The sample was derived from the European Lifebrain project 

(http://www.lifebrain.uio.no/)14, including participants from the Berlin Aging Study II (BASE-

II)26,27, the BETULA project28, the Cambridge Centre for Ageing and Neuroscience study 

(Cam-CAN)
29

, the Center for Lifespan Changes in Brain and Cognition longitudinal studies 

(LCBC)30,31, and the University of Barcelona brain studies32-34. Self-reported sleep and 
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structural MRIs from 2205 participants (18.5-91.9 years) yielding a total of 4363 

observations were included (Table 2). Screening criteria were not identical across studies, 

but participants were in general cognitively healthy and did not suffer from neurological 

conditions known to affect brain function, such as dementia, major stroke and multiple 

sclerosis (Fjell et al.35 and SI). Depressive symptoms were mapped using the Beck 

Depression Inventory36 (LCBC, except MADRS for n=91), the Geriatric Depression Scale37 15 

item version (BASE-II), the Center for Epidemiologic Studies Depression Scale38 (Betula), and 

the Hospital Anxiety and Depression Scale39 (Cam-CAN).  

 

Relationship between sleep parameters and Aβ were tested in samples of cognitively 

normal older adults (n = 264) (Table 3) (see SI). Aβ accumulation was measured by CSF 

Aβ42, 18F-flutemetamol or 18F-florbetapir PET. Separate analyses were conducted in two 

additional samples from ADNI, where sleep problems were measured by NPI-Q40, of normal 

controls (NC, n = 655; 1423 observations), patients with mild cognitive impairment (MCI, n = 

765; 1541 observations) and AD (n = 296; 690 observations). Aβ was quantified from 18F-

florbetapir PET (n = 846) or CSF Aβ42 (n = 870). As most ADNI participants had multiple Aβ 

measurements, participants with more CSF than PET observations were placed into the 

ADNI CSF dataset and vice-versa. Participants with equal number of CSF and PET 

observations were randomly assigned to either the CSF or PET dataset.  

 

Associations between sleep parameters and longitudinal memory change were tested in 

1419 participants (2702 observations; Betula [n = 138/ 276 observations, baseline-age = 65, 

55-85 years], LCBC [n = 730/ 1480 observations, baseline-age = 49, 19-89 years], BASE-II [n = 

512/ 830 observations, baseline-age = 62, 24-92 years], Barcelona [n = 39/ 116 observations, 

baseline-age = 69, 64-81 years]), by 30 min delayed free recall from the Verbal Learning and 

Memory Test (BASE-II), 30 min free recall from the California Verbal Learning Test (LCBC)41, 

word recall (immediate free recall of words and sentences, and delayed cued recall of words 

from the previously learned sentences, Betula)42,43 and 30 min delayed recall from the Rey 

Auditory Verbal Learning Test 44 (Barcelona). 

 

Self-reported sleep assessment 
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Sleep was assessed using the Pittsburgh Sleep Quality Inventory (PSQI)45 representing self-

reported sleep quality for the previous month. This assessed 7 domains (sleep quality, 

latency, duration, efficiency, problems, medication and daytime tiredness) each scored from 

0 to 3 and a global score. High scores indicate worse sleep. Duration was also tested using 

number of hours instead of the 0-3 scale. The sleep medication item was not analyzed, as 

most samples used screening for use of medications. The Karolinska Sleep Questionnaire 

(KSQ)46,47 was used for Betula and converted to PSQI (SI and 35). Although lifespan changes 

in sleep are pronounced35,48, mean changes as well as individual differences in change over a 

few years are rather small
17,49

 and considered as negligible here. If multiple observations 

were available, the mean value was used.  

 

Magnetic resonance imaging (MRI) acquisition and analysis 

MRI data originated from 8 different scanners (Table 4), processed with FreeSurfer v6.0 

(https://surfer.nmr.mgh.harvard.edu/)50-53, yielding maps of cortical thickness and volume. 

To avoid introducing possible site-specific biases, quality control measures were imposed 

and no manual editing was done. We previously have reported that across-scanner 

consistencies in estimated hippocampal volumes for the scanners used in Lifebrain are high. 

We nevertheless included ‘study site’ as a fixed effect covariate to adjust for scanner 

differences35.  

 

Virtual histology analyses – relationship with cell-specific gene-expression profiles  

We tested how sleep-associated cortical thinning related to regional gene expression 

profiles associated with specific cell types. As described in detail elsewhere20,54, gene-

expression data in ex-vivo left hemisphere brains were obtained from the Allen Human 

Brain Atlas (AHBA: (http://www.brain-map.org55), mapped to 34 cortical regions of the 

Desikan-Killiany Atlas56. Genes were required to be regionally consistent across 6 donors 

and two datasets (AHBA, the BrainSpan Atlas) (SI and54). The resulting 2511 genes with 

consistent expression profiles were combined with a list of cell-specific genes from Zeisel et 

al.57, yielding the following cell-type panels: S1 pyramidal neurons (n=73), CA1 pyramidal 

neurons (n=103), interneurons (n=100), astrocytes (n=54), microglia (n=48), 

oligodendrocytes (n=60), ependymal (n=84), endothelial (n=57), and mural (n=25). 
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Statistical analyses 

See SI for details.  

Cortical surface analyses Spatiotemporal linear mixed models
58,59

 implemented in 

FreeSurfer v6.0.1 and running on MATLAB R2017a were used to test relationships between 

sleep variables and cortical thickness/ volume change, accounting for the spatial correlation 

between residuals at neighboring vertices and the temporal correlation of residuals within 

repeated measurements of single participants. Surface results were tested against an 

empirical null distribution of maximum cluster size across 10 000 iterations using Z Monte 

Carlo simulations, yielding results corrected for multiple comparisons across space (p< .05) 

60. Baseline age, time since baseline, site and sex were included as covariates. Separate 

analyses included all two- and three-way interactions between PSQI, age, and time. The 

hierarchical nature of the data (repeated measurements nested within participants) was 

accounted for using a random intercept term. Additional analyses were conducted, using a 

dichotomous indicator variable for age (> vs. < 60 years), creating a piecewise linear model 

for cortical thinning with a cut-point at 60 years. All follow-up analyses were run in R61. To 

assess relationships between PSQI and memory change, we ran generalized additive mixed 

models62 (GAMM) with a random intercept and random effects per study for time and sleep 

using the package “mgcv” using smooth terms for baseline age. Additional models were run 

with PSQI×time×baseline-age and age×sleep. 

Virtual histology Pearson correlations were computed between the thinning coefficients and 

the median inter-regional profile of gene expression levels for each marker gene. Using a 

resampling-based approach (Shin et al., 2018b), the average expression - thinning 

correlation for each group of cell-specific genes served as the test statistic. False discovery 

rate was used to account for 9 cell-types. 

Aβ-sleep The association between sleep and Aβ was tested by partial correlations, 

controlling for age and sex. We performed additional analyses in ADNI by generalized linear 

mixed effect regressions (logistic link function with binominal error distribution; “lme4” R- 

package). Sleep disturbance (dichotomous) was outcome, clinical diagnosis, Aβ, age and sex 

were fixed effects and subjects were random effects. Statistical significance was assessed 

with Kenward-Roger-corrected tests as implemented with the “car” R-package63.  

 

Results 
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Worse self-reported sleep is associated with accelerated cortical thinning 

Associations of PSQI scales and cortical atrophy are shown in Figure 1 and Table 5. Lower 

sleep quality was related to more cortical thinning in the right middle temporal gyrus, 

extending posteriorly. A similar relationship for sleep problems was found in an overlapping 

region, bordering angular gyrus. For sleep problems, extensive age-interactions were found 

(Figure 2), with three large lateral clusters in the right hemisphere, located in the temporal, 

inferior parietal and inferior/ middle prefrontal cortex, and one cluster in the left (lateral, 

inferior and medial temporal cortex). More sleep problems were related to accelerated 

cortical thinning from about 60 years of age (see below). For the remaining PSQI 

components and the global score, no effects were found. No relationships with cortical 

volume change were seen. Follow-up analyses were performed to test whether sleep 

duration showed a quadratic relationship with atrophy. Here, duration was measured in 

hours instead of the PSQI 0-3-point scale. There were no significant quadratic relationships 

or age-interactions.  

 

As can be seen in Figure 2, the association between sleep problems and cortical thinning 

emerged from around 60 years of age. To assess the size of this age interaction, we 

calculated mean cortical thinning (Δthickness mm/year) as a function of sleep problems in 

60-year olds and 80-year-olds (Figure 3). For participants with minor sleep problems, annual 

cortical thinning was low and close to identical for 60-year olds and 80-year olds; ≈0.05 

mm/year or -0.20%. In contrast, for participants with severe sleep problems, annual cortical 

thinning was almost twice as large in the oldest group, equal to -1.03% (0.027 mm/year) 

compared to -0.55% (0.014 mm/year), respectively.  

 

Sleep problem-related cortical thinning is not stronger in regions showing the most atrophy 

To test whether the age-interactions for sleep problems were strongest in regions showing 

the most atrophy in aging, we calculated the vertex-wise spatial correlations between the 

age × sleep problems interaction coefficients and cortical thinning in participants above 60 

years. The correlations were .04 for the left and -.003 for the right hemisphere. These very 

low correlations suggest that sleep problems are not more related to cortical thinning with 

higher age in the regions undergoing the most thinning per se, although bootstrapping 
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showed that the left hemisphere relationship was significantly larger than expected by 

chance (p < .001).  

 

Sleep-related thinning and expression of oligodendrocytes and S1 pyramidal cell genes 

Virtual histology was used to test whether the age-dependent associations between sleep 

problems and cortical thinning were related to inter-regional gene expression profiles 

associated with specific cell types (Table 6, Figure 4). The results showed overlap with 

regions with higher expression of genes related to oligodendrocytes and S1 pyramidal cells 

(Pfdr < .05). Note that these analyses were performed vertex-wise, and were not restricted 

to regions with significant sleep×time×age interactions. 

 

No relationship with Aβ accumulation 

First, we tested the correlations between sleep problems and biomarkers of Aβ 

accumulation in each of the Lifebrain subsamples, controlling for age and sex. Correlations 

between Aβ and sleep problems were r = .11 (p = .15, n = 173) and r = .03 (p = .80, n = 91) 

for the PET and CSF subsamples, respectively. We performed additional analyses in the ADNI 

cohort of NC, MCI and AD, using linear mixed effects logistic regression analyses. Neither for 

the PET (p = .86) or the CSF ADNI sample (p = .46) was Aβ related to sleep problems, 

whereas there was a significant effect of diagnosis with more sleep problems in patients 

compared to normal controls (PET sample Chi sq = 25.59, p < 1.7e-6; CSF sample Chi sq = 

18.38, p < .00028). Although done on a different type of sample, the ADNI results concur 

with the results from the Lifebrain Aβ-samples. 

 

No relationship with memory change 

GAMMs were performed with memory score as outcome, PSQI × time as the main term of 

interest, with sex and baseline age as covariates. No significant relationships were found (all 

p’s > .22). Effect estimates are presented in SI, showing that the largest effect was found for 

sleep efficiency, for which the efficiency (scale 0-3) × time (in years) interaction on change in 

memory scores (SD) was -0.022, i.e. the lowest sleep efficiency (“0”) was associated with 

0.33 SD relative decline in memory score over a five-years interval compared to the highest 

efficiency (“3”). We tested the three-way interaction PSQI×time×baseline-age, with no 

significant effects (all p’s > .58). Finally, we ran models with the smooth interaction between 
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age at testing and PSQI. Here the longitudinal and cross-sectional information is combined 

in the test age variable, and because chronological age has much more variance than ages at 

repeated measures, this analysis is skewed towards cross-sectional effects. Here, age×sleep 

problems showed a weak but significant relationship with memory change (p = .039, 

uncorrected). None of the other PSQI components showed this, with duration (p = .086) and 

efficiency (p = .099) scales yielding the lowest p-values, and global score the highest (p = 

.96).  

 

Post hoc analyses: controlling for BMI and depression 

We performed post hoc analyses testing whether body mass index (BMI) or preclinical 

depression affected the observed sleep problem – cortical change relationship (see SI for 

details). BMI was available at the time of analysis from the LCBC, CamCAN and Betula 

datasets (n = 1717), and depression scores from the LCBC, CamCAN, Betula and BASE-II 

datasets (n = 1637). As seen in Figure 5 and 6, controlling for BMI or depression symptoms 

did not affect the relationship between sleep problems and cortical change, except for some 

offset effects for BMI in the 50ties and 60ties, not affecting the actual slope.  

 

Discussion 

Lower self-reported sleep quality and more sleep problems were associated with more 

cortical thinning, independently of depressive symptoms and BMI, after the age of 60 years. 

These relationships were stronger in regions with higher expression of genes related to 

oligodendrocytes and S1 pyramidal cells. The lack of relationship with Aβ accumulation 

suggests that this is not dependent on preclinical AD pathology. At the same time, effect 

sizes were modest, there were no significant associations with global sleep quality or sleep 

duration, and there was no significant association with memory change.  

 

Sleep problems and cortical thinning 

Lower sleep quality and more sleep problems were related to more cortical thinning in the 

right middle temporal gyrus, extending posteriorly. Sleep quality is based on the 

participants’ overall evaluation of their sleep, whereas the sleep problem scale includes 

items such as nocturnal awakenings, bad dreams and trouble breathing. In previous work on 

a subsample of the current sample, we found global sleep problems to be related to volume 
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reductions in overlapping regions16 in older adults. Although sleep problems may accelerate 

cortical atrophy in aging, stronger relationships were not found in the regions that showed 

most cortical thinning. This suggests that sleep problems do not simply relate to general 

patterns of cortical atrophy that are typical in aging, but more regionally specific patterns of 

cortical decline. Alternatively, these results, together with previously reported unspecific 

relationships between sleep, cognition and neurodegeneration11-13, suggest that sleep 

problems result from multiple changes in the aging brain. Sleep and brain decline are 

probably linked through complex interactions with multiple other factors, some involving 

atrophy and some not
31

.  

 

It is important to stress that effect sizes were small. Even with 4363 MRIs, only two aspects 

of self-reported sleep were significantly associated with change in cortical thickness. Thus, 

the standard self-report sleep metrics do not seem to have much clinical relevance as 

markers of cortical atrophy. For participants in their sixties, the transition from minor to 

severe sleep problems was weakly but reliably associated with cortical thinning. For 80-

years old participants, that same transition was accompanied by a rather substantial 

increase in cortical thinning. However, as participants were not followed over time with 

repeated sleep measures, we do not know whether these group effects translate to 

relationship within individuals. Thus, although our findings are interesting as they 

demonstrate an age-dependent relationship between sleep problems and cortical thinning, 

the mechanisms driving this age dependency in the strength of the association between 

sleep problems and cortical thinning await further study.  

 

Virtual histology – a possible role of oligodendrocytes 

The age-dependent sleep association overlapped with regions characterized by higher 

expression of genes related to oligodendrocytes and S1 pyramidal cells. These results do not 

reveal any direct mechanistic relationships but yield useful information for interpretation of 

the findings, especially regarding genes related to oligodendrocytes. Several genes involved 

in the synthesis and maintenance of myelin are expressed at higher levels during sleep, and 

sleep loss may negatively impact oligodendrocyte physiology64. Specifically, genes involved 

in phospholipid synthesis and myelination tend to be transcribed preferentially during 

sleep65. For instance, gene expression analysis performed on oligodendrocyte-enriched 
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samples of mouse forebrain showed that several genes changing their expression in sleep 

and awake were oligodendrocyte precursor cell specific genes65. Genes promoting 

oligodendrocyte precursor cell (OPC) proliferation were mainly upregulated during sleep 

whereas OPC differentiation were mainly upregulated during awake. Such studies suggest 

that sleep is important for myelination66. Myelin properties around the GM/WM boundary 

affect cortical thickness estimates67,68 and change through the lifespan69,70. Thus, regions 

with higher expression of oligodendrocyte-related genes could be more vulnerable to sleep 

problems, explaining the overlap between expression of oligodendrocyte-related genes and 

sleep-age-related cortical thinning. Although speculative, experimental and large-scale 

genetic studies could address this.  

 

No relationship between cortical thinning, sleep duration, memory change and Aβ 

Sleep duration and cortical thinning was not associated. Sleep duration is the most 

frequently investigated sleep measure in relation to health71, and is possibly modifiable. It 

has been suggested that we have a ‘global epidemic of sleeplessness’72,73, and the United 

States National Sleep Foundation (NSF) provides sleep duration recommendations74,75. 

Previous studies have not provided conclusive evidence about a role for sleep duration in 

brain change16,18,19,35. We found no indication that sleep duration was related to cortical 

change, supporting previous Lifebrain results on hippocampal atrophy35. In that study, 

however, participants from the UK Biobank reporting short (< 5 hours) and long (> 9 hours) 

sleep duration showed smaller hippocampal volume. Although we cannot conclude with 

confidence that extremely short or extremely long sleep duration is unrelated to cortical 

atrophy, our results demonstrate that within normal ranges of sleep duration, there is no 

association with cortical change. 

 

Sleep problems were not related to changes in memory function or Aβ accumulation. 

Although a relationship between Aβ and sleep has been suggested from observational21-24 

and experimental human studies25, the association is not clear across reports. One study 

found sleep latency but not problems to be related to Aβ21, another found relationships to 

latency and quality, but not number of nocturnal awakenings, which would be most similar 

to the measure of sleep problems
22

. A third study found sleep problems together with two 

other self-report measures to be related to more Aβ, whereas four other measures were 
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not23, a fourth reported a relationship for less adequate sleep but not problems and two 

additional measures76, and a fifth a relationship with global sleep quality in participants 

below but not above 67 years
77

. Thus, a robust relationship between sleep problems and Aβ 

accumulation has not been established. Here, with close to 2000 participants, we found no 

relationship with sleep problems.  

 

Similarly, we did not observe a relationship between sleep problems and memory change. 

The only significant result was the interaction between sleep problems and age, which 

would not survive correction for multiple comparisons. Experimental studies often report 

negative effects of short-term sleep restriction on cognition78, but it is unclear whether such 

effects are relevant in the long run and in a naturalistic setting. Meta-analyses have 

reported poorer episodic memory in people with insomnia79, whereas epidemiological 

studies have yielded mixed results and the largest study to date – based on 477.529 

participants from the UK Biobank – found no relationship between insomnia and any 

cognitive function80. The possibility remains that longitudinal changes in self-reported sleep 

could be related to declining memory over time31, and stronger relationships could 

potentially be seen with other measures of sleep81,82. Still the present results, based on 1419 

participants and 2702 memory tests, suggest that if a relationship between self-reported 

sleep and memory decline does exist, the effect size of this association can be expected to 

be small. 

 

Limitations 

Causes and appearance of age-related changes in sleep are manifold and diverse83. There is 

no perfect way to measure sleep without disrupting routine84. Self-reports of sleep duration 

are only moderately correlated with actigraph measures84-86, whereas actigraphs 

themselves tend to over-estimate sleep duration compared to polysomnography87-91. Still, 

self-report measures continue to be important in sleep studies, and epidemiological studies 

and the NSF recommendations are primarily based on self-reports74. Although we 

acknowledge the uncertainty of self-reports, this is currently the only viable option for 

testing sleep-brain relationships in large samples. Also, we are mot able to distinguish 

between effects of short- vs. long-term sleep patterns, as PSQI only index sleep over the last 

month. Another possibe limitation is that data were pooled across studies using partly 
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different measures. Whereas this may introduce noise, it also reduces the risk of non-

representative and biased samples and greatly increases statistical power. 

 

Conclusion 

Worse self-reported sleep was related to increased rate of cortical thinning after the age of 

60 years in regions with higher expression of genes related to oligodendrocytes and S1 

pyramidal cells. This makes self-reported sleep a relevant variable in studies of brain aging, 

independently of AD pathology. Small effect sizes and lack of relationship to episodic 

memory decline call for modesty in the implications drawn.  
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Figure legends 

 

Figure 1 Effects of sleep on cortical thinning Clusters where lower self-reported sleep 

quality and more sleep problems are related to cortical thinning after corrections for 

multiple comparisons across space.  

 

Figure 2 Age interactions Left panels: Clusters where more self-reported sleep problems are 

significantly more strongly related to cortical thinning in older than younger adults. Right 

panels: Model predicted cortical thickness in the right middle temporal cluster in the left 

panel as a function of age, time and amount of sleep problems (0: none, 3: severe). 

Participants reporting more sleep problems show more cortical thinning in the older age-

ranges but not in the younger. CIs round the curves were removed for improved viewing, 

and are presented in SI, along with similar curves for the other three significant clusters. 

These plots are used for illustrating the effects in the surface analyses. Statistical analyses 

were conducted using age as a continuous variable.  

 

Figure 3 Cortical thinning as a function of sleep problems and age Top panel: Mean cortical 

thinning (mm/year) in the clusters with a significant effect of age × sleep on thickness 

change broken up by degree of sleep problem and age group. Bottom panel: Mean cortical 

thinning in the same regions as a function of sleep problems and age group. Error bars 

denote 1 SD.  

 

Figure 4 Virtual histology Significantly higher expression of genes characteristic of specific 

cell types (oligodendrocytes and S1 pyramidal) in vertices where the age-related association 

between sleep problems and cortical thinning are the strongest (vertex-wise thickness 

effects from the age × time × sleep interaction; see surface plots in Figure 2). The black 

vertical lines represent the mean association, and the shaded area represents the empirical 

null distribution for each of the 9 cell types. The x-axes indicate the coefficients of 

correlation between the thinning and the gene expression profiles. The y-axes indicate the 

estimated probability density for the correlation coefficients. Panels where the mean of the 

target ROIs is outside the null distribution 95% C.I. are considered to show a correlation 

greater or smaller than predicted. See 92 for creation of raincloud plots. 
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Figure 5 Controlling for BMI BMI did not affect the relationship between sleep problems 

and cortical thinning across age, as can be seen from the overlapping solid and dotted lines. 

Plotted effects are from Cluster B (Figure 3); see SI for additional clusters. Please note that 

the y-axes are fitted to each plot to facilitate detection of possible differences between 

curves visually, and therefore vary between plots.  

 

Figure 6 Controlling for depression Depressive symptoms did not affect the relationship 

between sleep problems and cortical thinning across age, as can be seen from the 

overlapping solid and dotted lines. Plotted effects are from Cluster B (Figure 3); see SI for 

additional clusters. Please note that the y-axes are fitted to each plot to facilitate detection 

of possible differences between curves visually, and therefore vary between plots. 
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