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29 Abstract 
30

31 Transposable elements (TEs) are mobile genetic elements in eukaryotic genomes. Recent 

32 research highlights the important role of TEs in the embryogenesis, neurodevelopment, and 

33 immune functions. However, there is a lack of a one-stop and easy to use computational pipeline 

34 for expression analysis of both genes and locus-specific TEs from RNA-Seq data. Here, we 

35 present GeneTEFlow, a fully automated, reproducible and platform-independent workflow, for 

36 the comprehensive analysis of gene and locus-specific TEs expression from RNA-Seq data 

37 employing Nextflow and Docker technologies. This application will help researchers more easily 

38 perform integrated analysis of both gene and TEs expression, leading to a better understanding of 

39 roles of gene and TEs regulation in human diseases. GeneTEFlow is freely available at 

40 https://github.com/zhongw2/GeneTEFlow.

41

42 Introduction 
43
44 Transposable elements (TEs) are mobile DNA sequences which have the capacity to 

45 move from one location to another on the genome[1]. TEs make up a considerable fraction of 

46 most eukaryotic genomes and can be classified into retrotransposons and DNA transposons 

47 according to their different mechanisms of transposition and chromosomal integration[2, 3]. 

48 Retrotransposons are made of Long Terminal Repeats (LTRs) and non-LTRs that include long 

49 interspersed nuclear elements (LINEs) and short interspersed nuclear elements (SINEs) that 

50 mobilize via a RNA intermediate, while DNA transposons mobilize and function through a DNA 

51 intermediate[4-6]. TEs can be transcribed from the genome[7] and have been demonstrated to 

52 play important roles in the mammalian embryogenesis[8, 9], neurodevelopment[10, 11], and 

53 immune functions[12, 13]. Furthermore, aberrant expressions of TEs have been linked to 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 28, 2020. ; https://doi.org/10.1101/2020.04.28.065862doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.28.065862
http://creativecommons.org/licenses/by/4.0/


3

54 cancers[14-16], neurodegenerative disorders[17, 18], and immune-mediated inflammation[19, 

55 20]. Therefore, it has become increasingly important to explore biological roles of TEs 

56 expression. However, genome-wide analysis of TEs expression from high throughput RNA 

57 sequencing data has been a challenging computational problem. TEs contain highly repetitive 

58 sequence elements, making it arduous to unambiguously assign reads to the correct genomic 

59 location and accurately quantitate their expression level. Several bioinformatics tools have been 

60 developed to address this challenge with relatively good success [16, 21-23]. Recently, SQuIRE 

61 was reported to have the capability to quantify locus-specific expression of TEs from RNA-Seq 

62 data[23].  In addition, RNA-Seq data has long been used to detect dysregulated genes between 

63 different disease and/or drug treatment conditions to help understand disease mechanisms and/or 

64 drug response mechanisms. Therefore, it is of great interest to quantify both TEs and gene 

65 expression to elucidate contribution of both to disease mechanisms. Although many open source 

66 software and tools exist for analysing gene [24-26] and TEs expression, there are considerable 

67 challenges to efficiently apply these tools. In general, these multi-step data processing pipelines 

68 use many different tools. Correct versions of each tool need to be installed separately, and 

69 appropriate options, parameters, different reference genome and gene annotation files have to be 

70 set at each step. This can be quite tedious and challenging especially for non-computational 

71 users. Additionally, to ensure reproducibility of the analysis results, it is critical to capture 

72 analysis parameters from each step of the process. Equally important, to enable general use of 

73 the pipeline, the pipeline should be platform agnostic. Thus far, a one-stop computational 

74 framework for the comprehensive analysis of gene and locus-specific TEs expression from 

75 RNA-Seq data does not exist. 
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76 To address this need, we developed GeneTEFlow, a reproducible and platform-

77 independent workflow, for the comprehensive analysis of gene and locus-specific TEs 

78 expression from RNA-Seq data using Nextflow[27] and Docker[28] technologies. GeneTEFlow 

79 provides several features and advantages for integrated gene and TEs transcriptomic analysis. 

80 First, by employing Docker technology, GeneTEFlow encapsulates bioinformatics tools and 

81 applications of specific versions into Docker containers enabling tracking, eliminating the need 

82 for software installation by users, and ensuring portability of the pipeline on multiple computing 

83 platforms including stand-alone workstations, high-performance computing (HPC) clusters, and 

84 cloud computing systems.  Second, GeneTEflow uses Nextflow to define the computational 

85 workflows, not only enabling parallelization and complete automation of the analysis, but also 

86 providing capability to track analysis parameters. Thus, GeneTEFlow allows users to generate 

87 reproducible analysis results through utilization of both Docker and Nextflow in a platform 

88 independent manner. Lastly, GeneTEFlow has modular architecture, and modules in 

89 GeneTEFlow can be turned on or off, providing developers with flexibility to build extensions 

90 tailored to specific analysis needs.

91 Implementation
92
93 The GeneTEFlow pipeline was developed using Nextflow, a portable, flexible, and 

94 reproducible workflow management system, and Docker technology, a solution to securely build 

95 and run applications on multiple platforms. To build the GeneTEFlow pipeline, a series of 

96 bioinformatics tools (S1 Table) were selected for QC, quantitation and differential expression 

97 analysis of genes and TEs from RNA-Seq data. These bioinformatics tools and custom scripts 

98 were built into four Docker containers to ensure portability of the workflow on different 

99 computational platforms. Data processing and analysis steps were implemented by modules 
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100 using Nextflow. Modules are connected through channels and can be run in parallel. Each 

101 module in GeneTEFlow can include any executable Linux scripts such as Perl, R, or Python. 

102 Parameters for each module are defined in a configuration file.

103 A conceptual workflow of GeneTEFlow is illustrated in Fig 1.  The workflow includes 

104 four major inputs: raw sequence files in fastq format, a sample meta data file in excel format, 

105 reference genome and gene annotation files, and a Nextflow configuration file. The sample meta 

106 data file contains detailed sample information and the design of group comparisons between 

107 different experimental conditions. Human reference genome UCSC hg38 with the gene 

108 annotation (.gtf) was downloaded from Illumina iGenomes collections[29] and used by the 

109 bioinformatics tools included in GeneTEFlow. Scheduling of computational resources for each 

110 application module is defined in the configuration file. 

111

112 Fig 1. Illustration of GeneTEFlow: a Nexflow-based pipeline for identification of differentially 

113 expressed genes and locus specific transposable elements from RNA-Seq data.

114

115 GeneTEFlow analysis is performed in following steps: QC, expression quantification, 

116 differential expression and down-stream analysis.  First, adapter sequences are trimmed off from 

117 the Illumina raw reads using Trimmomatic(v0.36)[30] for single-end or paired-end reads, and 

118 low-quality reads are filtered out. Next, FastQC(v0.11.7)[31] is executed to survey the quality of 

119 sequencing reads, and report is generated to help identify any potential issues of the high 

120 throughput sequencing data. Reference genome index for mapping sequencing reads to mRNA 

121 genes is built using “rsem-prepare-reference” of RSEM (v.1.3.0). Reads remaining after the pre-

122 processing step are mapped to the reference genome using STAR(v2.6.0c)[32]. Gene level 
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123 expression is quantitated as expected counts and transcripts per million (TPM) using “rsem-

124 calculate-expression” of RSEM(v1.3.0) with default parameters [33]. Custom Perl scripts were 

125 developed to aggregate data from each sample into a single data matrix for expected counts and 

126 TPM values respectively. The expression quantification of locus-specific TEs is performed by 

127 SQuIRE[23]. 

128 In addition, we also implemented quality control measures after reads alignment step to 

129 detect potential outlier samples resulted from experimental errors. Boxplot and density plot are 

130 used to evaluate the overall consistency of the expression distribution for each sample. Sample 

131 correlation analysis is performed with Pearson method using TPM values to assess the 

132 correlation between biological replicates from each sample group. Principal component analysis 

133 (PCA) is employed to identify potential outlier samples and to investigate relationships among 

134 sample groups.

135 Differential expression analysis of genes and transposable elements is performed using 

136 DESeq2(v1.18.1) package[34]. Significantly up-regulated and down-regulated genes and TEs are 

137 summarized in a table. To analyse overlap among significantly regulated genes and TEs from 

138 pair-wise comparisons between different sample groups we use Venn diagrams.  We perform 

139 hierarchical clustering of significantly dysregulated genes or TEs using R package 

140 “ComplexHeatmap” [35] with euclidean distance and average linkage clustering parameters. 

141 Gene set enrichment analysis (GSEA, v3.0) [36] is conducted using collections from the 

142 Molecular Signatures Database (MSigDB) [37]. The outputs (S2 Table) from GeneTEFlow are 

143 organized into several folders predefined in a GeneTEFlow configuration file. A tutorial with 

144 detailed instructions on how to set up and run GeneTEFlow is provided at  

145 https://github.com/zhongw2/GeneTEFlow
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146 Application of GeneTEFlow 
147
148 We applied GeneTEFlow to a public dataset from Brawan’s study [38] investigating 

149 tissue-specific expression changes of genes and transposable elements. Human RNA-Seq data 

150 from brain, heart and testis tissues were downloaded from GEO (accession number: GSE30352) 

151 (S3 Table). Expression analysis of genes and TEs were performed using GeneTEFlow and 

152 results are shown in Fig 2. Gene expression analysis was performed using RSEM and DESeq2 

153 modules while TEs expression analysis was conducted using SQuIRE and DESeq2 modules 

154 within GeneTEFlow. Significantly regulated genes were identified with FDR less than 0.05 and 

155 fold change greater than 2. Significantly regulated locus-specific transposable elements were 

156 identified with FDR less than 0.05 and fold change greater than 1.5. The number of significantly 

157 regulated genes and transposable elements were summarized into two tables respectively (Fig 2, 

158 top panels). Using GeneTEFlow, we detected genes and TE differentially expressed between 

159 different tissue types (brain vs heart tissues: 6,264 genes and 1,277 TEs; testis vs heart tissues: 

160 7,066 genes and 595 TE;  brain vs testis tissues: 8,125 genes and 1,297 TEs) with most 

161 significant gene and TE expression differences observed being between brain and testis tissues. 

162 Our analysis identified large number of both genes and TEs with tissue specific patterns (Fig 2, 

163 middle panels and bottom panels). More in depth analysis to include additional tissue types 

164 would be required to fully understand the tissue specific gene and TEs expression and their 

165 relationship.  GeneTEFlow is a computational solution to facilitate such studies. 

166

167 Fig 2. Differential expression analysis results of genes and transposable elements from 

168 GeneTEFlow. Left panels: gene results; right panels: TEs results. Top panels: number of 

169 significantly regulated genes or TEs in each sample group comparison. Significance was defined 
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170 as following: FDR ≤ 0.05 and fold change ≥ 2 for gene expression analysis; FDR ≤ 0.05 and fold 

171 change ≥ 1.5 for TEs expression analysis. Middle panels: overlaps of significantly regulated 

172 genes or TEs amongst sample group comparisons. Bottom panels: hierarchical clustering of 

173 significantly regulated genes or TEs. 

174

175 In addition to quantification of TEs expression, SQuIRE provides quantification of gene 

176 expression. Therefore, we compared gene level expression quantification between RSEM and 

177 SQuIRE (S1 Fig).  The results showed high concordance (correlation coefficient: ~97%) of the 

178 gene level expression quantification between the two methods (S1 Fig, highlighted in red box) 

179 suggesting a robust measurement for both gene and TEs expression by SQuIRE.  

180

181 Conclusions 
182
183 In conclusion, we have developed and made available an automated pipeline to 

184 comprehensively analyse both gene and locus-specific TEs expression from RNA-Seq data. 

185 Taking advantage of the advanced functionalities provided by Nextflow and Docker, 

186 GeneTEFlow allows users to run analysis reproducibly on different computing platforms without 

187 the need for individual tool installation and manual version tracking. We believe this pipeline 

188 will be of great help to further our understanding of roles of both gene and TEs regulation in 

189 human diseases. This pipeline is flexible and can be easily extended to include additional types 

190 of analysis such as alternative splicing, fusion genes, and so on. 

191
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321 S1 Fig. Comparison of gene expression quantification by RSEM and SQuIRE. Gene expression 

322 (total 22,955 genes) of samples from brain tissues (left), heart tissues (middle), and testis tissues 

323 (right) was calculated by both RSEM and SQuIRE.  Lower diagonal panels: pairwise 

324 comparisons using log2(TPM + 1) of 22,955 genes. Upper diagonal panels: correlation 

325 coefficient of each comparison. Panels highlighted in red: correlation coefficient of comparisons 

326 between RSEM and SQuIRE gene expression quantification of the same sample. Rep_: replicate, 

327 _RSEM: quantification performed by RSEM, _SQuIRE: quantification performed by SQuIRE. 

328

329 S1 Table. Major bioinformatics tools installed in GeneTEFlow 

330 S2 Table. Major outputs from GeneTEFlow

331 S3 Table. Human RNA-Seq data used in the example application of GeneTEFlow 

332 S1_File. Supplemental tables: S1-S3 Tables. 
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