1 Mosquito defensins enhance Japanese encephalitis virus infection by facilitating virus

- 2 adsorption and entry within mosquito
- 3 Running title: Mosquito defensins increase JEV transmission potential
- 4
- 5 Ke Liu¹, Changguang Xiao¹, Shumin Xi¹, Muddassar hameed¹, Abdul Wahaab¹, Donghua Shao¹,
- 6 Zongjie Li¹, Beibei Li¹, Jianchao Wei¹, Yafeng Qiu¹, Denian Miao³, Huaimin Zhu^{2*}, Zhiyong Ma^{1*}
- 7
- 8 ¹ Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, No. 518, Ziyue
- 9 Road, Shanghai 200241, P.R. China, ² Department of Pathogen Biology. Second Military Medical
- 10 University. Shanghai, 200433, P.R. China, ³ Institute of Animal Husbandry and Veterinary Science,
- 11 Shanghai Academy of Agricultural Sciences, Shanghai 201106, PR China
- 12 * Correspondence:zhiyongma@shvri.ac.cn
- 13
- 14
- 15
- 16

17 Abstract

18	Japanese encephalitis virus (JEV) is a viral zoonosis which can cause viral encephalitis, death
19	and disability. <i>Culex</i> is the main vector of JEV, but little is known about JEV transmission by
20	this kind of mosquito. Here, we found that mosquito defensin facilitated the adsorption of
21	JEV on target cells via both direct and indirect pathways. Mosquito defensin bound the ED III
22	domain of viral E protein and directly mediated efficient virus adsorption on the target cell
23	surface, Lipoprotein receptor-related protein 2 expressed on the cell surface is the receptor
24	affecting defensin dependent adsorption. Mosquito defensin also indirectly down-regulated
25	the expression of an antiviral protein, HSC70B. As a result, mosquitos defensin enhances JEV
26	infection in salivary gland while increasing the possibility of viral transmission by mosquito.
27	These findings demonstrate that the novel effects of mosquito defensin in JEV infection and
28	the mechanisms through which the virus exploits mosquito defensin for infection and
29	transmission.
30	
31	

32

33 Introduction

34	Japanese encephalitis virus (JEV), a member of Flaviviridae flavivirus, is prevalent in
35	Asia-Pacific tropical and subtropical regions [1-3]. JEV is mainly transmitted through
36	mosquito bites [2, 4]. Pigs are reservoir hosts for JEV, and humans, horses and other animals
37	are dead-end hosts [2, 5]. Because the prevention and control of JEV rely on vaccines with a
38	limited window of protection [6-8], JEV can easily cause death or permanent disability. More
39	than 100,000 people are at risk of JEV infection, and immunocompromised children and older
40	individuals are at particular risk [9, 10]. The World Health Organization has reported that
41	more than 67,900 cases of JEV infection globally each year, more than 10,000 of which are
42	fatal. As global temperature increases, the clinical incidence of Japanese encephalitis is
43	increasing as well, owing to an increase in the habitat range and activity of mosquitoes
44	carrying JEV as the climate warms [2, 4, 9]. Few studies have addressed the transmission
45	mechanism of JEV by mosquito vectors [4]. Thus, a detailed understanding of the interaction
46	between JEV and mosquito vectors will be essential to improve control of JEV transmission.
47	Culex is the principal vector of JEV [11, 12]. The virus can spread throughout the
48	mosquito body, including salivary glands [13]. When an infected mosquito bites humans or

49	animals, the virus is transmitted to the skin through the saliva. The mosquito vector also
50	induces an immune response to JEV [14-16]. For example, C-type lectin and a series of
51	proteins increase rapidly after infection [17, 18]. C-type lectin plays an important role in
52	infection by JEV and other Flaviviridae viruses in mosquitoes, but the role of defensin has
53	not yet been clearly characterized.
54	Defensins are antimicrobial peptides consisting of 25-60 amino acids that are produced
55	by innate immune system [15, 19]. Defensin is one of the crucial immune effectors in insects
56	[20]. The antiviral effects of defensins have been well described in mammalian cells. Human
57	defensins have been reported to inhibit herpes simplex virus type 2 (retrocyclin-1,
58	retrocyclin-2) [21], human immunodeficiency virus (human beta defensin-1, human beta
59	defensin-2, Human beta defensin-3) [22, 23] and other viruses. However, human beta
60	defensin-6, expressed by adenovirus vectors, enhances parainfluenza virus type 3 replication
61	[24]. Normally, mammalian defensins can directly destroy the virus particles by binding to
62	the surface of envelope protein. They can also interact to the cell surface receptor and
63	influence cell signal transduction [19, 25]. Although there are many differences between the
64	mammalian and mosquito immune systems, defensins are considered important effectors in

65 the mosquito immune response. Therefore, the role of mosquito defensins during the process

- 66 of JEV infection requires further study.
- 67 In this study, we observed complex roles of mosquito defensin in JEV infection: a weak
- antiviral effect and a strong effect enhancing binding. In the latter, defensin directly binds the
- 69 ED III domain of the viral E protein and promotes the adsorption of JEV to target cells by
- 70 interacting with lipoprotein receptor-related protein 2 (LRP2), thus accelerating virus entry.
- 71 Mosquito defensin also down-regulates the expression of the antiviral protein HSC70B on the
- 72 cell surface, thus facilitating virus adsorption. Together, our results indicate that the
- facilitation effect of mosquito defensin plays an important role in JEV infection and potential
- 74 transmission.
- 75

76 Results

77 JEV infection up-regulates defensin expression *in vivo* and *in vitro*

78 Defensin is one of the major innate immunity effectors in mosquitoes. To study the role

- 79 of defensin in JEV infection, we first assessed the expression of defensin in Culex pipiens
- 80 pallens (Cpp) which is the natural vector of JEV after infection. Five-day-old female

81 mosquitoes after emergence were infected by a microinjector with a dose of 1000 MID_{50} [18].

82	The mosquitoes were collected 4, 7 and 10 days after injection, and the JEV E mRNA levels
83	in the whole body, salivary gland and midgut were determined. JEV E mRNA showed higher
84	levels in the salivary gland than in the whole body and midgut (Fig. 1A). At 10 days, the JEV
85	E mRNA level increased dramatically, thus indicating that the virus reproduced rapidly
86	during this period. For instance, JEV E mRNA levels increased by 9.7- and 11.7-fold at 10
87	days compared with 7 days in the whole body and midgut, respectively. A greater increase
88	was observed in the salivary gland, reaching 14.9 fold at 10 days compared with 7 days.
89	Because high virus levels in mosquitoes were observed 7 and 10 days post JEV infection, we
90	then determined the defensin A and total defensins mRNA level in the whole body on 7 and
91	10 days. Cpp defensin A mRNA levels on both days were significantly higher in the JEV
92	infection group than the control group, although the level decreased slightly at 10 days (Fig.
93	1B). Change levels of total defensins showed the similar trend (Fig. 1B). Furthermore, we
94	compared <i>cpp</i> defensin A and total defensins mRNA levels in the whole body, salivary gland
95	and midgut. Defensin A and total defensins mRNA showed similar levels of up-regulation in
96	the salivary gland and whole body, which were higher than those in the midgut (Fig. 1C).

97	Significantly higher mRNA levels (p <0.005) were observed in the JEV infection group than
98	the control group for whole body, salivary and midgut. This suggested that Cpp defensin A
99	expression was positive correlated with JEV infection in mosquitoes.
100	The gene encoding cpp defensin was not found in the NCBI database. According to
101	PCR amplification (Fig. S1A), sequencing and BLASTn (https://blast.ncbi.nlm.nih.gov)
102	results, we found two gene types of defensin: defensin A (submitted to NCBI with accession
103	number MH756645) and an incomplete information defensin. The mature protein regions of
104	these two defensins shared 99.5% sequence similarity (Fig. S1B). We designed specific
105	primers (Table. S1, Fig. S2) for real-time PCR detection according to the Cpp defensin A
106	sequence. However, no specific primers were available for the unnamed defensin, because
107	scarce specific sequence was obtained. Therefore, we quantified the mRNA copy number of
108	total and type A defensins to determine which subtype is the primary defensin in cpp (Fig.
109	S1C). The fold change of mRNA levels of defensin A were significantly higher (7 days,
110	p<0.05) than or similar (10 days) to the total defensin levels (Fig. 1B), thus it implied that
111	defensin A accounts for the majority of total defensins. To analyze whether defensin
112	functioned universally among organisms, we aligned the defensin protein sequences of

113 mosquito vectors of flavivirus. We also quantified the mRNA copy number of total and type

114	C defensins to	determine wh	ich subtype	is the	primary	defensin	in Aedes a	<i>lbopictus</i>	(aa) (F	ig.

- 115 S1C). Aedes defensin C is the major type of defensin in C6/36 cell, a cell line from Aedes
- 116 *albopictus*. The sequence similarities were all above 97.6% between mosquito vectors (Fig.
- 117 S1D), suggesting that mosquito defensins serve similar functions. In contrast, the sequence
- similarities were significantly low between mosquitoes and human (Fig. S1E). We then used
- 119 cpp defensin A (accession number MH756645) and aa defensin C (accession number
- 120 XP_019527114.1) to study the functions of defensin in JEV infection within mosquito
- 121 vectors.

122 To confirm the up-regulation of defensin in different mosquito vectors caused by JEV

infection, we infected C6/36 cells with JEV *in vitro*. JEV E mRNA levels increased from 24 h
to 120 h post JEV infection (Fig. 1D). We further analyzed the change of total defensins and
primary defensin (*aa* defensin C, Fig. S1C) after JEV infection. *aa* defensin C mRNA levels
were up-regulated to 2.75-, 11.9-, 19.7-fold in JEV infection compared with mock infection at
1, 3 and 5 days, respectively (Fig. 1E). Also total defensins were up-regulated after JEV
infection (Fig. 1E). Together, our results indicated that defensin levels were up-regulated after

- 129 both *in vivo* and *in vitro* infections.
- 130

131	Mosquito defensin shows species specificity in facilitating JEV infection
132	Mature defensin is an extracellular protein which length is less than 60 amino acids. To
133	confirm the function of defensin on JEV infection, we synthesized mature defensin peptides
134	with high purity (\geq 99%) to perform further analysis. Scrambled defensin peptides were used
135	as controls. Cpp defensin A and aa defensin C peptides were used in both in vivo and in vitro
136	experiment. Defensins and JEV were pre-mixed before injection into mosquitoes.
137	Unexpectedly, in <i>in vivo</i> experiment, JEV E mRNA levels increased by 2.95- and 6.13-fold in
138	the cpp defensin A treated groups compared with the control groups at 7 and 10 days post
139	infection, respectively (Fig. 2A). And the same changing trend of JEV level was observed in
140	aa defensin C treated group (Fig. 2A). We also confirmed this enhancement of defensins on
141	JEV infection by RNA interference. siRNA sequences target Cpp defensins or Cpp defensins
142	A were designed and used in <i>in vivo</i> RNA interference. JEV E mRNA levels were decreased
143	by more than 5 fold in Cpp defensin siRNA groups and more than 3 fold in Cpp defensin A
144	siRNA groups compared to scramble group (Fig. 2B, Fig. S3A). Indirect immunofluorescence

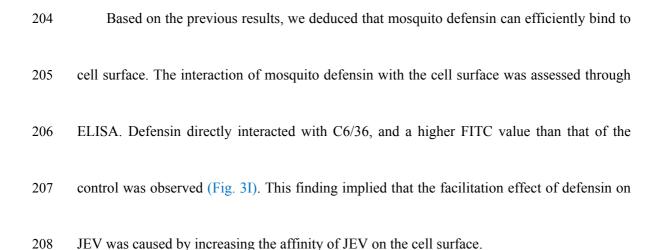
145 assay (IFA) analysis also showed higher JEV E levels in the mosquito defensin treated cells 146 than the control (Fig. 2C), and lower JEV E levels in the mosquito defensin knockdowned 147 cells than the control (Fig. 2C). 148 To compare the role of defensin from different species, human defensin $\beta 2$ showed high 149 antiviral activity was synthesized [25, 26]. Firstly, we compared the effects of aa defensin C, Cpp defensin A and human defensin B2 on C6/36 cells. aa defensin C enhanced JEV infection 150 151 on C6/36, as indicated by both JEV E mRNA (4.88 fold) and TCID50 (1.3 titer) levels (Fig. 2D i and ii). Treating with Cpp defensing A also resulted in the enhancement of JEV 152 153 infection. In contrast, human defensin ß2 inhibited JEV replication on C6/36 cell, thus 154 demonstrating that defensins from different species have diverse functions in JEV infection 155 (Fig. 2D i and ii). To confirm this effect of mosquito defensin, we used siRNAs target 156 defensin of C6/36. JEV was inoculated and detected after siRNAs transfection. JEV E mRNA 157 levels decreased by 4.7 to 6 folds in *aa* defensin interference groups, and decreased by 2.3 to 158 3.1 folds in *aa* defensin C interference groups respectively (Fig. 2E i and ii, Fig. S3B). These 159 results were consistent with the in vivo data.

160 To obtain detailed insight into the function of mosquito defensin, we analyzed the effects

161	of mosquito defensin on mammalian cells contain Vero and BHK-21. aa defensin C reduced
162	the JEV replication by 2.2 to 2.7 folds (Fig. 2F i and Fig. 2G i) and decreased JEV TCID_{50}
163	levels by 0.6 to 0.8 titers (Fig. 2F ii and Fig. 2G ii), thus indicating that it inhibits JEV
164	infection in mammalian cells as human defensin dose. Although the inhibition ability of aa
165	defensin C was lower than that of human defensin $\beta 2$, it still inhibited JEV replication.
166	Therefore, the facilitation effects of mosquito defensin on JEV were valid only on mosquitoes
167	and mosquito cells. To confirm that the effect of defensins was not due to cytotoxicity, we
168	measured the IC_{50} of each defensin through MTT assays. The results showed that defensins
169	had no significant cytotoxicity on cells (Table. S2).
170	
171	Mosquito defensin enhances JEV adsorption to target cells
172	To study the exact mechanisms of mosquito defensin facilitates JEV infection, we
173	analyzed the influence of <i>aa</i> defensin C on different infection steps on C6/36 cell. As
174	infection steps can be measured by temperature and time shift, we detected adsorption,
175	uncoating and replication of JEV [27]. Adsorption was determined to be a key step in the
176	facilitation effect (Fig 3A). Next, we detected JEV adsorption at different time points. JEV

mixed with defensin or scrambled peptides was inoculated to C6/36 cells for different time

177


178	points at 0°C. After being washed with PBS for three times, cells with absorbed JEV were
179	collected. JEV E mRNA levels were determined by real-time PCR. C6/36 cells treated with
180	aa defensin C showed significantly higher JEV E mRNA levels at 4 and 6 h post adsorption,
181	proof that defensin enhanced JEV adsorption to C6/36 (Fig. 3B). IFA showed that JEV

adsorption greatly increased in a time course of *aa* defensin C treatment (Fig. 3C and Fig.

- 183 3D). Both nuclear staining (DAPI) and membrane staining (Did) of C6/36 cell were
- 184 conducted in IFA absorption analysis. There was stronger JEV adsorption in the *aa* defensin
- 185 C groups than the control groups at each time points in both DAPI staining (Fig. 3C) and Did
- 186 staining (Fig. 3D) cells. To study how mosquito defensin facilitated JEV adsorption, FITC
- 187 labeled aa defensin C was used. Defensin-FITC and JEV were mixed before incubation at
- 188 0°C. After incubation, unabsorbed defensin and JEV were washed by PBS for five times. The
- 189 cells were collected at the indicated time points to observe the co-localization of defensin and
- 190 JEV. Strong co-localization on the cell surface was observed between *aa* defensin C and JEV
- 191 (Fig. 3E) and increased over time. Thus, the facilitation effect of mosquito defensin on JEV
- 192 was attributed to the binding between them. Additionally, JEV mixed with cpp defensin A

193 showed high adsorption capacity in salivary glands (Fig. 3F). Take together, our results

- 194 indicated that mosquito defensin is able to bind JEV and facilitate virus adsorption.
- 195 The interaction between defensin and JEV was also confirmed by ELISA. The plate
- 196 wells were coated with *aa* defensin C, incubated with JEV and next incubated with anti-JEV
- 197 antibody. As expected, JEV bound defensin efficiently. Even with a 250 ng defensin coating
- 198 treatment, the JEV level was significantly higher than that in the control group (Fig. 3G). To
- 199 determine the adsorption capacity of the JEV-defensin complex to C6/36 cells, we coated
- 200 plate wells with fresh C6/36 cells after polylysine treatment, added pre-mixed defensin and
- 201 JEV, and detected JEV with anti-JEV monoclonal antibody. In accordance with the results of
- 202 qPCR and IFA, the interaction of defensin with JEV significantly enhanced JEV adsorption to
- 203 C6/36 cells (Fig. 3H).

209

210 Defensin directly binds the JEV ED III domain

211	Defensins can bind to viral envelope protein [25]. To precisely understand the interaction
212	mechanisms of JEV enhancement mediated by defensin, we expressed the three structural
213	proteins (C, prM and E) of JEV and the exposure area (ED III) of E protein through an S2
214	insect protein expression system [28, 29], and further purified these proteins via 6×His
215	agarose. To analyze the interaction between viral proteins and defensins, two ELISA methods
216	were used. The plate wells were coated with defensin, incubated with purified proteins and
217	detected by corresponding antibodies. Scrambled defensin was used as control. Absorbance
218	results showed high affinity between aa defensin C and E protein or ED III protein, which
219	were ~0.95 and ~1.17, respectively (Fig. 4A). Consistent results were observed in
220	defensin-FITC testing. The plate wells were coated with purified viral proteins and then
221	incubated with aa defensin C-FITC or scrambled defensin-FITC. E and ED III proteins
222	showed higher fluorescence values of 332 and 369, respectively (Fig. 4B). Both tests
223	suggested that the ED III domain of E protein is the key region involved in aa defensin C and
224	JEV binding. Subsequently, purified E and ED III proteins were mixed with aa defensin C

225	and used to inoculate C6/36 cells at 0°C for 4 h. Unabsorbed defensin and JEV were removed
226	by washing with PBS after incubation. The effect of <i>aa</i> defensin C on facilitating E and ED
227	III adsorption was observed by fluorescence microscope (Fig. 4C and Fig. 4D). E proteins
228	and ED III proteins bound more efficiently to the C6/36 cell with aa defensin. Additionally,
229	aa defensin C showed co-localization with E or ED III protein on the C6/36 (Fig. 4C, merge
230	panel). The same results were observed in membrane stained C6/36 cells. E proteins and ED
231	III proteins bound more efficiently to the C6/36 cell surface with aa defensin, and aa defensin
232	C also showed co-localization with E or ED III protein on the C6/36 surface (Fig. 4D). Thus
233	indicating that the ED III domain of the JEV E protein responsible for binding with aa
234	defensin C.
235	
236	LRP2 is responsible for mosquito defensin mediated JEV adsorption
237	As an extracellular protein, defensin has been reported to interact with receptors on the
238	cell surface and consequently affect intracellular signaling networks. To define the
239	relationship of defensin/cell surface receptor and adsorption enhancement, we analyzed
240	cell-surface receptors that interact with defensin. We knockdowned the expression of a series of

241	potential receptors on the cell surface through RNA interference (RNAi) and found that
242	lipoprotein receptor-related protein 2 (LRP2) responsible for defensin binding [30, 31]. The
243	results indicated that LRP2 interfered with the interaction between defensin-FITC and C6/36 cells
244	(Fig. 5A and Fig. 5B), thus indicating that LRP2 related to the adsorption of extracellular
245	defensin. We further studied the role of LRP2 on JEV adsorption mediated by defensin. Based on
246	significantly RNA knock down (Fig. S3C), No differences were observed between cells with or
247	without LRP2 interference when infected with JEV alone (Fig. 5C). However, when C6/36 cells
248	were incubated with mixed defensin and JEV, a lower JEV level was observed in LRP2 interfered
249	cells. The JEV mRNA level on LRP2 interference cells was 2.8 fold lower than that of the
250	scramble (Negative control, NC) interference group (Fig. 5C), and both the $TCID_{50}$ level and
251	fluorescence value decreased significantly (Fig. 5D and Fig. 5E). In in vivo mosquito experiments,
252	the mosquitoes were inoculated with LRP2 or NC siRNA for 3 days (Fig. S3D), and inoculated
253	with defensin and JEV mixture. Whole body samples were collected at 3 days after infection. The
254	JEV mRNA level was significantly lower in LRP2-interference group than in the NC group (Fig.
255	5F), thus indicating that LRP2 participated in defensin mediated viral adsorption. Additionally, the
256	results of indirect immunofluorescence were in accordance with the above-mentioned results.

257	Take together, our findings indicated that LRP2 is the cell surface factor responsible for defensin
258	mediated JEV adsorption. LRP2/defensin is a pathway mediates JEV adsorption in mosquito.
259	Lipoprotein receptor-related protein 4 (LRP4) and CXCR4 also showed binding activity with
260	defensin, but this activity did not influence JEV adsorption (Data not shown).
261	
262	Mosquito defensin down-regulates the expression of HSC70B on the C6/36 surface and
263	
	reduces antiviral activity of cell
264	Defensin can interact with cell-surface receptors and consequently affect signal
264 265	
	Defensin can interact with cell-surface receptors and consequently affect signal

consequently affects JEV adsorption [32]. Briefly, C6/36 cells were continuously passaged on

269 media with light, medium and heavy stable isotopes. After more than 99.0% cells were

270 labeled with stable isotopes, the cells were then grouped, inoculated with JEV or defensin,

- and collected according to the plan (Fig. 6A). Cell membrane proteins were extracted for MS
- analysis. The results showed that HSC70B, a potential mosquito antiviral protein [33], was

273	significantly down-regulated in all defensin,	JEV, and defensin + JEV treatments (Fig. 6B).
-----	---	---

274	We prepared a rabbit polyclonal antibody against C6/36 HSC70B (UniProt accession number
275	A0A0E3J979) according to the MS results (Fig. S2). Western-blot analysis validated the
276	down-regulation of HSC70B on the C6/36 cell surface in all three treatments (Fig. 6C).
277	Because HSC70B is a potential mosquito antiviral protein, we tested the function of
278	mosquito HSC70B on JEV adsorption and infection. siRNA targeting C6/36 HSC70B was
279	transfected, and the interference efficiency of HSC70B on C6/36 was detected through
280	real-time PCR analysis (Fig. 6D). Afterward, JEV was inoculated to HSC70B interfered
281	C6/36 cells. The JEV adsorption capacity in HSC70B-interference cells was significantly
282	higher than that in NC-interference cells ($p < 0.05$) (Fig. 6E). Additionally, JEV replication
283	level was detected in C6/36 cells treated with HSC70B siRNAs and defensin peptides.
284	Compared to NC group, HSC70B interference significantly heightened the enhancement
285	function of defensin (Fig. 6E). Similarly, we designed siRNA targeting the homologous gene
286	of cpp HSC70B. siRNA was injected into cpp, and the interference efficiency of HSC70B
287	was detected through real-time PCR (Fig. 6F). JEV mRNA levels were detected at 6 days
288	post infection. Likewise, HSC70B-interfered mosquitoes produced more JEV copies than NC

289 group (Fig. 6G).

290	Two mechanisms underlying the facilitation effect were identified. One was a direct
291	binding effect, enhancing JEV affinity to the cell surface. The other was an indirect effect,
292	weakening the host defense by down-regulating antiviral HSC70B expression.
293	
294	Mosquito defensins facilitate JEV dissemination in salivary gland
295	To assess the transmission potential of JEV enhanced by mosquito defensins, we
296	detected the virus levels within salivary gland of defensin-treated mosquitoes [34, 35]. Both
297	microinjection and blood meal methods were used in this experiment. JEV and mosquito
298	defensin were mixed before inoculation. Mosquitoes injected with JEV and defensin peptide
299	were collected at 7 or 10 days post infection. Fresh salivary glands were isolated and detected
300	by using real time PCR. JEV level were significantly increased in Cpp and aa defensin groups
301	(Fig. 7A). JEV level in Cpp defensin group indicated 3.5 fold higher at day 7 post infection
302	and 3.1 fold higher at day 10 post infection than that of scramble defensin group in salivary
303	gland. aa defensin showed the same role as Cpp defensin did. We further employed blood
304	meal to measure the effect of defensin in JEV dissemination in mosquito salivary gland. Five

305 day-old female Mosquitoes were deprived of sucrose and water 24 h prior to blood meal	305	day-old female Mosc	juitoes were deprived	of sucrose and water 24	h prior to blood meal.
---	-----	---------------------	-----------------------	-------------------------	------------------------

306	Mosquitoes we	ere then fee	d with infectious	blood with JEV	and defensin peptie	des for 2 h.
-----	---------------	--------------	-------------------	----------------	---------------------	--------------

- 307 Fresh blood was collected from health mice and delivered through Hemotek membrane
- feeding apparatus. 2ml blood with JEV (5×10^6 TCID₅₀) and peptide (200 μ M) were used for
- ach groups. JEV level in Cpp defensin group showed 4.2 fold higher at day 7 and 10 post
- 310 infection than that of scramble defensin group in salivary gland (Fig. 7B). JEV level in aa
- 311 defensin group also showed higher results than scramble group. These results implied that
- 312 mosquito defensins facilitate JEV dissemination in mosquitoes and increase transmission
- 313 potential after infection.

314

315 Discussion

JEV is a serious mosquito borne disease common in Asia-Pacific tropical and subtropical regions [2, 9, 10]. More than 100,000 people are at risk. Moreover, JEV can cause death or permanent sequelae. Pigs are the reservoir host of the virus. Humans, horses and other animals are dead-end hosts. Mosquitoes, especially *culex*, are the most important vector [4]. At present, the prevention and control of JEV mainly relies on vaccine immunization, whose

321	protection time is limited. JEV remains a threat to health and even life for
322	immunocompromised children or older people [6, 7]. With the increasing problem of global
323	warming, the clinical incidence of JEV is increasing [36]. Few mechanistic studies have
324	focused on the JEV transmission by mosquito vectors. It is of practical significance to
325	understand the interaction between JEV and mosquito vectors and the immune escape mode
326	of JEV in controlling this mosquito borne disease.
327	In this study, we analyzed the gene expression of defensin from Cpp and aa. Defensin A
328	and an unnamed defensin from Cpp, defensin A, B and C from aa shared high sequence
329	similarity, thus indicating similar functions of these defensins. Subsequently, we confirmed
330	that defensin A and defensin C are the main defensin types of <i>cpp</i> and <i>aa</i> , respectively. Given
331	the high similarity of the amino acid sequences, we synthesized only cpp defensin A and aa
332	defensin C in further studies. The nucleotide sequence of cpp defensin A (number
333	MH756645) has been submitted to the NCBI database.
334	The up-regulation of defensin after JEV infection was consistent with reports on other
335	flavivirus viruses [37]. The highest up-regulation was observed at 7 days post infection. From
336	the organism perspective, the defensin in the salivary gland and whole body was up-regulated

337 more than that in the midgut. JEV replication in salivary gland, the most sensitive tissue to

- 338 JEV [18], was positively correlated with defensin level.
- 339 The mature peptide of defensin was utilized to study the role of mosquito defensin in
- 340 JEV infection [25, 38]. In general, defensin is fewer than 60 amino acids and is processed
- 341 from a precursor protein. In this study, mosquito defensin and human defensin $\beta 2$ were
- 342 composed of 40 amino acids and 34 amino acids [39], respectively. Only 11% sequence
- 343 similarity was identified between mosquito and human defensin. Unexpectedly, mosquito
- 344 defensin facilitated JEV infection, in contrast to human defensin, but the facilitation effect
- 345 was exerted only on mosquito cells or mosquitoes. Thus, JEV utilized the host defense
- 346 system, reflecting its "intelligence" in infection [40]. However, mosquito defensin inhibited
- 347 JEV infection in mammalian cells, thus indicating its varied mechanisms of action and the
- 348 complicated interaction between virus and host [19].
- 349 Further analysis demonstrated that mosquito defensin facilitated JEV adsorption to target
- 350 cells by directly binding JEV virions [27, 41]. By screening JEV structural proteins, we found
- that mosquito defensin bound the ED III domain of JEV E. ED III is a crucial domain of JEV
- that is responsible for the production of neutralizing antibody [42]. The antiviral effect of

353	mosquito defensin on JEV is likely to be due to its binding the ED III domain and subsequent
354	virion destruction [19, 25]. Because mosquito defensin facilitated JEV infection, the binding
355	of defensin and ED III can be inferred to have only weak antiviral effects. Nevertheless, this
356	binding enhanced virion adsorption ability to a large extent. The broad transmission of JEV
357	by mosquitoes is ascribed to both the crude immune system of mosquitoes and the infection
358	strategy of the virus. Mosquito defensin could improve the adsorption ability of JEV on target
359	cells. Additionally, ELISA results showed that high concentration of mosquito defensin
360	interacted with the target cells without the assistance of viruses.
361	Defensin receptors expressed on the cell surface may lead to enhanced adsorption. We
361 362	Defensin receptors expressed on the cell surface may lead to enhanced adsorption. We scanned the potential cell-surface receptor proteins of defensin through RNAi and found that
362	scanned the potential cell-surface receptor proteins of defensin through RNAi and found that
362 363	scanned the potential cell-surface receptor proteins of defensin through RNAi and found that the LRP2-defensin pathway was responsible for JEV adsorption. In mammalian animals,
362 363 364	scanned the potential cell-surface receptor proteins of defensin through RNAi and found that the LRP2-defensin pathway was responsible for JEV adsorption. In mammalian animals, LRP2 is the receptor for defensin, regulating the contraction of smooth muscle cells by
362 363 364 365	scanned the potential cell-surface receptor proteins of defensin through RNAi and found that the LRP2-defensin pathway was responsible for JEV adsorption. In mammalian animals, LRP2 is the receptor for defensin, regulating the contraction of smooth muscle cells by combining with human alpha defensin [30, 31]. However, the roles of LRP2 in mosquitoes

369	thereby increasing the chance of infection. This proposed mechanism of promotion of JEV
370	infection by defensin/LRP2 is similar to that for JEV and WNV mediated by C type
371	lectin/PTP-1. That is, virus first combines with extracellular secrete proteins with high
372	affinity to cells, and this is followed by binding to cell surface receptor to infect target cells.
373	Given that mosquito defensin directly interacts with mosquito cell surface receptors, we
374	analyzed how it regulates cell surface proteins. The changes in cell surface proteins were
375	determined through SILAC and MS analysis [32]. We identified a potential antiviral protein,
376	HSC70B, that is significantly down-regulated by defensin or JEV treatment [33]. HSC70B
377	inhibited JEV adsorption, as demonstrated through an RNAi approach, thus indicating that
378	mosquito defensin indirectly affects JEV adsorption by regulating cell surface antiviral
379	protein expression. However, this indirect effect was found to be lower than the direct
380	defensin binding effect. Together, our findings indicated that the effect of mosquito defensin
381	on JEV is composed of weak antiviral effect, direct binding enhancement and indirect
382	immune regulation. Curiously, both defensin and HSC70B are antiviral proteins in mosquito,
383	but it looks like they could't work together on JEV infection. We did not identify the
384	mechanisms through which defensin down-regulates HSC70B, because of the limited

385	information available on the relevant signal pathways. We deduced that there is a negative
386	feedback mechanism between HSC70B and defensin [43], thus implying that an increase in
387	defensin would decrease HSC70B level. Another possibility may be that HSC70B has
388	varying functions in different conditions, except for the antiviral effect.
389	JEV infection up-regulated mosquito defensin expression in the salivary gland and
390	defensin also heightened the JEV dissemination in salivary gland, thus suggesting that the
391	defensin may be influence the transmission of JEV by mosquito. Further research on
392	mosquito defensin in JEV cross-species transmission is needed.
393	To our knowledge, this is the first report on the effects of mosquito defensin on JEV
394	infection in mosquito vectors, revealing a new immune escape mechanism of JEV infection
395	and transmission. This study broadens our knowledge of transmission of JEV as well as other
396	mosquito borne viruses, providing novel insights into viral transmission mechanisms.
397	
398	Materials and methods
399	Ethics statement

400 All animal experiments were performed in compliance with the Guidelines on the

25

401	Humane Treatment of Laboratory Animals (Ministry of Science and Technology of the
402	People's Republic of China, Policy No. 2006 398) and were approved by the Institutional
403	Animal Care and Use Committee at the Shanghai Veterinary Research Institute (IACUC No:
404	Shvri-Pi-0124).
405	
406	Cells, defensin and viruses
407	Baby hamster kidney (BHK-21) and African green monkey kidney (Vero) cells were
408	purchased from the ATCC (Rockville, Maryland) and maintained in Dulbecco's modified
409	Eagle's medium (DMEM) supplemented with 10% FBS at 37°C in a 5% $\rm CO_2$ incubator.
410	C6/36 cells (ATCC) were cultured in RPMI-1640 medium supplemented with 10% FBS at
411	28°C.
412	Mature Cpp defensin A (NCBI accession number: MH756645), aa defensin C (NCBI
413	accession number: XP_019527114.1), human defensin β 2 (NCBI accession number:
414	NP_004933.1) and scrambled defensin peptides (purity \ge 99%) were synthesized by
415	WC-Gene Biotech Ltd. (Shanghai, China). The amino acid sequences are shown in Table S3.
416	The defensins were dissolved in DMSO (for cell, ex vivo or in vivo experiments) or PBS (for
417	ELISA detection) and stored at room temperature. Defensins labeled with FITC were kept in

418 the dark at room temperature.

419 JEV strain N28 (NCBI accession number: GU253951.1) was stored in our laboratory and 420 propagated in C6/36 cells. The TCID₅₀ and MID₅₀ of the virus were measured in BHK-21 421 cells or female mosquitoes and calculated by the Reed-Muench method [17, 44].

422

423 Infection and RNA interference in vitro

424 Defensing or scrambled defensin peptides were pre-mixed with JEV (MOI=0.1) at 4°C,

425 then inoculated into cells. C6/36 cells were incubated at 28°C for 2 h. Vero and BHK-21 cells

426 were incubated at 37°C for 2 h. At 24-120 h post infection, the supernatant or cells were

427 collected. Viral titer was determined by TCID₅₀ method and mRNA expression levels were

428 measured by real-time PCR. To determine JEV adsorption, defensins were pre-mixed with

429 JEV at 4°C for 2 h. C6/36 cells were incubated with the mixture on ice for different times.

- 430 Unabsorbed JEV was removed by washing with PBS for three times. The cells were collected
- 431 for JEV E mRNA quantification or other measurements.
- 432 For the *in vitro* RNA interference, siRNA (Table S1) was transfected into C6/36 cells
- 433 with Cellfectin II reagent (Invitrogen). JEV was inoculated at 24 h post transfection. At 72 h

434 post infection, the cells were collected. Total RNA was isolated, and the viral or gene load

435 was determined by real-time PCR.

436

437 Infection and RNA interference in vivo

For *in vivo* experiments, 10-fold serial dilutions were made from a 10^{9.3} TCID₅₀ JEV 438 439 stock. Cold-anesthetized 5 day old female mosquitoes were randomly divided into various 440 groups ($n \ge 13$). Both microinjection and blood meal methods were carried out in infection 441 experiment. For microinjection, the mosquitoes were infected by microinjection (250 nL) into 442 the thorax. An Eppendorf CellTram oil microinjector and 15 µm needles were used for 443 injecting the mosquitoes. Control mosquitoes were injected with an equivalent volume of PBS [17, 18, 45]. The mosquitoes were harvested, and the viral loading was quantified. For 444 445 blood meal, fresh blood of specific pathogen free mouse was collected in tubes with 446 anticoagulant. Virus or defensin peptides were mixed and added into fresh blood before 447 feeding. 2 ml blood was used in blood meal by Hemotek FU1 Feeder for each group [34, 46]. In vivo RNAi was performed as described previously [18]. The siRNA targeting the Cpp 448 449 genes was synthesized by Genepharma (Shanghai, China). The sequences are shown in Table

450 S1. For RNAi and virus challenge, female mosquitoes at 5 days after eclosion were injected

451 into the thorax with 2 µg dsRNA in 250 nL PBS. After a 3 day recovery period, the

452 mosquitoes were microinjected with JEV at different MID₅₀ in 250 nL PBS for functional

453 studies.

454

455 **RNA isolation and real-time PCR**

456 For real-time PCR, RNA was extracted from cell suspensions or mosquito samples by 457 Oiagen total RNA isolation kit according to the manufacturer's instructions. The RNA 458 concentration was measured by NanoDrop spectrophotometer. cDNA was generated by RT 459 Master reverse transcription kit (Takara) according to the manufacturer's instructions. 460 Real-time quantitative PCR experiments were performed in ABI Prism 7500 461 sequence-detection system (Applied Biosystems, Foster City, CA) with SYBR Green PCR 462 Master Mix (Takara) according to the manufacturer's instructions. The primer sequences are 463 listed in Table 1. The thermal cycling conditions were as follows: 10 min at 95°C, followed by 40 cycles of 95°C for 5 s and 60°C for 1 min. All experiments were performed in 464 465 triplicate, and gene expression levels are presented relative to those of β -actin. The fold

466 change in relative gene expression compared with the control was determined with the

467 standard $2^{-\Delta\Delta Ct}$ method.

468

480

```
469 Virus titer
```

470	Supernatants were harvested from cell cultures for TCID ₅₀ assays as described
471	previously [18]. Briefly, BHK-21 cells were seeded on a 96-well plate and grown to 60%
472	confluence. The supernatants were diluted in a 10-fold dilution series and added to each well
473	of the 96-well plate. One hundred microliters of each dilution was added in eight replicate
474	wells, and eight replicate mock controls were set. The plates were incubated at 37°C for 1.5 h.
475	Then the supernatants were discarded and replaced with 100 μL of DMEM supplemented
476	with 1% FBS. After 5 days in culture, the cytopathic effect was recorded. The $TCID_{50}$ of the
477	virus was calculated by Reed-Muench method [44].
478	
479	Indirect immunofluorescence and western blotting

- 481 previously [18]. The antibodies used were mouse anti JEV E monoclonal antibody, rabbit anti

Indirect immunofluorescence and western blotting were performed as described

482	mosquito β actin polyclonal antibody, rabbit anti mosquito HSC70B polyclonal antibody,
483	goat anti-mouse IgG-HRP antibody (1:10000; Santa Cruz), Alexa Fluor 405-conjugated
484	anti-mouse IgG antibody (1:500; Abcam), Alexa Fluor 488-conjugated anti-rabbit IgG
485	antibody (1:500; Thermo Fisher Scientific) and Alexa Fluor 594-conjugated anti-rabbit IgG
486	antibody (1:500; Thermo Fisher Scientific). DAPI and Did were used for nucleus and
487	membrane staining. Immunofluorescence was imaged with a Nikon C1Si confocal laser
488	scanning microscope.
489	For tissue immunofluorescence assays, salivary glands were isolated on sialylated slides,
490	washed with PBS, fixed with 4% paraformal dehyde for 1 h, and blocked in PBS with 2% $$
491	bovine serum albumin (BSA) at room temperature for 2 h. The samples were incubated with
492	mixture of JEV and cpp defensin A-FITC, detected with mouse anti JEV E monoclonal
493	antibody and imaged with a Nikon C1Si confocal laser scanning microscope.
494	
495	Protein expression and ELISA
496	The purified JEV structural proteins (C, M, E, ED III) from the S2 insect expression

497 system (Invitrogen) were quantified by using the bicinchoninic acid (BCA) assay. Expressed

498 proteins were used for ELISA or IFA analysis [47].

499	For defensin ELISA, defensin peptide was dissolved in PBS, then was diluted with 0.1
500	M dicarbonate (pH 9.6) to a final concentration of 250-750 ng. The plate was coated
501	overnight and incubated with 2% BSA for 2 h. Afterward, 100 μ L JEV virus (1×10 ⁵ TCID ₅₀)
502	was added and incubated for 30 min at room temperature. The wells were washed with PBST
503	five times, mouse polyclonal antibody to JEV was added to the wells and incubated for 30
504	min. The wells were washed with PBST five times, and goat anti-mouse antibody labeled
505	with HRP was added. After incubation at room temperature 30 min and washing with PBST
506	five times, TMB was added to the wells as a chromogenic substrate. The plate was developed
507	in the dark for 10 min, and H_2SO_4 was added to stop the reaction. The absorbance of each
508	well was read at 450 nm.
509	For viral protein ELISA, purified JEV structural proteins diluted in 0.1 M dicarbonate
510	(pH 9.6) were added to the plate wells. The plate was coated overnight and incubated with 2%
511	BSA for 2 h. Then 100 μL defensin (50 $\mu M)$ labeled with FITC was added. The plate was
512	incubated for 30 min at room temperature and washed with PBST five times before
513	fluorescence measurement.

514	For C6/36 cell ELISA, the plates were pre-treated with polylysine. Healthy and fresh
515	C6/36 cells were counted and diluted with 0.1 M dicarbonate (pH 9.6) to a final concentration

- 516 of 1×10^5 cells per well. The plate was processed as described above for JEV structural
- 517 proteins or defensin coated ELISA.

518

```
519 SILAC/MS analysis
```

520 C6/36 cells were continuously passaged for eight generations on media with light,

521 medium and heavy isotopes. All three labeling efficiencies reached 99%. The cells were

522 grouped, inoculated with JEV or defensin, and collected at 24 h or 48 h according to the

- 523 procedure. Equal amounts of cells from light, medium and heavy media in the same group
- 524 were mixed to extract cell membrane proteins according to the manufacturer's instructions
- 525 (Pierce). Extracted membrane proteins were quantified by BCA, identified by MS and
- 526 normalized for further analysis.

527

528 Statistical analysis

529 All experiments were carried out in at least triplicate. Mean values \pm standard deviation

- 530 (SD) were calculated in Microsoft Excel. Statistical analysis was done with Student's t tests,
- and values were considered significant when p < 0.05. Figures were created in GraphPadTM
- 532 Prism 5.0 software.

533

534 Competing interests

535 The authors declare no competing interests.

536

537 Acknowledgments

This work was supported by the the National Key Research and Development Program of China (No. 2017YFD0501805, 2018YFD0500101), the Shanghai Natural Science foundation (no. 18ZR1448900), applied research on disease prevention and controls in military (No. 13BJYZ27), the National S & T Major Program (No. 2012ZX10004-220).

543 **Reference**

Daep CA, Munoz-Jordan JL, Eugenin EA. Flaviviruses, an expanding threat in public health:
 focus on dengue, West Nile, and Japanese encephalitis virus. J Neurovirol. 2014;20(6):539-60. doi:
 10.1007/s13365-014-0285-z. PubMed PMID: 25287260; PubMed Central PMCID: PMC4331079.
 Le Flohic G, Porphyre V, Barbazan P, Gonzalez JP. Review of climate, landscape, and viral
 genetics as drivers of the Japanese encephalitis virus ecology. PLoS Negl Trop Dis. 2013;7(9):e2208.

549 doi: 10.1371/journal.pntd.0002208. PubMed PMID: 24069463; PubMed Central PMCID:
550 PMC3772072.

- 3. Zheng Y, Li M, Wang H, Liang G. Japanese encephalitis and Japanese encephalitis virus in
 mainland China. Rev Med Virol. 2012;22(5):301-22. doi: 10.1002/rmv.1710. PubMed PMID:
 22407526.
- Huang YJ, Higgs S, Horne KM, Vanlandingham DL. Flavivirus-mosquito interactions. Viruses.
 2014;6(11):4703-30. doi: 10.3390/v6114703. PubMed PMID: 25421894; PubMed Central PMCID:
 PMC4246245.
- Mansfield KL, Hernandez-Triana LM, Banyard AC, Fooks AR, Johnson N. Japanese encephalitis
 virus infection, diagnosis and control in domestic animals. Vet Microbiol. 2017;201:85-92. doi:
 10.1016/j.vetmic.2017.01.014. PubMed PMID: 28284628.

560 6. Yun SI, Lee YM. Japanese encephalitis: the virus and vaccines. Hum Vaccin Immunother.
561 2014;10(2):263-79. doi: 10.4161/hv.26902. PubMed PMID: 24161909; PubMed Central PMCID:
562 PMC4185882.

- 563 7. Barzon L, Palu G. Recent developments in vaccines and biological therapies against Japanese
 564 encephalitis virus. Expert Opin Biol Ther. 2018;18(8):851-64. doi: 10.1080/14712598.2018.1499721.
 565 PubMed PMID: 29991325.
- Chokephaibulkit K, Houillon G, Feroldi E, Bouckenooghe A. Safety and immunogenicity of a
 live attenuated Japanese encephalitis chimeric virus vaccine (IMOJEV(R)) in children. Expert Rev
 Vaccines. 2016;15(2):153-66. doi: 10.1586/14760584.2016.1123097. PubMed PMID: 26588242.
- 569 9. Heffelfinger JD, Li X, Batmunkh N, Grabovac V, Diorditsa S, Liyanage JB, et al. Japanese
- 570 Encephalitis Surveillance and Immunization Asia and Western Pacific Regions, 2016. MMWR Morb
- 571 Mortal Wkly Rep. 2017;66(22):579-83. doi: 10.15585/mmwr.mm6622a3. PubMed PMID: 28594790;
 572 PubMed Central PMCID: PMC5720240.
- 573 10. Centers for Disease C, Prevention. Japanese encephalitis surveillance and immunization--Asia
 574 and the Western Pacific, 2012. MMWR Morb Mortal Wkly Rep. 2013;62(33):658-62. PubMed PMID:
 575 23965828; PubMed Central PMCID: PMC4604796.
- 576 11. Huang YS, Hettenbach SM, Park SL, Higgs S, Barrett AD, Hsu WW, et al. Differential
 577 Infectivities among Different Japanese Encephalitis Virus Genotypes in Culex quinquefasciatus
 578 Mosquitoes. PLoS Negl Trop Dis. 2016;10(10):e0005038. doi: 10.1371/journal.pntd.0005038. PubMed
 579 PMID: 27706157; PubMed Central PMCID: PMC5051684.
- 580 12. Conway MJ, Colpitts TM, Fikrig E. Role of the Vector in Arbovirus Transmission. Annu Rev
- 581 Virol. 2014;1(1):71-88. doi: 10.1146/annurev-virology-031413-085513. PubMed PMID: 26958715.

- 582 13. Takahashi M, Suzuki K. Japanese encephalitis virus in mosquito salivary glands. Am J Trop Med
- 583 Hyg. 1979;28(1):122-35. PubMed PMID: 219722.
- 584 14. Ahlers LRH, Goodman AG. The Immune Responses of the Animal Hosts of West Nile Virus: A
- 585 Comparison of Insects, Birds, and Mammals. Front Cell Infect Mi. 2018;8. doi: Artn 96
- 586 10.3389/Fcimb.2018.00096. PubMed PMID: WOS:000429048200001.
- 587 15. Pakpour N, Riehle MA, Luckhart S. Effects of ingested vertebrate-derived factors on insect
- 588 immune responses. Curr Opin Insect Sci. 2014;3:1-5. doi: 10.1016/j.cois.2014.07.001. PubMed PMID:
- 589 WOS:000209578700002.
- 590 16. Strand MR. The insect cellular immune response. Insect Sci. 2008;15(1):1-14. doi:
 591 10.1111/j.1744-7917.2008.00183.x. PubMed PMID: WOS:000252587700001.
- 592 17. Cheng G, Cox J, Wang P, Krishnan MN, Dai J, Qian F, et al. A C-type lectin collaborates with a
 593 CD45 phosphatase homolog to facilitate West Nile virus infection of mosquitoes. Cell.
 594 2010;142(5):714-25. doi: 10.1016/j.cell.2010.07.038. PubMed PMID: 20797779; PubMed Central
 595 PMCID: PMC2954371.
- Liu K, Qian Y, Jung YS, Zhou B, Cao R, Shen T, et al. mosGCTL-7, a C-Type Lectin Protein,
 Mediates Japanese Encephalitis Virus Infection in Mosquitoes. J Virol. 2017;91(10). doi:
 10.1128/JVI.01348-16. PubMed PMID: 28250133; PubMed Central PMCID: PMC5411588.
- 599 19. Klotman ME, Chang TL. Defensins in innate antiviral immunity. Nat Rev Immunol.
 600 2006;6(6):447-56. doi: 10.1038/nri1860. PubMed PMID: 16724099.
- 601 20. Schmid-Hempel P. Evolutionary ecology of insect immune defenses. Annu Rev Entomol.
- 602 2005;50:529-51. doi: 10.1146/annurev.ento.50.071803.130420. PubMed PMID: 15471530.
- 21. Yasin B, Wang W, Pang M, Cheshenko N, Hong T, Waring AJ, et al. Theta defensins protect
 cells from infection by herpes simplex virus by inhibiting viral adhesion and entry. J Virol.
 2004;78(10):5147-56. PubMed PMID: 15113897; PubMed Central PMCID: PMC400355.
- Wang W, Owen SM, Rudolph DL, Cole AM, Hong T, Waring AJ, et al. Activity of alpha- and
 theta-defensins against primary isolates of HIV-1. J Immunol. 2004;173(1):515-20. PubMed PMID:
 15210812.
- Munk C, Wei G, Yang OO, Waring AJ, Wang W, Hong T, et al. The theta-defensin, retrocyclin,
 inhibits HIV-1 entry. AIDS Res Hum Retroviruses. 2003;19(10):875-81. doi:
 10.1089/088922203322493049. PubMed PMID: 14585219.
- 612 24. Meyerholz DK, Grubor B, Gallup JM, Lehmkuhl HD, Anderson RD, Lazic T, et al.
 613 Adenovirus-mediated gene therapy enhances parainfluenza virus 3 infection in neonatal lambs. J Clin
 614 Microbiol. 2004;42(10):4780-7. doi: 10.1128/JCM.42.10.4780-4787.2004. PubMed PMID: 15472341;
 - 36

615 PubMed Central PMCID: PMC522350.

- 616 25. Wilson SS, Wiens ME, Smith JG. Antiviral Mechanisms of Human Defensins. J Mol Biol.
- 617 2013;425(24):4965-80. doi: 10.1016/j.jmb.2013.09.038. PubMed PMID: WOS:000328808500008.
- 618 26. Kota S, Sabbah A, Chang TH, Harnack R, Xiang Y, Meng X, et al. Role of human
 619 beta-defensin-2 during tumor necrosis factor-alpha/NF-kappaB-mediated innate antiviral response
 620 against human respiratory syncytial virus. J Biol Chem. 2008;283(33):22417-29. doi:
- 621 10.1074/jbc.M710415200. PubMed PMID: 18567888; PubMed Central PMCID: PMC2504899.
- 622 27. Cox RG, Mainou BA, Johnson M, Hastings AK, Schuster JE, Dermody TS, et al. Human
- 623 Metapneumovirus Is Capable of Entering Cells by Fusion with Endosomal Membranes. PLoS Path.
- 624 2015;11(12). doi: ARTN e1005303
- 625 10.1371/journal.ppat.1005303. PubMed PMID: WOS:000368332800025.
- 626 28. Kallio J, Leinonen A, Ulvila J, Valanne S, Ezekowitz RA, Ramet M. Functional analysis of
- 627 immune response genes in Drosophila identifies JNK pathway as a regulator of antimicrobial peptide
- 628 gene expression in S2 cells. Microbes Infect. 2005;7(5-6):811-9. doi: 10.1016/j.micinf.2005.03.014.
- 629 PubMed PMID: 15890554.
- 630 29. Luca VC, AbiMansour J, Nelson CA, Fremont DH. Crystal Structure of the Japanese Encephalitis
- 631 Virus Envelope Protein. J Virol. 2012;86(4):2337-46. doi: 10.1128/Jvi.06072-11. PubMed PMID:
 632 WOS:000299862500041.
- 30. Higazi AA, Nassar T, Ganz T, Rader DJ, Udassin R, Bdeir K, et al. The alpha-defensins stimulate
 proteoglycan-dependent catabolism of low-density lipoprotein by vascular cells: a new class of
 inflammatory apolipoprotein and a possible contributor to atherogenesis. Blood. 2000;96(4):1393-8.
 PubMed PMID: WOS:000089578200027.
- 31. Nassar T, Akkawi S, Bar-Shavit R, Haj-Yehia A, Bdeir K, Al-Mehdi AB, et al. Human
 alpha-defensin regulates smooth muscle cell contraction: a role for low-density lipoprotein
 receptor-related protein/alpha 2-macroglobulin receptor. Blood. 2002;100(12):4026-32. doi: DOI
 10.1182/blood-2002-04-1080. PubMed PMID: WOS:000179453700023.
- 641 32. Emmott E, Wise H, Loucaides EM, Matthews DA, Digard P, Hiscox JA. Quantitative proteomics
 642 using SILAC coupled to LC-MS/MS reveals changes in the nucleolar proteome in influenza A
 643 virus-infected cells. J Proteome Res. 2010;9(10):5335-45. doi: 10.1021/pr100593g. PubMed PMID:
 644 20701360.
- 33. Sim C, Hong YS, Tsetsarkin KA, Vanlandingham DL, Higgs S, Collins FH. Anopheles gambiae
 heat shock protein cognate 70B impedes o'nyong-nyong virus replication. BMC Genomics.
 2007;8:231. doi: 10.1186/1471-2164-8-231. PubMed PMID: 17625007; PubMed Central PMCID:

648 PMC1963456.

- 34. Armstrong PM, Ehrlich HY, Magalhaes T, Miller MR, Conway PJ, Bransfield A, et al.
 Successive blood meals enhance virus dissemination within mosquitoes and increase transmission
 potential. #N/A. 2020;5(2):239-+. doi: 10.1038/s41564-019-0619-y. PubMed PMID:
 WOS:000511211600007.
- 653 35. Kilpatrick AM, Meola MA, Moudy RM, Kramer LD. Temperature, viral genetics, and the
 654 transmission of West Nile virus by Culex pipiens mosquitoes. PLoS Path. 2008;4(6). doi: ARTN
- 655 e1000092
- 656 10.1371/journal.ppat.1000092. PubMed PMID: WOS:000259782800014.
- 657 36. Reeves WC, Hardy JL, Reisen WK, Milby MM. Potential effect of global warming on
 658 mosquito-borne arboviruses. J Med Entomol. 1994;31(3):323-32. PubMed PMID: 8057305.
- 659 37. Xiao X, Liu Y, Zhang X, Wang J, Li Z, Pang X, et al. Complement-related proteins control the
- flavivirus infection of Aedes aegypti by inducing antimicrobial peptides. PLoS Path.
 2014;10(4):e1004027. doi: 10.1371/journal.ppat.1004027. PubMed PMID: 24722701; PubMed Central
- 662 PMCID: PMC3983052.
- 38. Harwig SS, Park AS, Lehrer RI. Characterization of defensin precursors in mature human
 neutrophils. Blood. 1992;79(6):1532-7. PubMed PMID: 1547345.
- 39. Mansour SC, Pena OM, Hancock REW. Host defense peptides: front-line immunomodulators.
 Trends Immunol. 2014;35(9):443-50. doi: 10.1016/j.it.2014.07.004. PubMed PMID:
 WOS:000342269900007.
- 40. Gack MU, Diamond MS. Innate immune escape by Dengue and West Nile viruses. Curr Opin
- 669 Virol. 2016;20:119-28. doi: 10.1016/j.coviro.2016.09.013. PubMed PMID: 27792906; PubMed Central
 670 PMCID: PMC5578430.
- 41. Mercer J, Schelhaas M, Helenius A. Virus entry by endocytosis. Annu Rev Biochem.
 2010;79:803-33. doi: 10.1146/annurev-biochem-060208-104626. PubMed PMID: 20196649.
- 42. Lin CW, Wu SC. A functional epitope determinant on domain III of the Japanese encephalitis
 virus envelope protein interacted with neutralizing-antibody combining sites. J Virol.
- 675 2003;77(4):2600-6. PubMed PMID: 12551998; PubMed Central PMCID: PMC141121.
- 676 43. Kim MJ, Hwang SY, Imaizumi T, Yoo JY. Negative feedback regulation of RIG-I-mediated
- antiviral signaling by interferon-induced ISG15 conjugation. J Virol. 2008;82(3):1474-83. doi:
- 678 10.1128/JVI.01650-07. PubMed PMID: 18057259; PubMed Central PMCID: PMC2224411.
- 44. Pizzi M. Sampling variation of the fifty percent end-point, determined by the Reed-Muench
 (Behrens) method. Hum Biol. 1950;22(3):151-90. PubMed PMID: 14778593.

45. Blandin S, Moita LF, Kocher T, Wilm M, Kafatos FC, Levashina EA. Reverse genetics	681	45.	Blandin S	, Moita LF	, Kocher T.	Wilm M.	, Kafatos FC,	Levashina	EA. F	Reverse	genetics i	in	the
---	-----	-----	-----------	------------	-------------	---------	---------------	-----------	-------	---------	------------	----	-----

mosquito Anopheles gambiae: targeted disruption of the Defensin gene. EMBO Rep. 2002;3(9):852-6.

- doi: 10.1093/embo-reports/kvf180. PubMed PMID: 12189180; PubMed Central PMCID:
 PMC1084233.
- 46. Zhu YB, Tong LQ, Nie KX, Wiwatanaratanabutr I, Sun P, Li QQ, et al. Host serum iron
 modulates dengue virus acquisition by mosquitoes. Nat Microbiol. 2019;4(12):2405-15. doi:
 10.1038/s41564-019-0555-x. PubMed PMID: WOS:000499071100041.
- 688 47. Muerhoff AS, Dawson GJ, Dille B, Gutierrez R, Leary TP, Gupta MC, et al. Enzyme-linked
- 689 immunosorbent assays using recombinant envelope protein expressed in COS-1 and Drosophila S2
- 690 cells for detection of West Nile virus immunoglobulin M in serum or cerebrospinal fluid. Clin Diagn
- 691 Lab Immunol. 2004;11(4):651-7. doi: 10.1128/CDLI.11.4.651-657.2004. PubMed PMID: 15242936;
- 692 PubMed Central PMCID: PMC440607.

693

695 Figure legends

696 Fig. 1. JEV infection induced defensin up-regulation in mosquito vectors.

- 697 (A) JEV infection curve in mosquitoes. JEV (10^3 MID_{50}) or PBS was inoculated into female
- 698 mosquitoes by throat injection. Whole body, salivary gland and midgut samples were
- 699 collected at 4, 7 and 10 days post JEV infection. JEV E expression was quantified by
- real-time PCR. (B) Expression levels of *cpp* defensins in the whole body. JEV (10^3 MID₅₀) or
- 701 PBS was inoculated into female mosquitoes by throat injection. *Cpp* defensin A mRNA levels
- in the whole body at 7 and 10 days post JEV infection were quantified by real-time PCR. (C)
- Expression levels of *cpp* defensins in the midgut and salivary gland. JEV (10^3 MID₅₀) or PBS
- was inoculated into female mosquitoes by throat injection. Midgut and salivary gland were
- separated at 7 days post infection. Cpp defensin A mRNA levels were quantified by real-time
- PCR. (D) One step growth curve of JEV virus in C6/36. C6/36 cells were infected with 5
- 707 MOI and collected at different time points, as shown in Fig. 1D. JEV E mRNA levels were
- 708 quantified by real-time PCR. (E) Expression levels of *aa* defensins. C6/36 cells were infected
- with 5 MOI and collected at 1, 3 and 5 days post JEV infection. Aa defensin C and total
- 710 defensins mRNA levels were quantified by real-time PCR. All experiments were done

711 in triplicate and were performed at least three times. Data are shown as Mean values \pm

- 712 standard deviations.
- 713

714	Fig. 2. Mosquito defensin facilitated JEV infection in mosquito vectors.
715	(A) Mosquito defensin facilitated JEV infection in <i>culex</i> mosquitoes. Mosquito defensins
716	(100 $\mu M)$ and JEV (10 $MID_{50})$ were pre-mixed at 4°C for 2 h and inoculated into female
717	mosquitoes. JEV E mRNA levels in the whole body at 7 and 10 days post JEV infection were
718	quantified by real-time PCR. (B) Mosquito defensins interference harmed JEV infection in
719	culex mosquitoes. Female mosquitoes were injected with siRNAs for 3 days, then JEV was
720	injected in dose of 10 MID_{50} . JEV E mRNA levels in the whole body at 6 days post JEV
721	infection were quantified by real-time PCR. (C) Mosquito defensins facilitated JEV infection
722	on C6/36 in IFA detection. Mosquito defensins (50 $\mu M)$ and JEV (0.5 MOI) were pre-mixed
723	at 4°C and inoculated into C6/36 cells for 2 h (upper three panels). siRNAs target defensin
724	were transfected into C6/36 cell for 24 h, then JEV was inoculated to C6/36 cell for 2 h
725	(lower three panels). IFA was performed on cells at 3 days post infection. Bar, 10 $\mu m.$ (D)
726	Mosquito Defensins facilitated JEV infection in C6/36 cells. Mosquito defensins (50 μ M) and

727	JEV (0.5 MOI) were pre-mixed at 4°C and inoculated into C6/36 cells for 2 h. The cells and
728	supernatant were collected at 3 days post infection to quantify JEV E mRNA levels (i) and
729	TCID ₅₀ (ii). (E) Defensin knockdown harmed JEV infection in C6/36 cell. siRNAs target
730	defensin were transfected into C6/36 cell for 24 h, then equal JEV was added to C6/36 cell
731	without changing media. The cells and supernatant were collected at 2 days post infection to
732	quantify JEV E mRNA levels (i) and $TCID_{50}$ (ii). (F - G) Mosquito defensins inhibited JEV
733	infection in mammalian cells. Mosquito defensins (50 $\mu M)$ and JEV (0.5 MOI) were
734	pre-mixed at 4°C and were inoculated into Vero (F) or BHK (G) for 1.5 h at 37°C. The cells
735	and supernatant were collected at 48 h post infection to quantify JEV E mRNA levels (i) and
736	$TCID_{50}$ (ii). All experiments were done in triplicate and were performed at least three times.
737	Data are shown as Mean values ± standard deviations.
738	
739	Fig. 3. Mosquito Defensin facilitated JEV adsorption to mosquito cells.

740 (A) Step scan of JEV infection on C6/36 cell. Steps of JEV infection on C6/36 cell were

- analyzed by different treatments. For binding, virus (0.5 MOI) and defensin (50 µM) were 741
- mixed and inoculated to C6/36 cell on ice for 4 h, washed with PBS for five times, cultured 742

743	for 48 h with new media. For uncoating, virus (0.5 MOI) was inoculated to C6/36 cell on ice
744	for 4 h, washed with PBS for five times. Fresh media with defensin (50 μM) was added to cell
745	for 6 h. After incubation, cell was washed and cultured for another 42 h with new media. For
746	replication, virus (0.5 MOI) was inoculated to C6/36 cell on ice for 4 h, washed with PBS for
747	five times. New media without defensin was added to cell for 48 h, and defensin (50 μM) was
748	added into media at 6 h post culture. The cells were collected to quantify JEV E mRNA levels
749	by real-time PCR. (B) Aa defensin C facilitated JEV adsorption to C6/36 in a time-dependent
750	manner. Aa defensin C (50 μ M) and JEV (0.5 MOI) were pre-mixed at 4°C and inoculated
751	into C6/36 cells on ice for 4 h. Unabsorbed JEV was removed by washing with PBS three
752	times. The cells were collected to quantify JEV E mRNA levels by real-time PCR. (C and D)
753	IFA assay of JEV adsorption to C6/36 cells. Aa defensin C-FITC (50 μ M) and JEV (1 MOI)
754	were pre-mixed at 4°C and inoculated into C6/36 cells on ice. Unabsorbed JEV and defensin
755	were removed by washing with PBS three times. The cells were strained with antibody and
756	DAPI (C) or Did (D). (E) Co-localization of defensin and JEV on the cell surface. Aa
757	defensin C-FITC (50 $\mu M)$ and JEV (1 MOI) were pre-mixed at 4°C and inoculated into C6/36
758	cells on ice for 2 h, 4 h and 6 h. Unabsorbed JEV and defensin were removed by washing

759	with PBS three times. The cells were treated to observe JEV E (red fluorescence),
760	defensin-FITC (green fluorescence) and nuclei (blue fluorescence). Bar, 10 μ m. (F)
761	Co-localization of Cpp defensin A-FITC and JEV on the salivary gland. The salivary glands
762	from uninfected female mosquitoes were freshly isolated. Pre-mixed cpp defensin A-FITC
763	(50 μ M) and JEV (1 MOI) were added to salivary glands and incubated at room temperature
764	for 1 h. JEV E was labeled with monoclonal antibody (red fluorescence). Defensin-FITC was
765	detected by green fluorescence, and nuclei were stained with DAPI (blue fluorescence). Bar,
766	20 µm. (G) JEV bind to defensin. The plate was coated with <i>aa</i> defensin C, incubated with
767	JEV and assessed with anti-JEV monoclonal antibody. (H) Defensin and JEV mixture binds
768	to C6/36 cells. The plate after polylysine treatment was coated with C6/36, pre-mixed
769	defensin and JEV were added, and detection was performed with anti-JEV antibody. (I)
770	Defensin binds to C6/36 directly. The polylysine treated plate was coated with C6/36,
771	defensin-FITC were added, and fluorescence value was detected. All experiments were done
772	in triplicate and were performed at least three times. Data are shown as Mean values \pm
773	standard deviations.

775 Fig. 4. Mosquito defensin bound JEV virions.

776	(A) Viral proteins bind to mosquito defensin. The plate was coated with <i>aa</i> defensin C, and
777	incubated with JEV structural proteins. Rabbit polyclonal antibodies to C protein and mouse
778	monoclonal antibody to prM, E and ED III protein were utilized for viral protein binding
779	detection. (B) Mosquito defensin-FITC bind to viral proteins. The plate was coated with
780	purified JEV structural proteins, and incubated with aa defensin C-FITC. The fluorescence
781	value of each well was measured. (C and D) Colocalization between defensin and E or ED III
782	proteins. Defensin-FITC and E or ED III were pre-mixed at 4° C and inoculation into C6/36
783	cells on ice for 4 h. Unabsorbed defensin and proteins were removed by washing with PBS
784	three times. (C) The cells were stained with monoclonal antibody and DAPI to observe JEV E
785	(red fluorescence), defensin-FITC (green fluorescence) and nuclei (blue fluorescence). (D)
786	The cells were stained with monoclonal antibody and Did to observe JEV E (cyan
787	fluorescence), defensin-FITC (green fluorescence) and membrane (red fluorescence). Bar, 10
788	μ m. All experiments were done in triplicate and were performed at least three times. Data are
789	shown as Mean values \pm standard deviations.

790

791 Fig. 5. LRP2/defensin pathway mediates JEV adsorption.

792	(A and B) Defensin adsorption was influenced by LRP2. The polylysine treated plate was
793	coated with C6/36, LRP2 siRNAs were transfected into cell. Defensin-FITC was inoculated
794	into cells at 24 h post transfection. After incubation on ice for 2 h, unabsorbed defensin was
795	removed by washing with PBS three times. Fluorescence value was detected by fluorescence
796	analyzer (A) or fluorescence microscope (B). (C, D and E) JEV adsorption on C6/36 cell was
797	influenced by LRP2/defensin pathway. The polylysine treated plate was coated with C6/36,
798	LRP2 siRNAs were transfected into cell. Pre-mixed JEV and aa Defensin C was inoculated
799	into cells at 24 h post siRNA transfection. After incubation at room temperature or on ice for
800	2 h, unabsorbed defensin and virus were removed by washing with PBS three times. For
801	real-time PCR (C) and $TCID_{50}$ (D) measurement, C6/36 cell and supernatant were collected at
802	2 days post infection. For IFA assay, C6/36 cell was treated immediately after inoculation on
803	ice (E). JEV E was labeled with monoclonal antibody (red fluorescence). Defensin-FITC was
804	detected by green fluorescence, and nuclei were stained with DAPI (blue fluorescence). Bar,
805	10 µm. (F) In vivo JEV adsorption was influenced by LRP2/defensin pathway. Three days
806	after mosquitoes were injected with LRP2 siRNA, the mosquitoes were injected with

807	pre-mixed JEV and defensin. 6 days post infection, mosquitoes were collected to detect JEV
808	E mRNA levels in whole body. All experiments were done
809	in triplicate and were performed at least three times. Data are shown as Mean values \pm
810	standard deviations.
811	
812	Fig. 6. Defensin down-regulated HSC70B on the C6/36 cell surface to enhance JEV
813	adsorption.
814	(A) SILAC/MS workflow. (B) LC-MS/MS intensity of HSC70B on the C6/36 cell surface.
815	Intensity of HSC70B on cell surface was calculate. Protein levels were normalized in a mass
816	spectrometry computing program. (C) Validation of HSC70B expression on C6/36 cell
817	surface according to SILAC/MS. Mosquito HSC70B was probed by rabbit
818	polyclonal anti-HSC70B antibody. (D) The efficiency of HSC70B RNAi in vitro. HSC70B
819	siRNA target aa HSC70B was transfected into C6/36 cells for 24 h. Cell was collected and
820	HSC70B mRNA was measured by real-time PCR. (E) HSC70B interference facilitated JEV
821	adsorption to cells. C6/36 cells were inoculated with HSC70B siRNA for 24 h and then
822	inoculated with JEV or JEV and defensin on ice for 4 h. Unabsorbed JEV or defensin was

823	removed by washing with PBS three times. The cells were collected to quantify JEV E
824	mRNA levels by real-time PCR. (F) The efficiencies of RNAi HSC70B in vivo. siRNA target
825	cpp HSC70B was injected. The mosquitoes were collected at 3 days post injection to detect
826	HSC70B mRNA levels in vivo. (G) HSC70B interference facilitated JEV infection in vivo.
827	Three days after mosquitoes in vivo HSC70B RNAi, the mosquitoes were injected with 10
828	MID_{50} JEV. Mosquito samples were collected at 6 days post infection, and JEV E mRNA
829	levels were detected by real-time PCR. All experiments were done
830	in triplicate and were performed at least three times. Data are shown as Mean values \pm
831	standard deviations.
832	

Fig. 7. Mosquito defensin enhanced JEV replication in salivary gland 833

834 (A) JEV E mRNA levels within salivary gland based on microinjection. Cpp defensin A (100

- 835 µM) and JEV (10 MID₅₀) were pre-mixed at 4°C for 2 h and injected into female mosquitoes.
- 836 Salivary glands were isolated at 7 and 10 days post injection and detected by real-time PCR.
- (B) JEV E mRNA levels within salivary gland based on blood meal. Cpp defensin A (100 837
- μ M) and JEV (10³ MID₅₀) were pre-mixed at 4°C. Mixture was added into fresh blood with 838

anticoagulant. Blood meal was performed for 2 h. Salivary glands were isolated at 7 and 10

840 days post infection and detected by real-time PCR. All experiments were done

in triplicate and were performed at least three times. Data are shown as Mean values \pm

842 standard deviations.

843

844 Supplement Figures

Fig. S1. Sequence and abundance of mosquito defensins.

846 (A) Amplification of *cpp* defensin A by PCR. (B) Defensin sequence alignment. Alignment

847 of cpp defensin sequences (Cpp defensin A and unnamed defensin). (C) Abundance of

defensing in C6/36 and *cpp*. Defensing enes were amplified and cloned into pMD18 plasmids,

and positive plasmids were used to construct standard curves. Defensin abundance in cells or

850 mosquitoes was quantified with a standard curve through real-time PCR. Defensin abundance

is shown as a proportion. Target defensins are shown in gray in columns; the total column

852 represents total defensins. (D, E) Defensin sequence alignment. Alignment of defensins in

- 853 different mosquito Species (D). Alignment of mosquito defensins and human defensin (E).
- 854 Alignment was performed by DNAMAN software. Data are shown as Mean values ±

standard deviations.

856

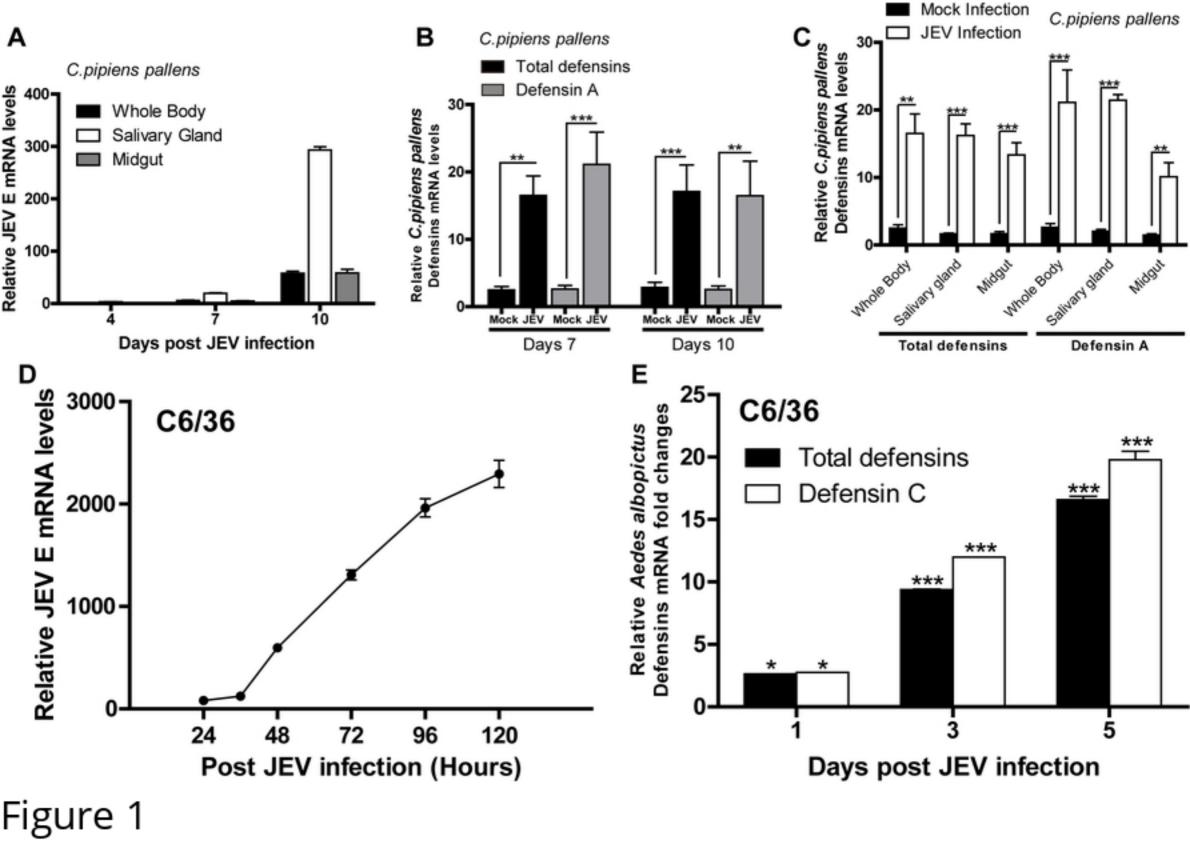
857	Fig.	S2 .	Major	sequences	used in	ı this	study.

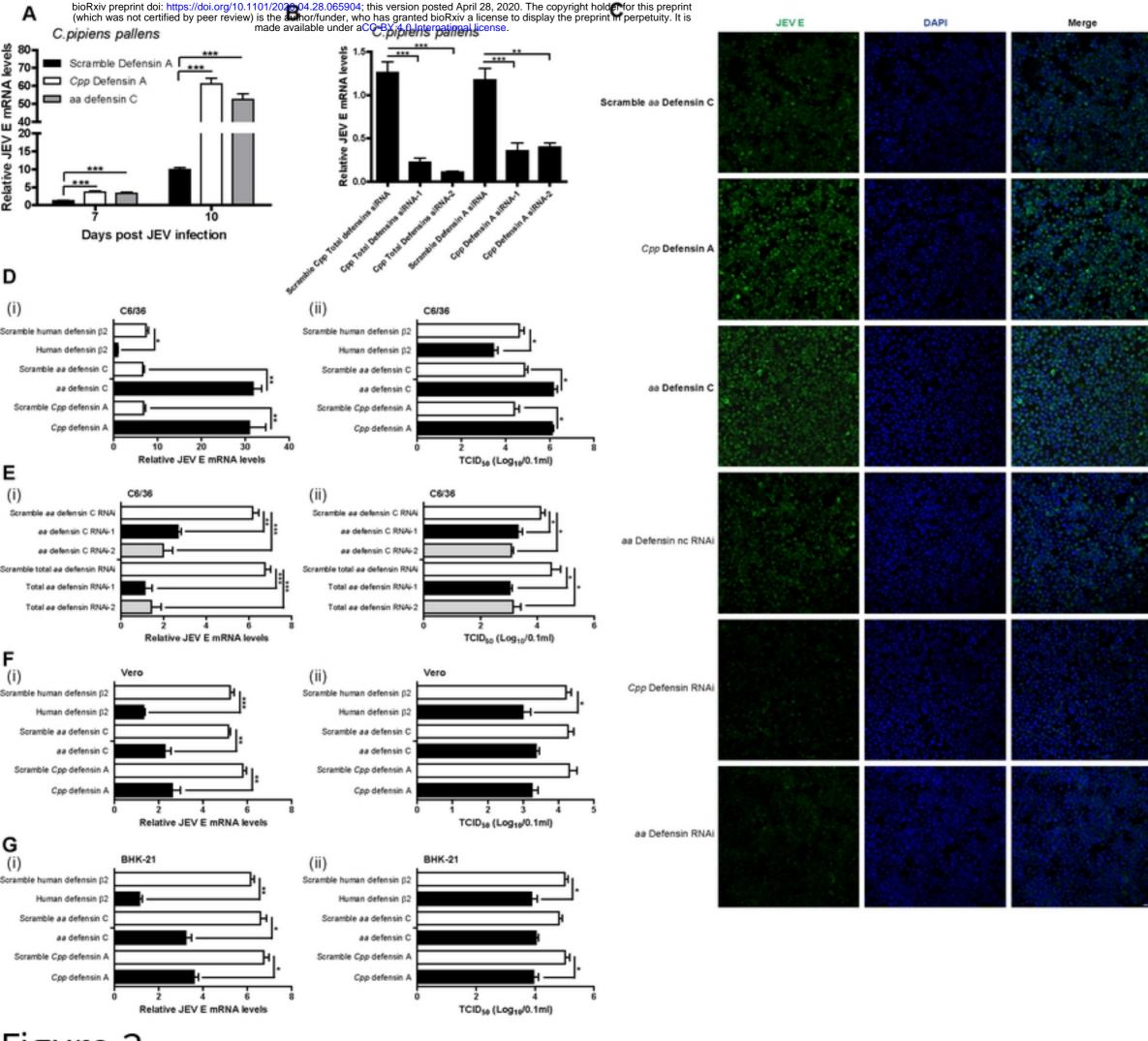
- 858 (A) Culex pipiens pallens defensin A protein sequence (NCBI number MH756645); the
- 859 mature defensin sequence is in red. (B) *Culex pipiens pallens* HSC70B partial sequence. (C)
- 860 Culex pipiens pallens unnamed defensin partial sequence. (D) C6/36 HSC70B protein
- sequence (immunogenic peptide for antibody preparation is in red).

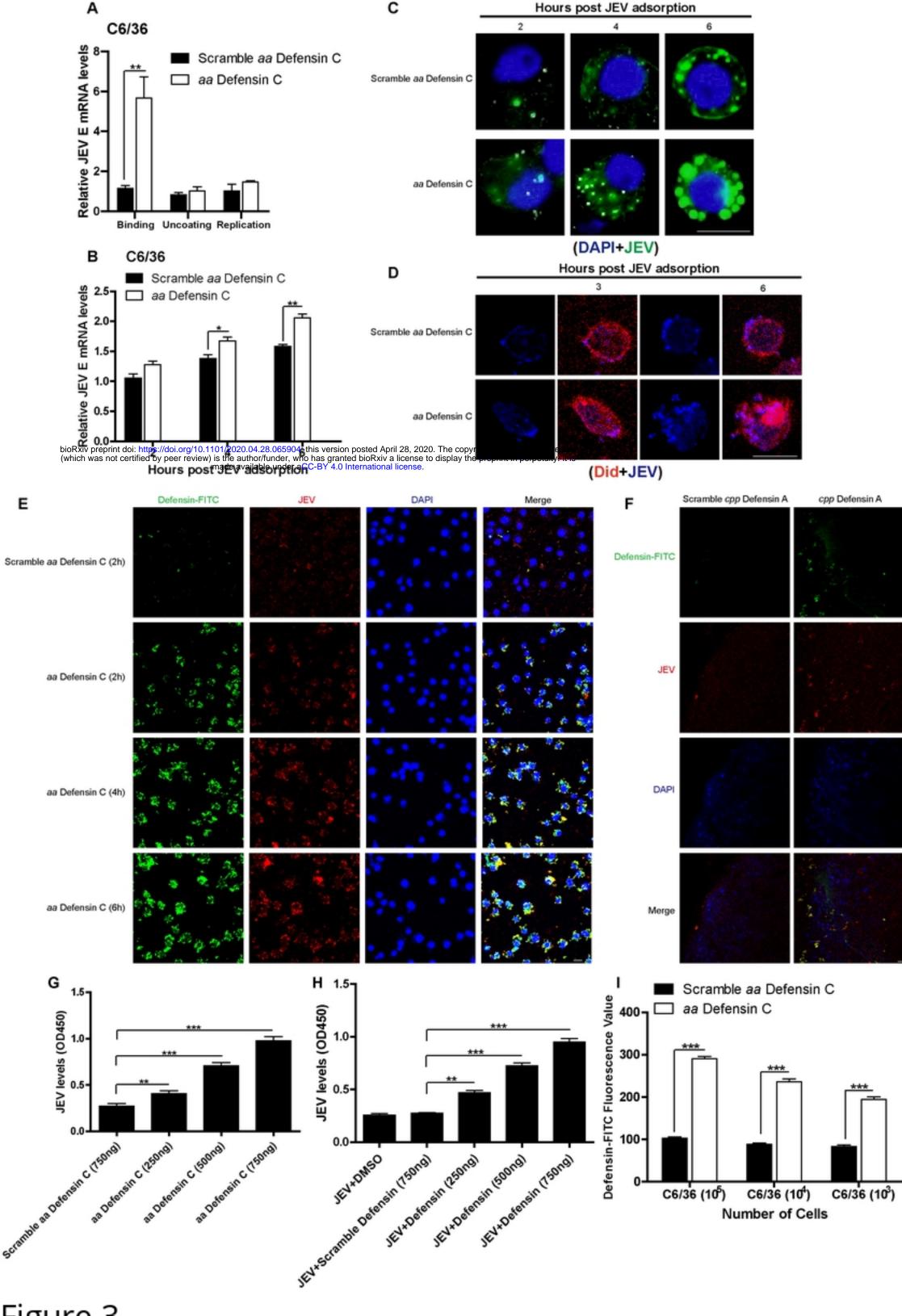
862

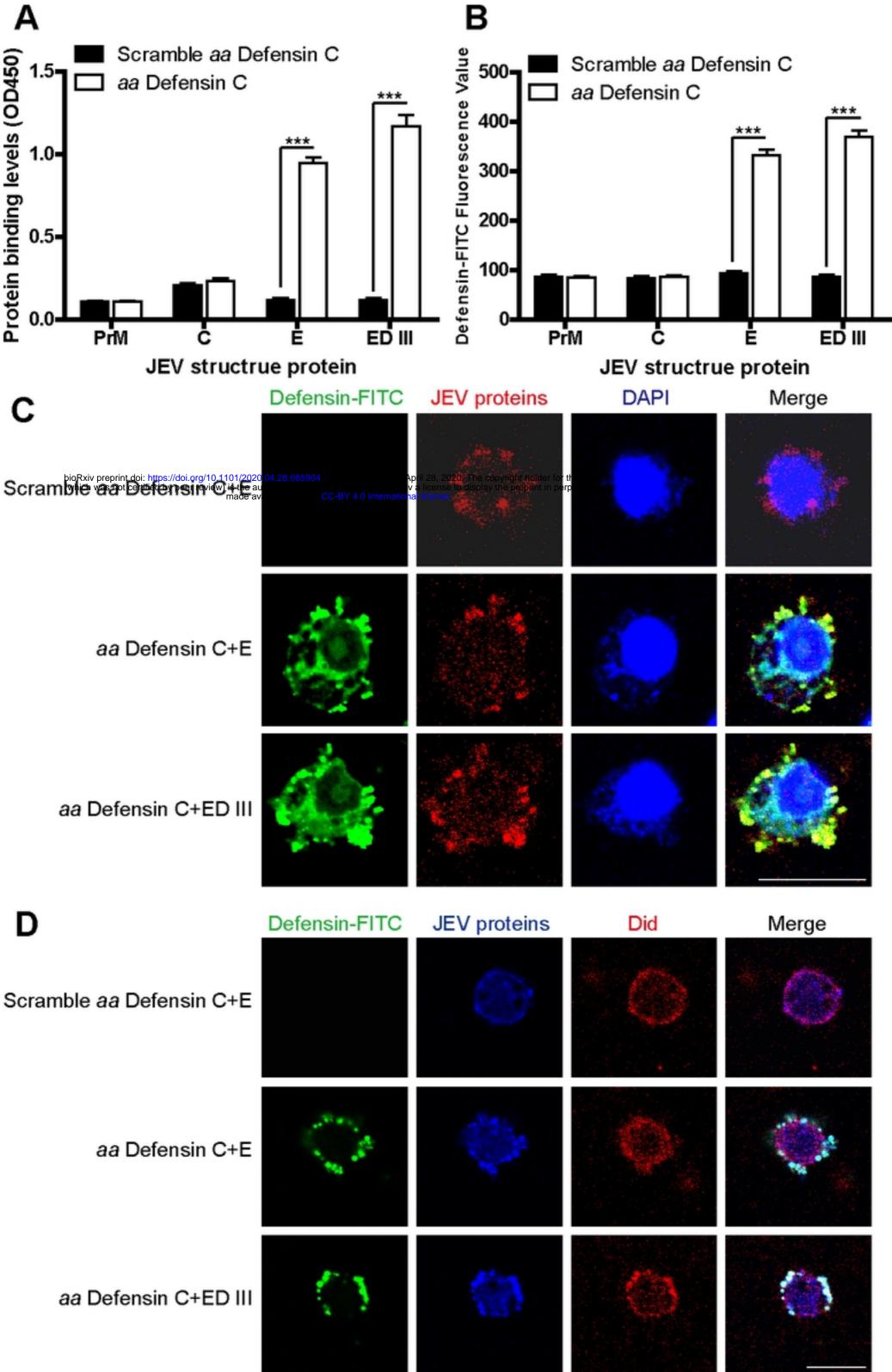
863 Fig. S3. RNA interference efficiency in *in vitro* and *in vivo*.

- (A) The efficiency of defensins RNAi in vivo. siRNAs target cpp total defensins or defensin
- 865 A were injected. Mosquitoes were collected at 3 days post injection to detect defensins


866 mRNA levels by real-time PCR. (B) The efficiency of defensins RNAi in vitro. siRNAs target


- 867 aa defensins was transfected into C6/36 cells for 24 h. Cell was collected and defensins
- 868 mRNA were measured by real-time PCR. (C) The efficiency of LRP2 RNAi in vitro. LRP2
- siRNA target aa LRP2 was transfected into C6/36 cells for 24 h. Cell was collected and LRP2
- 870 mRNA was measured by real-time PCR. (D) The efficiency of LRP2 RNAi in vivo. siRNA


871 target cpp LRP2 was injected. Mosquitoes were collected at 3 days post injection to detect


872 LRP2 mRNA levels by real-time PCR. All experiments	872	eriments were done	le
--	-----	--------------------	----

- in triplicate and were performed for three times. Data are shown as Mean values \pm standard
- 874 deviations.

