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 2 

Abstract 1 

Long noncoding RNAs play key roles in cancer and are at the vanguard of precision 2 

therapeutic development. These efforts depend on large and high-confidence 3 

collections of cancer lncRNAs. Here we present the Cancer LncRNA Census 2 4 

(CLC2): at 492 cancer lncRNAs, it is 4-fold greater than its predecessor, without 5 

compromising on strict criteria of confident functional / genetic roles and inclusion in 6 

the GENCODE annotation scheme. This increase was enabled by leveraging high-7 

throughput transposon insertional mutagenesis (TIM) screening data, yielding 95 8 

novel cancer lncRNAs. CLC2 makes a valuable addition to existing collections: it is 9 

amongst the largest, holds the greatest number of unique genes, and carries functional 10 

labels (oncogene / tumour suppressor). Analysis of this dataset reveals that cancer 11 

lncRNAs are impacted by germline variants, somatic mutations, and changes in 12 

expression consistent with inferred disease functions. Furthermore, we show how 13 

clinical / genomic features can be used to vet prospective gene sets from high-14 

throughput sources. The combination of size and quality makes CLC2 a foundation for 15 

precision medicine, demonstrating cancer lncRNAs’ evolutionary and clinical 16 

significance.  17 
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 3 

Introduction 1 

Tumours arise and grow via genetic and non-genetic changes that give rise to 2 

widespread alterations gene expression programmes (1–3). The numerous dysregulated 3 

genes may encode classical protein-coding mRNAs or non-protein coding RNAs, but it is likely 4 

that just a subset of these actually functionally contribute to pathogenic cellular hallmarks. The 5 

identification of such functional cancer genes is critical for the development of targeted cancer 6 

therapies, as well as emerging methods to identify additional cancer genes. For protein-coding 7 

genes (pc-genes), datasets such as the Cancer Gene Census (CGC) collect and organise 8 

comprehensive gene collections according to defined criteria, and has proven invaluable for 9 

scientific research and drug discovery (4).  10 

The past decade has witnessed the discovery of numerous non-protein-coding RNA 11 

genes in mammalian cells (5, 6).  The most numerous but poorly understood produce long 12 

noncoding RNAs (lncRNAs), defined as transcripts >200 nt in length with no detectable 13 

protein-coding potential (7). Although their molecular mechanisms are highly diverse, many 14 

lncRNAs have been shown to interact with other RNA molecules, proteins and DNA by 15 

structural and sequence-specific interactions (8, 9). Most lncRNAs are clade- and species-16 

specific, but a subset display deeper evolutionary conservation in their gene structure (10) 17 

and a handful have been demonstrated to have functions that were conserved across millions 18 

of years of evolution (10, 11). The numbers of known lncRNA genes in human have grown 19 

rapidly, and present catalogues range from 18,000  to ~100,000 (12), however just a tiny 20 

fraction have been functionally characterized (13–16). As lncRNAs likely represent a huge yet 21 

poorly understood component of cellular networks, understanding the clinical and therapeutic 22 

significance of these numerous novel genes is a key contemporary challenge. 23 

LncRNAs have been implicated in molecular processes governing tumorigenesis (17). 24 

LncRNAs may promote or oppose cancer hallmarks (18). This fact, coupled to the emergence 25 

of potent in vivo inhibitors in the form of antisense oligonucleotides (ASOs) (19), has given 26 

rise to serious interest in lncRNAs as drug targets in cancer by both academia and pharma 27 

(17, 20–22).  28 
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Initially, cancer lncRNAs were discovered by classical functional genomics workflows 1 

employing microarray or RNA-seq expression profiling (23, 24). More recently, CRISPR-based 2 

functional screening (25) and bioinformatic predictions (26–28) have also emerged as 3 

powerful tools for novel cancer gene discovery. To assess their accuracy, these approaches 4 

require accurate benchmarks in the form of curated databases of known cancer lncRNAs.  5 

Any discussion of lncRNAs and cancer requires careful terminology. Experimental 6 

evidence suggest that for some lncRNAs, it is a DNA element within the gene, in addition to 7 

or instead of the RNA transcript, which mediates downstream gene regulation (29–31). This 8 

introduces the need for meticulous assessment of the basis of each lncRNA gene’s 9 

functionality. Furthermore, it has been shown that lncRNAs can exert strong phenotypic 10 

effects in one cell background, but none in another (32). In the context of tumours, this means 11 

that amongst the large numbers of differentially expressed lncRNAs (24), just a fraction are 12 

likely to functionally contribute to a relevant cellular phenotype or cancer hallmark (20, 33–13 

36). Such genes, termed here “functional cancer lncRNAs”, are the focus of this study. 14 

Remaining changing genes are non-functional “bystanders”, which are largely irrelevant in 15 

understanding or inhibiting the molecular processes causing cancer and highlight the 16 

importance of not assessing functionality evidence simply by expressional changes.  17 

There are a number of excellent databases of cancer-associated lncRNAs: 18 

lncRNADisease (37), CRlncRNA (38), EVLncRNAs (39) and Lnc2Cancer (40). These 19 

principally employ labour-intensive manual curation, and rely extensively on differential 20 

expression to identify candidates. On the other hand, these databases have not yet taken 21 

advantage of recent high-confidence sources of functional cancer lncRNAs, such as high-22 

throughput functional screens (25, 41). For these reasons, existing annotations likely contain 23 

unknown numbers of bystander lncRNAs, while omitting large numbers of bona fide functional 24 

cancer lncRNAs. Thus, studies requiring high-confidence gene sets, including benchmarking 25 

or drug discovery, call for a database focussed exclusively on functional cancer lncRNAs. 26 

 Here we address this need through the creation of the Cancer LncRNA Census 2 27 

(CLC2). It not only extends our previous CLC dataset by several fold (42), but more 28 
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 5 

importantly, CLC2 takes a major step forward methodologically, by implementing an 1 

automated curation component that utilises functional evolutionary conservation for the first 2 

time. Using this data, we present a comprehensive analysis of the genomic and clinical 3 

features of cancer lncRNAs.   4 
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Results 1 

Integrative, semi-automated cataloguing of cancer lncRNAs 2 

We sought to develop an improved map of lncRNAs with functional roles in either 3 

promoting or opposing cancer hallmarks or tumorigenesis. Such a map should prioritise 4 

lncRNAs with genuine causative roles, and exclude false-positive “bystanders”: genes whose 5 

expression changes but play no functional role. 6 

We began with conventional manual curation of lncRNAs from the scientific literature, 7 

covering the period from January 2017 (directly after the end of the first CLC (42)) to the end 8 

of December 2018. We continued to use stringent criteria for defining cancer lncRNAs: genes 9 

must be annotated in GENCODE (here version 28), and cancer function must be 10 

demonstrated either by functional in vitro or in vivo experiments, or germline or somatic 11 

mutational evidence (see Methods) (Figure 1A). Altogether we collected 253 novel lncRNAs 12 

in this way, which added to the original CLC amounts to 375 lncRNAs, hereafter denoted as 13 

“literature lncRNAs” (Figure 1A).  14 

We recently showed that some literature-curated lncRNAs were also targeted by 15 

previously-overlooked mutations in published transposon insertion mutagenesis (TIM) 16 

screens (42). We hypothesised that this insight could be extended to identify novel functional 17 

cancer lncRNAs. Thus we developed a pipeline to automatically identify human lncRNAs by 18 

orthology to a collection of TIM hits in mouse (41). In this way 123 lncRNAs were detected, of 19 

which 102 were not already in the literature set. These were added to the CLC2, henceforth 20 

denoted as “mutagenesis lncRNAs” (Figure 1B). This analysis is discussed in more detail in 21 

the next section. 22 

Pooled functional screens based on CRISPR-Cas9 loss-of-function have recently 23 

emerged as a powerful means of identifying function cancer lncRNAs (25). However there has 24 

been relatively little validation of the hits from such screens, and it is possible that they contain 25 

substantial false positives (43, 44). Amongst the few datasets presently available, the most 26 

comprehensive comes from a CRISPR-inhibition (CRISPRi) screen of ~16,000 lncRNAs in 27 

seven human cell lines, with proliferation as a readout (45). Of the 499 hits identified, 322 are 28 
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annotated by GENCODE and hence could potentially be included in CLC2. These are 1 

moderately enriched for known cancer lncRNAs from the literature search (Figure 1C). That 2 

study independently validated 21 GENCODE-annotated hits, of which four (19%) were already 3 

mentioned in the literature, and two (10%) were detected by TIM above. Given the uncertainty 4 

over the true-positive rates of unvalidated screen hits, we opted for a conservative approach 5 

and included the remaining 15 novel and independently-validated lncRNAs from this study 6 

(“CRISPRi lncRNAs”)  (Figure 1C).   7 

Altogether, the resulting CLC2 set comprises 492 unique lncRNA genes, representing 8 

a 4.0-fold increase over its predecessor. The entire CLC2 dataset is available in 9 

Supplementary Table 1 and 2. Importantly, the dataset is fully annotated with evidence 10 

information, affording users complete control over the particular subsets of lncRNAs 11 

(literature, mutagenesis, CRISPRi) that they wish to include in their analyses. 12 

 13 

Automated annotation of human cancer lncRNAs via functional conservation  14 

We recently showed that transposon insertional mutagenesis (TIM) screens identify 15 

cancer lncRNAs in mouse (42, 46), and that some of these overlapped previously-known 16 

human cancer lncRNAs (Figure 2A). TIM screens identify “common insertion sites” (CIS), 17 

where multiple transposon insertions at a particular genomic location have given rise to a 18 

tumour, thereby implicating the underlying gene as an oncogene or tumour suppressor.  19 

We here extend this strategy to identify new functional cancer lncRNAs, by developing 20 

a new pipeline called CLIO-TIM (cancer lncRNA identification by orthology to TIM). Briefly, 21 

CLIO-TIM uses chain alignments (47) to map mouse CIS to orthologous regions of the human 22 

genome, and then identifies the most likely gene target (see Methods) (Figure 2B) (SUPP FIG 23 

1B). Available CIS maps are based on a variety of identification methods, resulting in CIS with 24 

a range of sizes, from 1 bp upwards. We opted to remove our previously conservative size 25 

criterion (CIS = 1 bp), to now consider elements of any size resulting in 26,345 CIS (compared 26 

to 2,806 previously (42)) (SUPP FIG 1A). This yields a 3-fold increase in sensitivity for true-27 

positive CGC genes (72% compared to 26.4% previously (42)) (SUPP FIG 1D). 28 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 12, 2020. ; https://doi.org/10.1101/2020.04.28.066225doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.28.066225
http://creativecommons.org/licenses/by-nc-nd/4.0/


 8 

Based on this expanded dataset, CLIO-TIM identified 16,430 orthologous regions in 1 

human (hCIS) (Figure 2B) (SUPP FIG 1A). Altogether, 123 lncRNAs and 9,295 pc-genes were 2 

identified as potential cancer genes. An example is the human-mouse orthologous lncRNA 3 

locus shown in Figure 2B, comprising Gm36495 in mouse and LINC00570 in human. A CIS 4 

lies upstream of the mouse gene’s TSS, mapping to the first intron of the human orthologue. 5 

LINC00570 is an alternative identifier for ncRNA-a5 cis-acting lncRNA identified by Orom et 6 

al. (48), that has not previously been associated with cancer or cell growth. 7 

We expected that hCIS regions are enriched in known cancer genes. Consistent with 8 

this, the 698 pc-genes from the COSMIC Cancer Gene Census (CGC) (4) (red in SUPP FIG 9 

1D) are 155-fold enriched with hCIS over intergenic regions (light grey). Turning to lncRNAs, 10 

the 375 literature lncRNAs are 19.5-fold enriched, supporting their disease relevance (Figure 11 

2C). Thus, CLIO-TIM predictions are enriched in genuine protein-coding and lncRNA 12 

functional cancer genes. Supporting its accuracy, the overall numbers of genes implicated by 13 

CLIO-TIM agree with independent analysis in the CCGD database (SUPP FIG 1C). 14 

An additional 209 hCIS fall in intergenic regions that are neither part of pc-genes or 15 

lncRNAs, leading us to ask whether some may affect lncRNAs that are not annotated by 16 

GENCODE (Figure 2C). To test this, we utilised the large set of cancer-associated lncRNAs 17 

from miTranscriptome (24). 186 hCIS intersect 2167 miTranscriptome genes, making these 18 

potentially novel non-annotated transcripts involved in cancer. Nevertheless, simulations 19 

indicated that this rate of overlap was no greater than expected by random chance (see 20 

Methods), making it unlikely that substantial numbers of undiscovered cancer lncRNAs remain 21 

to be discovered in intergenic regions, at least with the datasets used here (SUPP FIG 1E). 22 

In addition to known cancer lncRNAs, CLIO-TIM identifies 102 lncRNAs not previously 23 

linked to cancer (FIG 2C, dark grey) with a 3.8-fold enrichment of insertions over intergenic 24 

genome. As will be shown below, these lncRNAs bear clinical and genomic features of 25 

functional cancer genes, and hence we decided to include them in CLC2. It should be noted, 26 

however, that these “mutagenesis” lncRNAs are labelled and hence may be removed by end 27 

users, as desired.  28 
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To experimentally test the principal that human orthologues of mouse cancer genes 1 

have a conserved function, we selected LINC00570, identified by CLIO-TIM but never 2 

previously been linked to cancer or cell proliferation. We asked whether LINC00570 promotes 3 

cell growth in transformed cells. We used RNA-sequencing data to search for cell models 4 

where LINC00570 is expressed, and identified robust expression in cervical carcinoma HeLa 5 

cells (SUPP FIG 2A) and to a lesser extent in HCT116 colon carcinoma cells (SUPP FIG 2A). 6 

We designed three distinct antisense oligonucleotides (ASOs) targeting the LINC00570 intron 7 

2 and 3 and exon 3 of the short isoform (intronic targeting ASOs are known to have 8 

degradation efficiency comparable to exonic ones (49, 50)). Transfection of these ASOs led 9 

to strong and reproducible decreases in steady state RNA levels in HeLa cells (Figure 2C). 10 

This resulted in significant decreases in cell proliferation rates (Figure 2D, SUPP FIG 2B). We 11 

observed a similar effect through CRISPRi-mediated inhibition of gene transcription by two 12 

independent guide RNAs in HeLa (Figure 2D), and with the same ASOs in HCT116 cells 13 

(SUPP FIG 2C and D). Therefore, LINC00570 predicted by CLIO-TIM pipeline promotes 14 

growth of human cancer cells, and is likely to have a deeply evolutionarily-conserved 15 

tumorigenic activity.  16 

 17 

Enhanced cancer lncRNA catalogue integrating manual annotation, CRISPR screens 18 

and functional conservation 19 

We next tallied the distinct lncRNAs in CLC3 and compared them with existing cancer 20 

lncRNA databases. Figure 3A shows a breakdown of the composition of CLC2 in terms of 21 

source, gene function and evidence strength. Where possible, the genes are given a functional 22 

annotation, oncogene (og) or tumour suppressor (ts), according to evidence for promoting or 23 

opposing cancer hallmarks. Oncogenes (n=275) quite considerably outnumber tumour 24 

suppressors (n=95), although it is not clear whether this reflects genuine biology or an 25 

ascertainment bias relating to scientific interest or technical issues. Smaller sets of lncRNAs 26 

are associated with both functions, or have no functional information (those from TIM screens 27 

where the functions of hits are ambiguous).  28 
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In terms of the quality of evidence sources, CLC2 represents a considerable 1 

improvement over the original CLC. The fraction of lncRNAs with high quality in vivo evidence 2 

(defined as functional validation in mouse models or mutagenesis analysis) now represent 3 

66% compared to 24% previously (Figure 3A, SUPP FIG 3B). In total, the updated CLC2 4 

comprises 33 cancer types (vs 29) and more lncRNAs are reported for every cancer subtype 5 

(SUPP FIG 3A).  6 

We were curious how much novelty the CLC2 gene set brought to the known universe 7 

of cancer lncRNAs, as estimated from respected and longstanding cancer lncRNA collections 8 

(Figure 3B). Considering only GENCODE-annotated genes, CLC2 with 492 is second only to 9 

Lnc2Cancer (n= 512) in terms of size (40). However, Lnc2Cancer uses looser inclusion 10 

criteria, including lncRNAs that are differentially expressed in tumours without additional 11 

functional evidence. The three remaining databases are smaller (<200 genes). Importantly, 12 

CLC2 holds the greatest number of unique genes, i.e. those that are not found in other 13 

databases (n=225). These contain 118 literature-annotated cases, and also 95 novel 14 

mutagenesis lncRNAs. Just 40 lncRNAs are common to all five databases (37–40). In 15 

summary, CLC2 achieves large size without compromising on confidence, while also including 16 

numerous new cancer lncRNAs for the first time.  17 

 18 

Unique genomic properties of CLC2 lncRNAs 19 

Cancer genes, both protein-coding and not, display elevated characteristics of 20 

essentiality and clinical importance compared to other genes (4, 18, 51, 52). In order to confirm 21 

their quality as a resource, we next asked whether CLC2 lncRNAs, and the mutagenesis 22 

subset, display features expected for cancer genes.  23 

In the following analyses, we compared gene features of selected lncRNAs to all other 24 

lncRNAs. Comparison of gene sets can often be confounded by covariates such as gene 25 

length or gene expression, therefore where appropriate we used control gene sets that were 26 

matched to CLC2 by expression (denoted “nonCLCmatched”) (SUPP FIG 4A) and reported 27 

findings correcting for gene length (SUPP FIG 4B).  28 
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Evolutionary conservation and steady-state expression are widely-used proxies for 1 

gene function (53–55). Using the LnCompare tool (56), we find that the promoters and exons 2 

of CLC2 genes display elevated evolutionary conservation in mammalian and vertebrate 3 

phylogeny (Figure 4A) and elevated expression in cancer cell lines (Figure 4B). Strikingly we 4 

observe a similar effect when considering the mutagenesis lncRNAs alone: their promoters 5 

are significantly more conserved than expected by chance, and their expression is an order 6 

of magnitude higher than other lncRNAs (Figure 4C and D).  7 

Further, we found that CLC2 lncRNAs are enriched in repetitive elements (SUPP FIG 8 

5A) and are more likely to house a small RNA gene, possibly indicating that some act as 9 

precursor transcripts (SUPP FIG 5B). CLC2 lncRNAs also have non-random distributions of 10 

gene biotypes, being depleted for intergenic class and enriched in divergent orientation to 11 

other genes (SUPP FIG 5C).  12 

In summary, CLC2 lncRNAs are significantly more conserved and more expressed 13 

than expected by chance, pointing to biological function. Mutagenesis lncRNAs discovered by 14 

the CLIO-TIM also carry these features, supports their designation as functional cancer 15 

lncRNAs.  16 

 17 

CLC2 lncRNAs display consistent tumour expression changes and prognostic 18 

properties 19 

Although gene expression was not a criterion for inclusion, we would expect that CLC2 20 

lncRNAs’ expression will be altered in tumours. Furthermore, one might expect that the nature 21 

of this alteration should vary with disease function: oncogenes overexpressed, and tumour 22 

suppressors downregulated.  23 

To test this, we analysed TCGA RNA-sequencing (RNA-seq) data from 686 individual 24 

tumours with matched healthy tissue (total n=1,372 analysed samples) in 20 different cancer 25 

types (SUPP FIG 6A and B), and classified every gene as either differentially expressed (in at 26 

least one cancer subtype, with log2 Fold Change >1 and FDR <0.05) or not. We found that 27 

CLC2 lncRNAs are 3.4-fold more likely to be differentially expressed compared to expression-28 
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matched lncRNAs (Figure 5A). LncRNAs from each individual evidence source (literature, 1 

mutagenesis, CRISPRi) behaved similarly, again supporting their inclusion. Similar effects 2 

were found for pc-genes (SUPP FIG 7A).  3 

Next, we asked whether the direction of expression change corresponds to gene 4 

function. Indeed, oncogenes are enriched for overexpressed genes, whereas tumour 5 

suppressors are enriched for down-regulated genes, supporting the functional labelling 6 

scheme (Figure 5B).  7 

Cancer genes’ expression is often prognostic for patient survival. By correlating 8 

expression to patient survival, we found that the expression of 392 CLC2 lncRNAs correlated 9 

to patient survival in at least one cancer type (SUPP FIG 7C). When analysing the most 10 

significant correlation of each CLC2 lncRNA compared to expression-matched nonCLC 11 

lncRNAs, we find a weak but significant enrichment (SUPP FIG 7C), suggesting that CLC2 12 

lncRNAs can be prognostic for patient survival. 13 

In summary, gene expression characteristics of CLC2 genes, and subsets from 14 

different evidence sources, support their functional labels as oncogenes and tumour 15 

suppressors and is more broadly consistent with their important roles in tumorigenesis.  16 

 17 

CLC2 lncRNAs are enriched with cancer genetic mutations 18 

Cancer genes are characterized by a range of germline and somatic mutations that 19 

lead to gain- or loss-of-function. It follows that cancer lncRNAs should be enriched with 20 

germline single nucleotide polymorphisms that have been linked to cancer predisposition (57). 21 

We obtained 5,331 germline cancer-associated single nucleotide polymorphisms (SNPs) from 22 

genome-wide association studies (GWAS) (58) and mapped them to lncRNA and pc-gene 23 

exons, calculating a density score that normalises for exon length (SUPP FIG 4B). As 24 

expected, exons of known cancer pc-genes are >2-fold enriched in cancer SNPs (SUPP FIG 25 

7B). When performing the same analysis with CLC2 lncRNAs, one observes an even more 26 

pronounced enrichment of 4.0-fold when comparing to expression-matched nonCLC lncRNAs 27 

(Figure 5C). Once again, the lncRNAs from each evidence source individually show 28 
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enrichment for cancer SNPs >2-fold (Figure 5C). Three mutagenesis lncRNAs, namely 1 

miR143HG/CARMN, LINC00511 and LINC01488, carry an exonic cancer SNP (Figure 5D).  2 

Cancer genes are also frequently the subject of large-scale somatic mutations, or copy 3 

number variants (CNVs). Using a collection of CNV data from LncVar (59), we calculated the 4 

gene-span length-normalized coverage of lncRNAs by CNVs. CLC2 lncRNAs are enriched for 5 

CNVs compared to all lncRNAs (Figure 5E).  6 

All information of the lncRNAs in the CLC2 with the corresponding cancer function, 7 

evidence level, analysis method and cancer types can be found in the Supplementary Table 8 

1. The Supplementary Table 2 can be used to filter lncRNAs based on their reported cancer 9 

associated functionalities.  10 

In summary, CLC2 lncRNAs and their subsets display germline and somatic mutational 11 

patterns consistent with known oncogenes and tumour suppressors.   12 
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Discussion 1 

We have presented the Cancer LncRNA Census 2, an expanded collection of lncRNAs 2 

with functional roles in cancer. CLC2 is distinguished from other resources by several key 3 

features. All its constituent lncRNAs have strong evidence for functional cancer roles (and not 4 

merely differential expression), providing for lowest possible false positive rates. All CLC2 5 

lncRNAs are included in the gold-standard GENCODE annotation, permitting smooth 6 

interoperability with almost all public genomics projects and resources (12). The majority of 7 

CLC2 entries are accompanied by functional labels (oncogene / tumour suppressor), enabling 8 

one to link function to other observable features. Finally, we utilise transposon insertional 9 

mutagenesis (TIM) datasets for the first time to discover 102 “mutagenesis” lncRNAs, of which 10 

95 are completely novel. In spite of strict inclusion criteria, CLC2 is amongst the largest 11 

available cancer lncRNA collections. Most striking, is that it contains the greatest number of 12 

“unique” lncRNAs, not found in other resources. Overall, CLC2 makes a valuable addition to 13 

the present landscape of cancer lncRNA resources. 14 

A key novelty of CLC2 is its use of automated gene curation based on functional 15 

evolutionary conservation, as inferred from TIM. This responds to the challenge from the rapid 16 

growth of scientific literature, which makes manual curation increasingly impractical. Other 17 

high-throughput / automated methods like CRISPR pooled screening, text mining and 18 

machine learning will also be important, although it will be necessary to vet the quality of such 19 

predictions prior to inclusion. Here we showed one way approach for this, by assessing the 20 

TIM gene set across a range of genomic and clinical features. The fact that the “mutagenesis” 21 

lncRNA set display rates of (i) nucleotide conservation, (ii) expression, (iii) tumour differential 22 

expression, (iv) germline cancer polymorphisms and (v) tumour mutations similar to that of 23 

gold-standard literature curated lncRNAs, coupled to thorough experimental validation of one 24 

novel prediction (LINC00570), is powerful support for TIM and functional evolutionary 25 

conservation as means for new cancer lncRNA discovery.  26 

It might be argued that hits from TIM sites could be false positives that act via DNA 27 

elements (for example, enhancers) that, by coincidence, overlap a non-functional lncRNA. 28 
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While certainly likely to occur in some cases, it would nevertheless appear unlikely to explain 1 

the majority, in light of the features listed above, plus the observation that TIM sites are highly 2 

enriched in independently-validated literature-curated lncRNAs (which act via RNA) including 3 

NEAT1, LINC-PINT and PVT1 (42). In spite of this, we recognise that some colleagues may 4 

ascribe lower confidence to novel “mutagenesis” lncRNAs in CLC2. For this reason, the CLC2 5 

data table is organised to facilitate filtering by source, enabling users to extract only the 375 6 

literature-supported cases, or indeed any other subset based on source, evidence or function 7 

as desired. 8 

Apart from its usefulness as a resource, this study has enabled some important 9 

conceptual insights. Firstly, we have replicated our previous finding that cancer lncRNAs are 10 

distinguished by signatures of functionality, as inferred from evolutionary nucleotide 11 

conservation and expression. These features were originally linked to protein-coding cancer 12 

genes (51, 52), but are also utilised as markers for lncRNA functionality (42, 60). Moreover, 13 

we extended this approach to clinical features, by showing that curated cancer lncRNAs are 14 

dramatically more likely to be differentially expressed in tumours, suffer copy number 15 

alteration, or carry a germline predisposition SNP. In the latter case, this rate even exceeds 16 

cancer driver protein-coding genes. We also could demonstrate that changes in gene 17 

expression in tumours are linked to function: oncogenes tend to be overexpressed, while 18 

tumour-suppressors tend to be repressed. Finally, the demonstration that cancer lncRNAs can 19 

be predicted on the basis of orthology to a TIM hit in mouse, lends powerful support to the 20 

notion that there is widespread functional evolutionary conservation of lncRNAs in networks 21 

related to cell growth and transformation.  22 

LINC00570 is a new functional cancer lncRNA predicted by CLIO-TIM. The gene was 23 

previously discovered by Orom and colleagues, as a cis-activating enhancer-like RNA named 24 

ncRNA-a5 (48). That and a subsequent study showed that perturbation by siRNA transfection 25 

affects the expression of the nearby pc-gene ROCK2 in HeLa. However, these studies did not 26 

investigate the effect on cell proliferation. We here show by means of two independent 27 
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perturbations, that LINC00570 promotes proliferation of HeLa and HCT116 cells. These 1 

findings make LINC00570 a potential therapeutic target for follow up. 2 

Intriguingly, amongst the novel mutagenesis lncRNAs identified by CLIO-TIM are 3 

genes previously linked to other diseases. miR143HG/CARMEN1 (CARMN) was shown to 4 

regulate cardiac specification and differentiation in mouse and human hearts (61). In addition 5 

to being a TIM target, CARMEN1 also contains a germline cancer SNP correlating to the risk 6 

of developing lung cancer (62), adding further weight to the notion that it also plays a role in 7 

oncogenesis. Similarly, DGCR5, is located in the DiGeorge critical locus and has been linked 8 

to neurodevelopment and neurodegeneration (63), and was recently implicated as a tumour 9 

suppressor in prostate cancer (64). These results raise the possibility that developmental 10 

lncRNAs can also play roles in cancer. 11 

In summary, CLC2 establishes a new benchmark for cancer lncRNA resources. We 12 

hope this dataset will enable a wide range of studies, from bioinformatic identification of new 13 

disease genes, to developing a new generation of cancer therapeutics with anti-lncRNA ASOs 14 

(65).   15 
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Material and Methods 1 

Gene curation 2 

If not stated otherwise, GENCODE v28 gene IDs (gencode.v28.annotation.gtf) were used. 3 

Literature search. PubMed was searched for publications linking lncRNA and cancer using 4 

keywords: long noncoding RNA cancer, lncRNA cancer. Additional inclusion criteria consisted 5 

of GENCODE annotation, reported cancer subtype and cancer functionality 6 

(oncogene/tumour suppressor). The manual curation and assigning evidence levels to each 7 

lncRNA was performed exactly as previously (42) and included reports until December 2018. 8 

CLIO-TIM. From the CCGD website (http://ccgd-starrlab.oit.umn.edu/about.php, May 2018 9 

(41))  a table with all CIS elements was downloaded. These mouse genomic regions 10 

(mm10)  were converted to homologous regions in the human genome assembly hg38 using 11 

the LiftOver tool (https://genome.ucsc.edu/cgi-bin/hgLiftOver). Settings: original Genome was 12 

Mouse GRCm38/mm10 to New Genome Human GRCh38/hg38, minMatch was 0.1 and 13 

minBlocks 0.1. For insertion sites intersecting several lncRNA genes, all the genes were 14 

reported. IntersectBed from bedtools was used to align human insertion sites to GENCODE 15 

IDs by intersecting at least 1nt and assigned to protein-coding or lncRNA gene families. 16 

Insertion sites aligning to protein-coding and lncRNA genes were always assigned to protein-17 

coding genes. If insertion sites overlap multiple ENSGs, all genes are reported. Insertion sites 18 

not aligning to protein-coding or lncRNAs genes were added to the intergenic region.  19 

CCGD human Entrez gene results were converted to GENCODE IDs using the “Entrez gene 20 

ids” Metadata file from https://www.gencodegenes.org/human/ to compare CLIO-TIM results 21 

with CCGD results for each gene set. 22 

MiTranscriptome data for evaluating intergenic insertion sites. The cancer associated 23 

MiTranscriptome IDs (24) previously used in Bergada et al.  (66) were intersected with 24 

intergenic insertion sites using IntersectBed. With ShuffleBed the intergenic insertions were 25 

randomly shuffled 1000x and assigned to MiTranscriptome IDs. 26 

CRISPRi. We used the Supplementary Table 1 from the 2017 Liu et al. paper  (45) to extract 27 

ENST IDs and gene names which are then converted to GENCODE IDs to match each guide 28 
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(LH identifier in the screen). From Supplementary Table S4 from the 2017 Liu et al. paper 1 

(Liu_et_al_aah7111-TableS4) (45) we extracted genes with “hit” (validated as a hit in the 2 

screen), “LH” (unique identifiers correlating to a gene in the screen) and “lncRNA” (referring 3 

to a lncRNA gene and to exclude lncRNA hits close to a protein-coding gene (“Neighbor hit”)) 4 

resulting in 499 hits. Of these, 322 hits contain a GENCODE IDs and were used for enrichment 5 

analysis, tested by one-sided Fisher’s test. 6 

We included n=21 CRISPRi genes to the CLC2 from the Supplementary Figure 8A from the 7 

2017 Liu et al. paper (45) , the tested cancer cell line and the effect of the CRISPRi on the 8 

growth phenotype (either promoting (tumor suppressor) or inhibiting (oncogene)) of each 9 

lncRNA was reported.  10 

Cancer gene sets. For downstream analysis protein-coding (pc) genes (GENCODE IDs) are 11 

grouped in cancer-associated pc-genes (CGC genes) and non cancer-associated pc-genes 12 

(nonCGC n=19,174). The TSV file containing the CGC data was downloaded from 13 

https://cancer.sanger.ac.uk/census with 700 ENSGs with 698 ENSG IDs detected in 14 

GENCODE v28 of which 696 are unique (CGC n=696). The same is done for lncRNAs, into 15 

CLC2 (n=492) and nonCLC genes (n= 15,314). 16 

Matched expression analysis. Based on an in house script used for Survival analysis 17 

(section below), TCGA survival expression data for each GENCODE ID is reported and the 18 

average FPKM across all tumor samples is calculated. The count distribution of nonCGC and 19 

nonCLC gene expression to CGC and CLC2 expression, respectively, is matched using the 20 

matchDistribution.pl script (https://github.com/julienlag/matchDistribution). 21 

Cancer lncRNA databases. The tested databases were first filtered for lncRNAs in the 22 

GENCODE v28 long noncoding annotation (n=15,767).  23 

Lnc2cancer GENCODE IDs from datatable (http://www.bio-24 

bigdata.com/lnc2cancer/download.html) were evaluated (n=512) (40). 25 

CRlncRNA gene names from (http://crlnc.xtbg.ac.cn/download/) were converted to 26 

GENCODE IDs (n=146) (38). 27 
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EVlncRNAs gene names (http://biophy.dzu.edu.cn/EVLncRNAs/)  were converted to 1 

GENCODE IDs (n=187) (39). 2 

lncRNADisease gene names from 3 

(http://www.rnanut.net/lncrnadisease/index.php/home/info/download) and only cancer-4 

associated transcripts (carcinoma, lymphoma, cancer, leukemia, tumor, glioma, sarcoma, 5 

blastoma, astrocytoma, melanoma, meningioma) were extracted. Names were converted to 6 

GENCODE IDs (n=137) (37). 7 

 8 

Features of CLC2 genes 9 

Genomic classification. The genomic classification was performed as previously (42) using 10 

an in house script (https://github.com/gold- 11 

lab/shared_scripts/tree/master/lncRNA.annotator). 12 

Small RNA analysis. For this analysis “snoRNA”, “snRNA”, “miRNA” and “miscRNA” 13 

coordinates were extracted from GENCODE v28 annotation file and intersected with the 14 

genomic region of the genes (intronic and exonic regions).  15 

Repeat elements. In total 452 CLC2 lncRNAs compared to 1693 expression-matched 16 

nonCLC lncRNAs using the LnCompare Categorical analysis 17 

(http://www.rnanut.net/lncompare/) (56). 18 

Feature analysis. In total 452 CLC2 lncRNAs and 120 mutagenesis lncRNAs are compared 19 

to the GENCODE v24 reference using LnCompare (http://www.rnanut.net/lncompare/) (56). 20 

 21 

Cancer characteristic analysis 22 

Differential gene expression analysis (DEA). was performed using TCGA data and 23 

TCGAbiolinks. Analysis was performed as reported in manual for matching tumor and normal 24 

tissue samples using the HTseq analysis pipeline as described previously.  25 

(https://www.bioconductor.org/packages/devel/bioc/vignettes/TCGAbiolinks/inst/doc/analysis26 

.html)  (67). For this analysis only matched samples were used and the TCGA data was 27 

presorted for tumor tissue samples (TP with 01 in sample name) and solid tissue normal (NT 28 
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with 11 in sample name). Settings used for DEA analysis: fdr.cut = 0.05 , logFC.cut = 1 for 1 

DGE output between matched TP and NT samples for 20 cancer types. CLC2 cancer types 2 

had to be converted to TCGA cancer types (Supp Fig 6A) Cancer types and number of 3 

samples used in the analysis can be found in Supp Fig 6B. DEA enrichment analysis tested 4 

with one-sided Fisher’s test. For each CLC2 gene reported as true oncogene (n=275) or tumor 5 

suppressor (n=95), hence where no double function is reported (n=22), the positive and 6 

negative fold change (FC) values were counted and compared to expression-matched lncRNA 7 

genes found in the DEA.  8 

 9 

Survival analysis. An inhouse script for extracting TCGA survival data was used to generate 10 

p values correlating to survival for each gene. Expression and clinical data from 33 cohorts 11 

from TCGA with the “TCGAbiolinks” R package 12 

(https://bioconductor.org/packages/release/bioc/html/TCGAbiolinks.html) were downloaded 13 

(67). P value and Hazard ratio were calculated with the Cox proportional hazards regression 14 

model from “Survival” R package (https://cran.r-15 

project.org/web/packages/survival/survival.pdf). All scripts were adapted from here 16 

(https://www.biostars.org/p/153013/) and are available upon request. For downstream 17 

analysis, only groups with at least 20 patient samples in high or low expression group were 18 

used. The plot comprises only the most significant cancer survival p value per gene and was 19 

assessed by the Komnogorow-Smirnow-Test (ks-test).  20 

 21 

Cancer-associated SNP analysis. SNP data linked to tumor/cancer/tumour were extracted 22 

from the GWAS page (https://www.ebi.ac.uk/gwas/docs/file-downloads) (n=5,331) and 23 

intersected with the whole exon body of the genes. SNPs were intersected to the transcript 24 

bed file and plotted per nt in each subset (SNP/nt y axis) and tested using one-sided Fisher’s 25 

test.  26 

CNV analysis. Human CNV in lncRNAs downloaded from 27 

http://bioinfo.ibp.ac.cn/LncVar/download.php (59). NONCODE IDs were converted to 28 
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GENCODE IDs using NONCODEv5_hg38.lncAndGene.bed.gz. CLC2 and nonCLC ENSGs 1 

were matched to NONHSAT IDs with a significant pvalue (0.05, n=733)  in the LncVAR table 2 

and tested using one-sided Fisher’s test. 3 

Code availability. Custom code are available from the corresponding author upon request. 4 

 5 

In vitro validation 6 

Cell culture. HeLa and HCT116 were cultured on Dulbecco’s Modified Eagles Medium 7 

(DMEM) (Sigma-Aldrich, D5671) supplemented with 10% Fetal Bovine Serum (FBS) 8 

(ThermoFisher Scientific, 10500064), 1% L-Glutamine (ThermoFisher Scientific, 25030024), 9 

1% Penicillin-Streptomycin (ThermoFisher Scientific, 15140122). Cells were grown at 37°C 10 

and 5% CO2 and passaged every two days at 1:5 dilution.  11 

Generation of Cas9 stable cell lines. HeLa cells were infected with lentivirus carrying the 12 

Cas9-BFP (blue fluorescent protein) vector (Addgene 52962). HCT116 were transfected with 13 

the same vector using Lipofectamine 2000 (ThermoFisher Scientific, 11668019). Both cell 14 

types were selected with blasticidin (4ug/ml) for at least five days and selected for BFP-15 

positive cells twice by fluorescence activated cell sorting.  16 

CRISPR inhibition sgRNA pair design and cloning. sgRNA pairs targeting LINC00570 17 

were designed using GPP sgRNA designer (https://portals.broadinstitute.org/gpp/). The 18 

sgRNA pairs were manually selected from the output list and cloned into the pGECKO 19 

backbone (CRISPRi.1: 5’ GTTACTTCCAACGTACCATG 3’, CRISPRi.2: 5’ 20 

CCTGTACCCCCATGGTACGT 3’) (Addgene 78534; (68)) 21 

Antisense LNA GapmeR design. Antisense LNA GapmeR Control (5’ 22 

AACACGTCTATACGC 3’) and three Antisense LNA GapmeR Standard targeting LINC00570 23 

(LNA1: 5’ GGAAATTGCTCTGATG 3’, LNA2: 5’ GATTGGCATTGGGATA 3’, LNA3: 5’ 24 

GAAGTGGCCTGAGAAA 3’) were designed and purchased at Qiagen. 25 

RT-qPCR. For each time point total RNA was extracted and reverse transcribed (Promega). 26 

Transcript levels of LINC00570 (FP: 5’ TAGGAGTGCTGGAGACTGAG 3’, RP: 5’ 27 

GTCGCCATCTTGGTTGTCTG 3’) and housekeeping gene HPRT1 (FP: 5’ 28 
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ATGACCAGTCAACAGGGGACAT 3’, RP: 5’ CAACACTTCGTGGGGTCCTTTTCA 3’)  were 1 

measured using GoTaq qPCR Master Mix (Promega, A6001) on a TaqMan Viia 7 Real-Time 2 

PCR System. Data were normalized using the ΔΔCt method (69)). 3 

Gene-specific RT-PCR and cDNA amplification. From the extracted total RNA, we 4 

performed a gene specific reverse transcription using the reverse primers for LINC00570 and 5 

HPRT1 to enrich for their cDNA. Presence or absence of transcript was detected by a regular 6 

PCR using GoTaq® G2 DNA Polymerase (Promega, M7841) from 100ng cDNA and 7 

visualized on an agarose gel. 8 

Viability assay. HeLa and HCT116 cells were transfected with Antisense LNA GapmeRs at 9 

a concentration of 50nM using Lipofectamine 2000 (Thermofisher) according to 10 

manufacturer's protocol. One day after, transfected cells were plated in a white, flat 96-well 11 

plate (3000 cells/well). Viability was measured in technical replicates using CellTiter-Glo 2D 12 

Kit (Promega) following manufacturer's recommendations at 0, 24, 48, 72 hours after seeding. 13 

Luminescence was detected with Tecan Reader Infinite 200. Statistical significance calculated 14 

by t-test. 15 

For CRISPR inhibition experiments, HeLa-Cas9 and HCT116-Cas9 cells were transfected 16 

with control sgRNA plasmid and two LINC00570 targeting plasmids. Cells were selected with 17 

puromycin (2ug/ml) for 48h.  Viability assay was performed as previously described. 18 

 19 

  20 
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Figure Legends 1 

Figure 1: Functional cancer lncRNAs from three sources are integrated in the CLC2. 2 

A) Literature curation with four criteria are used to define “literature lncRNAs”. B) Transposon 3 

insertion mutagenesis screens identify “mutagenesis lncRNAs”. C) Validated hits from 4 

CRISPRi proliferation screens are denoted “CRISPRi lncRNAs”. Statistical significance 5 

calculated by one-sided Fisher’s test.  6 

 7 

Figure 2: The CLIO-TIM pipeline identifies human cancer lncRNAs via functional 8 

evolutionary conservation. 9 

A) Overview of transposon insertional mutagenesis (TIM) method for identifying functional 10 

cancer genes. Engineered transposons carry bidirectional cassettes capable of either blocking 11 

or upregulating gene transcription, depending on orientation. Transposons are introduced into 12 

a population of cells, where they integrate at random genomic sites. The cells are injected into 13 

a mouse. In some cells, transposons will land in and perturb expression of a cancer gene 14 

(either tumour suppressor or oncogene), giving rise to a tumour. DNA of tumour cells is 15 

sequenced to identify the exact location of the transposon insertion. Clusters of such insertions 16 

are termed Common Insertion Sites (CIS). B) (Left) Schematic of the CLIO-TIM pipeline used 17 

here to identify human cancer genes using mouse CIS. (Right) An example of a CLIO-TIM 18 

predicted cancer lncRNA. C) The density of hCIS sites, normalised by gene length, in indicated 19 

classes of lncRNAs. Statistical significance calculated by one-sided Fisher’s test. D) Upper 20 

panels: Expression of LINC00570 RNA in response to inhibition by CRISPRi (left) or ASOs 21 

(right). Lower panels:  Measured populations of the same cells over time. Statistical 22 

significance calculated by Student’s t-test. 23 

 24 

Figure 3: An overview of the CLC2 database and comparison with other lncRNA 25 

databases.  26 

A) The CLC2 database broken down by source, function and evidence type. B) Comparison 27 

of CLC2 to other leading cancer lncRNA databases.  28 
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Figure 4: Features of functionality in CLC2 and mutagenesis lncRNAs.  1 

In each panel, two gene sets are compared: the test set (either all CLC2 genes, or 2 

mutagenesis genes alone), and the set of all other lncRNAs (GENCODE v24). Y-axis: Log2 3 

fold difference between the means of gene sets. X-axis: false-discovery rate adjusted 4 

significance, calculated by Wilcoxon test. A) Evolutionary conservation for all CLC2, 5 

calculated by PhastCons. B) Expression of all CLC2 in cell lines. C) Evolutionary conservation 6 

for mutagenesis lncRNAs, calculated by PhastCons. D) Expression of mutagenesis lncRNAs 7 

in cell lines. For (A) and (C), “Promoter mean” and “Exon mean” indicate mean PhastCons 8 

scores (7-vertebrate alignment) for those features, while “Exon-coverage” indicates percent 9 

coverage by PhastCons elements. Promoters are defined as a window of 200 nt centered on 10 

the transcription start site. 11 

 12 

Figure 5: Clinical features of CLC2 lncRNAs.  13 

A) The percent of indicated genes that are significantly differentially expressed in at least one 14 

tumour type from the TCGA. Statistical significance calculated by one-sided Fisher’s test. B) 15 

Here, only differentially expressed genes from (A) are considered. LncRNAs with both tumour 16 

suppressor and oncogene labels are excluded. Remaining lncRNAs are divided by those that 17 

are up- or down-regulated (positive or negative fold change). Statistical significance calculated 18 

by one-sided Fisher’s test. C) The density of germline cancer-associated SNPs is displayed. 19 

Only SNPs falling in gene exons are counted, and are normalised to the total length of those 20 

exons. Statistical significance calculated by one-sided Fisher’s test. D) Examples of 21 

mutagenesis lncRNAs with an exonic cancer SNP. E) Length-normalised overlap rate of copy 22 

number variants (CNVs) in lncRNA gene span. Statistical significance calculated by one-sided 23 

Fisher’s test.  24 

 25 

 26 

 27 

 28 
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Supplementary Data 1 

Supplementary Table 1: Excel table with all CLC2 and cancertype and evidence level 2 

Supplementary Table 2: Excel table with all CLC2 ENSG with cancer functionality 3 

 4 

Supplementary Figures 5 

SUPP. Figure 1: Insertion analysis  6 

A) All insertion sizes after Liftover compared to GENCODE v28 gene length. Number of input 7 

CIS elements in mouse compared to hCIS elements in human after Liftover. B) Assign genes 8 

to GENCODE v28 genes and gene families. C) CCGD reported genes (dark) and CLIO-TIM 9 

reported genes (fade) for each gene class. D) Genes with insertion categorized in gene types. 10 

Statistical significance calculated by one-sided Fisher’s test.  E) Assign intergenic regions to 11 

MiTranscriptome IDs and compare to shuffled hCIS overlayed with MiTranscriptome IDs. 12 

Example of one insertion site with MiTranscriptome ID. 13 

 14 

SUPP. Figure 2: LINC00570 insertion candidate characteristics.  15 

A) ENCODE expression data of LINC00570 in HeLa (blue)  and HCT116 cells (black). B) Cell 16 

proliferation of HeLa cells treated with ASO negative control and ASO 3 at Day 1, 2 and 3.  C) 17 

Proliferation assay for HCT116 cells with ASO control and the three ASO targeting 18 

LINC00570. Statistical significance calculated by Student’s t-test.  D) RT-PCR of LINC00570 19 

and HPRT1 from HCT116 cells to check for expression. 20 

 21 

SUPP. Figure 3: comparison of first CLC and CLC2.  22 

A) CLC2 genes are detected in 33 cancer types and compared to 29 in the first CLC. CLC 23 

reported n=122 literature lncRNAs whereas CLC2 comprises 492 genes from 3 different 24 

analysis. B) Comparing evidence levels of genes from the initial CLC with the CLC2.   25 

  26 

 27 
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SUPP. Figure 4: CLC2 expression and gene length bias.  1 

A) CLC2 genes (turquoise) are higher expressed than nonCLC genes (grey), same for CGC 2 

genes (red) compared to nonCGC genes (orange). Expression-matched CLC2 (blue) and 3 

CGC (yellow) were generated and match the expression of the CLC2 and CGC, respectively. 4 

B) CLC2 genes (turquoise) with increased exon and whole gene body length when compared 5 

to expression-matched (blue) and all other lncRNAs (grey).  6 

 7 

SUPP. Figure 5: CLC2 gene characteristics.  8 

A) CLC2 genes are enriched for ⅔ of the analyzed repeat element families when compared 9 

to expression-matched nonCLC genes. Statistical significance calculated by hypergeometric 10 

test (highly significant ****=<0.0001). B) CGC and CLC2 genes are enriched for small RNAs 11 

compared to expression-matched nonCGC and nonCLC, respectively. In the bar graph we 12 

report the fraction of genes of each dataset with (dark color) or without (light color) small RNA 13 

encoded in the genomic region. Statistical significance calculated by one-sided Fisher’s test. 14 

C) Genomic classification of CLC2, expression-matched nonCLC and nonCLC genes. 15 

Statistical significance calculated by two-sided Fisher’s test (*=<0.05). 16 

 17 

SUPP. Figure 6: TCGA cancer types for differential expression analysis.  18 

A) CLC2 cancer types corresponding to TCGA cancer types. B) Samples for each TCGA 19 

cancer type analyzed for differential expression analysis.  20 

 21 

SUPP. Figure 7: Cancer characteristics for all analyzed gene types.  22 

A) Differentially expressed genes enriched in cancer-associated gene families (CGC and 23 

CLC2). Statistical significance calculated by one-sided Fisher’s test.  B) exonic cancer SNPs 24 

enriched in cancer-associated gene families (CGC and CLC2). Statistical significance 25 

calculated by one-sided Fisher’s test.  C) survival analysis comparing most significant p-value 26 

for each lncRNA in the CLC2 compared to expression-matched lncRNAs. Statistical 27 

significance calculated by ks-test.  28 
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TCGA cancer type tumor (01) healthy (11) total samples
TCGA-BLCA 19 19 38
TCGA-BRCA 112 112 224
TCGA-CESC 3 3 6
TCGA-CHOL 9 9 18
TCGA-COAD 41 41 82
TCGA-ESCA 8 8 16
TCGA-HNSC 43 43 86
TCGA-KICH 23 23 46
TCGA-KIRC 72 72 144
TCGA-KIRP 31 31 62
TCGA-LIHC 50 50 100
TCGA-LUAD 57 57 114
TCGA-LUSC 49 49 98
TCGA-PAAD 4 4 8
TCGA-PCPG 3 3 6
TCGA-PRAD 52 52 104
TCGA-SARC 2 2 4
TCGA-STAD 27 27 54
TCGA-THCA 58 58 116
TCGA-UCEC 23 23 46
TOTAL 1372

CLC2 cancer type TCGA cancer type
bile duct CHOL
blood DLBC
blood LAML
breast BRCA
cervical CESC
colon COAD
endometrial UCEC
endometrial UCS
esophageal ESCA
head and neck HNSC
kidney KIRP
kidney KIRC
kidney KICH
liver LIHC
lung LUAD
lung LUSC
neuroepithelial LGG
neuroepithelial PCPG
neuroepithelial GBM
ovarian OV
pancreas PAAD
prostate PRAD
skin UVM
skin SKCM
stomach STAD
testis TGCT
thyroid THCA
urothelial BLCA
sarcoma SARC
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