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Abstract 7 

Global food security is strongly determined by crop production. Climate change will not only 8 

affect crop yields directly, but also indirectly via the distributions and impacts of plant 9 

pathogens that can cause devastating production losses. However, the likely changes in 10 

pathogen pressure in relation to global crop production are poorly understood. Here we show 11 

that disease risk for 79 fungal and oomycete crop pathogens will closely track projected yield 12 

changes in 12 major crops over the 21st Century. For most crops, yields are likely to increase 13 

at high latitudes but disease risk will also grow. In addition, the USA, Europe and China will 14 

experience major changes in pathogen assemblages. In contrast, while the tropics will see 15 

little or no productivity gains, the disease burden is also likely to decline. The benefits of 16 

yield gains will therefore be tempered by the increased burden of crop protection. 17 

Main text 18 

Plant pests and pathogens exert a growing burden on crop production around the world 1,2. 19 

The burden can be measured directly in yield losses or indirectly in the social, environmental 20 

and economic costs of control 1. Like all species, crop pests and pathogens have particular 21 

tolerances to, or requirements for, particular environmental conditions 3. These tolerances 22 

define their ecological niche, which determines the geographical regions and periods of the 23 

year that allow pests and pathogens to proliferate and attack crops 3. As climate changes, 24 

suitable conditions for pest outbreaks shift in time and space, altering the threats that farmers 25 

face and the management regimes required for their control 4. Modelling the pattern and 26 

process of future changes in pest and pathogen burdens is therefore a key component in 27 

maintaining future food security 5. 28 
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Latitudinal range shifts of pests and pathogens are expected as the planet warms and 29 

populations track their preferred temperature zones 4. Spatial movements in geographical 30 

distributions and temporal shifts in phenologies of wild populations are among the clearest 31 

signs of anthropogenic global warming 6. Though distribution data for crop pests and 32 

pathogens are noisy and incomplete 5, similar changes have been detected for hundreds a 33 

species of pests and pathogens over recent decades 7. Increasing burdens of insect pests at 34 

high latitudes, and decreasing burdens at low latitudes, have been projected using ecological 35 

niche models (ENM) 8. ENMs attempt to reconstruct the environmental tolerances of species 36 

from contemporary climates within the observed species range using statistical models 9. 37 

Alternatively, species’ responses to microclimate can be directly measured, and these 38 

responses incorporated into physiologically-based models of species performance 10. Such 39 

mechanistic models are commonly used to project future crop yields 11, and models have also 40 

been developed for some plant diseases 12,13. However, we know little about how plant 41 

disease pressure is likely to change in future, nor how these changes will relate to crop yield 42 

responses to climate change. Here, we analyse temperature response functions for host 43 

infection for a suite of fungal and oomycete plant pathogens, and model the likely shifts in 44 

infection risk globally for the 21st Century. We compare climate-driven changes in infection 45 

risk with projected changes in crop yields to reveal how the global burden of plant disease 46 

will impact upon crop productivity. 47 

Projected crop yield changes 48 

Yields of both temperate and tropical crops are projected to increase at higher latitudes over 49 

the 21st Century (Figs. S1-S4). We compared current (2011-2030 mean) and future (2061-50 

2080 mean) yields projections from three crop models (LPJmL, GEPIC, PEPIC) employing 51 

four GCMs (GFDL-ESM2M, HADGEM2-ES, IPSL-CM5A-LR, MIROC5) under the 52 

RCP6.0 representative concentration pathway. Carbon dioxide fertilization effects were 53 

included but potential irrigation was not. The major commodity crops of maize, wheat, 54 

soybean and rice, and are considered in all three crop models. Maize yields are projected to 55 

increase at higher latitudes (above approx. 40 °), particularly in North America, in all model 56 

combinations, with yield declines at lower latitudes. GEPIC/PEPIC project substantial maize 57 

yield declines in Central and Latin America except for Argentina, and across Africa and 58 

northern Australia. LPJmL projects no such yield declines. Wheat yields also increase at high 59 

latitudes in all three crop models, with smaller increases at low latitudes in LPJmL and 60 
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declines in GEPIC/PEPIC. North America and parts of Eurasia show the largest wheat yield 61 

increases, while GEPIC projects large declines in yield across the tropics. A similar 62 

latitudinal trend is projected for soybean but with little decline in the tropics. Soybean yield 63 

increases are projected across Eurasia in all models, and also Argentina and South Africa in 64 

GEPIC/PEPIC. The latitudinal gradient is less pronounced for rice, with the MIROC5 climate 65 

model suggesting a large increase in yield in the Southern hemisphere. MIROC5 is more 66 

likely than other climate models to lead to large yield increases for several crops in the 67 

Southern hemisphere. 68 

Eight further temperate and tropical annual crops are considered in LPJmL. Cassava yields 69 

increase under all four GCMs within 40 ° of latitude, driven by large increases in India. 70 

However, all four GCMS suggest a smaller increase within 10 °N, caused by a yield decline 71 

in northern Brazil. Peanut, pea, rapeseed, sugarbeet, and sunflower show increases at all 72 

latitudes, with the largest increases at higher latitudes. Millet also show increases at high 73 

latitudes, but yield declines at low latitudes. There are no consistent differences among the 74 

four GCMs for any of the crops. Results for sugarcane are more variable. Mean yield change 75 

projections suggest declines in Brazil and other Latin American countries, and in Southeast 76 

Asia, but an increase in the USA and in East Africa. Previous analyses based on the more 77 

extreme RCP 8.5 scenario similar yield increases with latitude latitudes, but more severe 78 

declines for some crops at low latitudes 14. 79 

Total projected crop production change is difficult to estimate because the spatial 80 

distributions of planted areas are impossible to predict, due to the influence of socioeconomic 81 

and cultural factors on planting choice. However, if production is calculated from projected 82 

yield changes on an estimate of current crop production, increases in production are expected 83 

for many crops (Fig. S5). Global wheat, cassava, rapeseed and sunflower production are 84 

predicted to increase by all models. LPJmL, and two climate models driving GEPIC/PEPIC, 85 

predict increases for rice. All models except HADGEM2-ES predict global soybean 86 

production increases (see Methods for analysis of soybean production). None of the crop 87 

models unequivocally project declines in production for any crop. In summary, crop models 88 

project global production increases driven primarily by yield increases at high latitudes, even 89 

without changes in cropping patterns to match shifts in areas likely to be most productive. 90 

Projected pathogen pressure changes 91 
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Could these yield increases be offset by increasing pathogen pressure? Infection rates by 92 

plant pathogens are strongly determined by abiotic conditions, including temperature 3. We 93 

estimated relative infection rates of 79 fungal and oomycete plant pathogens, for which 94 

minimum, optimum and maximum infection temperatures were available in the literature 3 95 

(Fig. 1, Table S1). We chose to model experimentally-derived infection temperature 96 

responses rather than the more commonly-measured growth in culture, because in planta 97 

responses differ substantially from in vitro responses 3. Essentially, the temperature range for 98 

infection is narrower, and optimum temperature lower, than for growth in culture. However, 99 

for two important pathogens, Magnaporthe oryzae (causing rice blast) and Zymoseptoria 100 

tritici (Septoria tritici blotch of wheat), infection temperatures were not available therefore 101 

we used lesion development and growth in culture temperatures, respectively. Optimum 102 

infection temperatures varied from 10.5 to 34.67 °C among species (median 22.0, IQR 19.36 103 

- 25.00). As global temperatures rise (Fig. S6), infection risks (and distributions) of these 104 

pathogens should shift latitudinally 4. 105 

 106 

Fig 1. Summary infection cardinal temperature for 79 plant pathogens included in this study. 107 

(a) Cardinal temperature geometry determined by estimated Tmin, Topt, and Tmax, as well as 108 

Equation S1. Pink line refers to temperatures within Trange(0.5) of the infection cardinal 109 

temperature for an example pathogen. (b) Points refer to Topt, bars refer to Trange. Colour refers 110 

to Topt. Blue and red refer to cool- and hot-adapted pathogens, respectively. Pathogen ID in  111 

Table S1. 112 
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Defining pathogen burden as the number of pathogens with high infection risk (relative rate ³ 113 

0.5) for their hosts in a particular location (Figs. S7, S8), we found that the overall change in 114 

burden decreases at low latitudes, and increases at high latitudes, by the end of the 21st 115 

Century under RCP 6.0 (Fig. 2a). Europe and China are particularly vulnerable to increasing 116 

pathogen burden, while Brazil, sub-Saharan Africa, India and Southeast Asia are likely to 117 

have reduced disease burdens. Rapid global dissemination by international trade and 118 

transport 15 means that these pathogens are likely to reach all suitable areas that are not yet 119 

affected (Fig. S9). 120 

Pathogen burdens are projected to vary through the year, with the largest increases in North 121 

America, Europe and China during northern-Hemisphere autumn (Figs. 3, S10). Decreases in 122 

pathogen burden are expected at low to mid latitudes in northern-Hemisphere winter, shifting 123 

northwards into higher latitudes during summer. For the pathogens we modelled, India is 124 

expected to see large declines in infection risk over much of the year, with increases in 125 

northern parts of India only in winter. Under increasingly strong greenhouse gas emissions 126 

scenarios, the overall latitudinal patterns of pathogen burden and compositional change in 127 

both Hemispheres remain the same, but their amplitudes increase (Fig. 4). Burdens decline at 128 

low latitudes and increase at high latitudes, while compositional changes peaks at around 10° 129 

and 30-40°. 130 

 131 

Fig 2. Average change in (a, b) pathogen burden and (c, d) pathogen turnover under RCP 6.0 132 

across all months. Pathogens restricted by host distributions extracted from EarthStat. White 133 

grid cells contain no hosts in the EarthStat database, and were excluded from the analysis. 134 
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Future changes in pathogen burden closely mirror changes in yield by latitude for the 135 

majority of crops (Fig. 5). The majority of rice pathogens in our sample show increased 136 

infection risk across all latitudes, with few showing a widespread decline in the tropics. 137 

While the infection risk of several maize pathogens is expected to increase at low latitudes, 138 

the risk from many others will decline. Maize, millet and sugarcane are expected to undergo 139 

yield declines at low latitudes, but these will be accompanied by declines in infection risk 140 

from many of their pathogens. Soybean, sunflower and wheat show little yield gain in the 141 

tropics, while experiencing reduced infection risk from a number of pathogens. Conversely, 142 

both yields and pathogen burden increase strongly with latitude. Cassava pathogen burden 143 

generally increases near the equator. Overall, high latitudes will see increasing potential crop 144 

yields while simultaneously facing a larger burden of fungal and oomycete pathogens. 145 

 146 

Fig 3. Impact of RCP and pathogen restriction method on change in pathogen burden and 147 

turnover. Red and blue indicate increases and decreases in pathogen burden, respectively. 148 

Darker pink indicates larger changes in pathogen turnover. Pathogens restricted by estimates 149 
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of host distributions extracted from (a) EarthStat and (b) MIRCA2000. Fewer pathogens 150 

included in (b) due to fewer host distributions available. 151 

 152 

Fig. 4. Impact of RCP on change of pathogen burden and species turnover. (a, c, e, g) Northern 153 

hemisphere. (b, d, f, h) Southern Hemisphere. 154 

Changing climate will affect not only the number of pathogens able to infect crops, but also 155 

the compositions of pathogen assemblages (Figs. 2cd). Overall, the largest changes in 156 

pathogen species composition will occur at high latitudes in the northern Hemisphere, 157 

particularly in Europe, China and central to eastern USA. Large changes are also expected in 158 

the Sahel, but this region, like much of Brazil, India and southeast Asia, will see declines in 159 

overall burden. Hence, the change in pathogen assemblage in these areas is unlikely to pose a 160 

major threat to production. Europe, China and Peru are highlighted as regions where both 161 

overall burden and species turnover are greatest. These regions will therefore experience the 162 

greatest number of emerging, i.e. novel, pathogen pressure. Through the year, two pulses of 163 

pathogen assemblage change are seen at high latitude in the northern Hemisphere, first 164 

around April, second around September (Fig. 3). The largest changes in species composition 165 

are expected in October and November in northern USA and Canada, Europe, and northern 166 

China (Figs. 3, S13). The largest changes in the Sahel are seen during April and May, while 167 

the largest changes in India are seen during May and June. 168 
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 169 

Fig 5. Changes in crop yield and pathogen infection rate under RCP 6.0. Major crops shown 170 

in the first row. (mai) maize, (ric) rice, (soy) soybean, (whe) wheat, (cas) cassava, (mil) 171 

millet, (nut) peanut, (pea) pea, (rap) rapeseed, (sgb) sugar beet, (sug) sugar cane, and (sun) 172 

sunflower. Red and blue indicate increases and decreases in pathogen infection rate, 173 

respectively. Green and brown indicate increases and decreases in crop yield, respectively. 174 

For major hosts, colour saturation for each crop model (LPJmL, GEPIC, PEPIC) climate 175 

model (GFDL-ESM2M, HADGEM2-ES, IPSL-CM5A-LR, MIROC5) combination was set to 176 

1/12. For other hosts, colour saturation was set to 1/4 as only the LPJmL model was used. 177 

Colour saturation for each pathogen was set to 1/10 (min = 3, max = 15 pathogens per host, 178 

Table S2). 179 

We validated our models against current known pathogen distributions (Fig. S9, Table S3). 180 

Temperature-related infection risk alone gave high false positive rates (predicting pathogen 181 

presence in regions where the pathogen is currently unreported). Restricting predicted 182 

distributions by host distributions improved overall model fit, reducing false positive rates 183 

and increasing true negative rates. High false positives rates were more likely in countries 184 

with low per capita GDP (Fig. S9), indicating an under-reporting bias in developing 185 

countries5. 186 

Model limitations 187 

Our analyses are limited by the availability of infection temperature responses in the 188 

published literature. These are not a random sample of all known fungal and oomycete plant 189 

pathogens. Given that the historical research focus on plant pathogens has been in developed 190 
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countries at high latitudes 16, our sample is biased towards pathogens which have evolved to 191 

infect hosts optimally in cooler climates (Fig. S14). However, our sample does include 192 

pathogens able to infect both tropical and temperate crops (Figs. S7, S8), hence this bias does 193 

not preclude conclusions being drawn for tropical pathogens. 194 

We did not attempt to model intra-specific variation in temperature response functions, but 195 

such variation does exist 17,18. However, analysis of historical pathogen distributions indicates 196 

that range shifts have occurred in line with expectation suggesting that temperature 197 

adaptation is slow in comparison with climate change 7. We employed infection temperatures 198 

rather than the more commonly-measured growth in axenic culture 3, for all but two 199 

pathogens which were included because of their importance in agriculture 1. The distinction 200 

is important because growth in culture has a wider temperature range for most pathogens 3, 201 

and models based on growth in culture would suggest a wider geographical range than 202 

models based upon infection dynamics. 203 

We only considered temperature as a determinant of infection rates. Infection by many fungal 204 

and oomycete plant pathogens is promoted by wet conditions 19. Multi-model mean 205 

projections for precipitation to the end of the 21st Century suggest that precipitation will 206 

increase significantly in boreal regions and decrease significantly around the Mediterranean, 207 

with smaller and less certain changes elsewhere even under a high-emissions scenario 20. 208 

Thus, there appears to be no major change in hydrology that would alter our overall 209 

conclusions on latitudinal shifts in pathogen burden. In addition, global observations21 and 210 

field-scale experiments22 suggest that temperature is the most important determinant of 211 

fungal distributions and activity. 212 

We did not include potential future changes in crop phenology. Warming is expected to 213 

extend the growing season of temperate crops by a few days by the end of the 21st Century, 214 

while increasing temperatures may reduce the length of the growing season in tropical crops 215 
23. As our seasonal modelling was conducted using monthly crop calendars, the influence of 216 

altered growing seasons on our results is likely to be small. Finally, we did not include 217 

potential future changes in crop distributions. The socioeconomic factors leading to changes 218 

in future crop distributions are challenging to predict 24, and differing future land use 219 

scenarios are beyond the scope of the present analysis. 220 
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Future crop yields have been modelled using only plant physiological responses to abiotic 221 

conditions. We analysed pathogen temperature physiology to understand how indirect, biotic 222 

responses to climate change could impact production. We have shown that crop disease 223 

burdens will track crop responses, increasing at higher latitudes where climate change is 224 

expected to boost yields. Furthermore, the suite of crop diseases that farmers face in some of 225 

the world’s most productive regions will change dramatically. Agriculture must prepare 226 

accordingly if any potential benefits of climate change on crop yields are to be realized. 227 
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Methods 236 

Crop yields 237 

Annual crop yield projections from 2006-2099 were obtained from the Inter-Sectoral Model 238 

Intercomparison Project (ISIMIP, www.isimip.org). The crop models were LPJmL 11, GEPIC 239 
25 and PEPIC 26. GEPIC and PEPIC are derived from the EPIC agricultural yield and water 240 

quality model 27. Each of these crop models was driven by four global circulation models: 241 

MIROC5 28, HadGEM2-ES 29, GFDL-ESM2M 30 and IPSL-CM5A-LR 31. Annual crop yield 242 

estimates under RCP 6.0, with CO2 fertilization and no irrigation, were obtained for all 243 

available crops at 0.5 ° spatial resolution. GEPIC/PEPIC modelled maize, rice, soybean and 244 

wheat. LPJmL additionally included cassava, millet, pea, peanut, rapeseed, sugarbeet, 245 

sugarcane and sunflower. Yield differences between the 2060 – 2080 mean and 2010 – 2030 246 

mean were calculated per grid cell. 247 

Note on difference between modelled production and FAO reported production from 2006 to 248 

2018 (Figs. S5, S15). For all crops except cassava and sugarcane, modelled total global 249 
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production was similar to reported production. For example, for maize the modelled 250 

production was 0.26 – 1.00 of reported production (per year and model), while for soybean it 251 

was 0.98 – 2.26 of reported production. Much of this deviation can be explained by increases 252 

in harvested area for most crops since 2000 (Fig. S15). For cassava, modelled production was 253 

0.10 – 0.14 of reported production, and for sugarcane, 0.004 – 0.009 of reported production. 254 

These differences are caused by a mismatch between locations predicted as suitable for crop 255 

production by the LPJmL model, and the locations allocated to a crop in the Earthstat dataset. 256 

For the LPjML sugarcane model driven by HADGEM2, only 0.38 % of grid cells predicted 257 

to have yields above 30 t ha-1 (around half of current global mean yield) in 2006 were also 258 

predicted to contain a minimum of 1 % by area of sugarcane in 2000. 259 

Climate data 260 

Global estimates of current (1970 - 2000 average) and future (2061 - 2080 average) average 261 

monthly temperature at 5 arc minute spatial resolution were obtained from the WorldClim 262 

database (www.worldclim.org) [5/2019]. For future estimates, all global climate models 263 

(GCMs) of Representative Concentration Pathways (RCP) 2.6, 4.5, 6.0 and 8.5 were obtained 264 

(Table S4) [5/2019]. For each GCM, average future monthly temperature was calculated as 265 

the mid-point of average maximum and minimum monthly temperature, as no average 266 

estimates were available. For each RCP, average monthly temperature was calculated as the 267 

median of all GCMs for that RCP. 268 

Pathogen dataset construction 269 

Estimates of pathogen infection cardinal temperature were extracted from two sources 3,32. 270 

Collectively, only pathogens with at least one minimum (Tmin), optimum (Topt), and 271 

maximum (Tmax) estimate for infection cardinal temperature were included. To aid matching 272 

of species between sources, pathogen species names reported in the latter were updated 273 

according to the Species Fungorum database (SFD) (www.speciesfungorum.org) [accessed 274 

April, 2020] (Table S5). If no information was available on the SFD, Mycobank 275 

(www.mycobank.org) was used as an alternative [accessed April, 2020]. Discovery and 276 

sanction author(s) of species were not provided in one source 32, and are not considered here. 277 

Pathogen species names have previously been processed 3 and so were not processed further. 278 

Mean Tmin, Topt, and Tmax infection cardinal temperature were calculated for each pathogen 279 

(hereafter referred to as the ‘Pathogen dataset’). Magnaporthe oryzae and Zymoseptoria 280 
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tritici are two of the most destructive pathogens of rice and wheat 1, respectively, but 281 

infection temperature estimates are unavailable. We therefore included cardinal temperature 282 

for lesion development of M. oryzae 33, and average growth in culture cardinal temperatures 283 

for 18 strains of Z. tritici 34. It was assumed that average cardinal temperature for each 284 

pathogen was identical across all hosts, for each respective pathogen. 285 

The Plantwise database (CABI) [accessed 28/10/2013, by permission] was used to estimate 286 

host range of each pathogen in the Pathogen dataset. To improve matching of pathogen 287 

species names, some names were updated in the Plantwise database, according to the SFD or 288 

Mycobank [accessed 2019 - 2020] (Table S1). All plant-pathogen interaction records for 289 

hosts recorded in EarthStat (http://www.earthstat.org) and MIRCA2000 35 were extracted 290 

from the Plantwise database. To improve matching of host species, scientific names were 291 

assigned to plant hosts found in EarthStat and MIRCA2000 (Table S6). Pathogens absent 292 

from the extracted plant-pathogen interaction dataset were excluded from the Pathogen 293 

dataset. Consequently, 79 pathogens were included in the Pathogen dataset and hence 294 

included in this study (Fig. 1, Table S1). 295 

Estimating global distributions of pathogen hosts 296 

Two approaches were used to estimate global host distributions for each pathogen included in 297 

the Pathogen dataset. First, for 145 crops (including forage crops, Table S6), global estimates 298 

of average fractional proportion grid cell harvested (5 arc minute spatial resolution) were 299 

obtained from EarthStat (http://www.earthstat.org). Only crops that could be clearly 300 

identified in the Plantwise database were included (i.e. “mixed grain” was not included). 301 

Each crop map was converted to binary presence/absence. If grid cell harvest area fraction 302 

was ≥ 0.00001 (equivalent to 0.1 m2 ha-1), the host was estimated as present in said grid cell. 303 

If < 0.00001, hosts were assumed absent. These values were chosen to ensure that crops were 304 

estimated as present in grid cells, even if average fractional proportion harvested were 305 

estimated as very small. This approach enabled estimation of global distribution for each crop 306 

in EarthStat. 307 

Second, for 24 crops (Table S6), global estimates of growing season periods (around the year 308 

2000) were extracted from MIRCA2000 at 30 arc minute spatial resolution, and resampled to 309 

5 arc minute resolution using neighbour joining algorithm in package raster for R 36. For 310 

each crop, rainfed and irrigated growing season estimates were combined. This provided 311 
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global monthly estimates of global host presence (within growing season) and absence 312 

(outside of growing season), and hence monthly global distribution estimates, at 5 arc minute 313 

spatial resolution for 24 crops. 314 

For each pathogen, global distributions for all recorded hosts were combined, and converted 315 

to binary presence/absence. This provided a single potential geographical distribution of each 316 

pathogen, based on reported pathogen host range (Plantwise) and geographic host 317 

distributions (EarthStat or MIRCA2000) (Fig. S7, S8). For example, if a pathogen was 318 

recorded in the Plantwise database to successfully infect four hosts recorded in EarthStat, any 319 

grid cells that were estimated to contain ≥1 of these hosts (as above) were converted to 1 320 

(present), and grid cells that there were estimated to contain 0 hosts were converted to 0 321 

(absent). This was done independently for host distributions estimated from EarthStat and 322 

MIRCA2000, resulting in two alternative potential geographical distribution of each 323 

pathogen. Where MIRCA2000 was utilised, fewer pathogens were included, due to fewer 324 

included crop species. Further, where host range was estimated from MIRCA2000, the 325 

potential geographical range of a pathogen of estimated each month, due to host growing 326 

season (Fig. S8). Host ranges were assumed independent for each pathogen, i.e. competition 327 

between pathogens for particular hosts was assumed to not occur. 328 

Modelling pathogen temperature suitability 329 

In all analyses, for each pathogen, average monthly temperature (T) suitable for host 330 

infection was assumed to be any temperature within Tmin(0.5) and Tmax(0.5) of the pathogens 331 

cardinal temperature, referred to as Trange(0.5). Tmin(0.5) and Tmax(0.5) refer to temperatures where 332 

a pathogens infection response rate = 0.5 (at Topt the responses = 1, at Tmin and Tmax the 333 

response = 0) (Fig. 1, Table S1). Pathogen temperature responses were calculated by a beta 334 

function 37 (Equation S1). If average monthly (i) grid cell (j) temperature (T{i,j}) fell within a 335 

pathogens Trange(0.5), the grid cell was deemed suitable for host infection, and hence the 336 

pathogen was recorded as ‘present’. Pathogens were recorded as ‘absent’ for all other grid 337 

cells. 338 

Equation	S1: 𝑟.T{1,3}5 = 7
T89: − T{1,3}
T89: − T<=>

?7
T{1,3} − T8@A
T<=> − T8@A

?
.BCDEFBGHI5 .BGJKFBCDE5L

 339 

Model validation 340 
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Pathogen presence was calculated for current average monthly temperature estimates utilising 341 

two alternative approaches. In the ‘climate-only model’, pathogens were not restricted by 342 

host distributions. In the ‘climate-host model’, pathogens were additionally restricted by host 343 

distributions estimated from EarthStat. In both model iterations, a summary global 344 

distribution of each pathogen was calculated, whereby if a pathogen was modelled as present 345 

in a grid cell (j) during any month (i), then the pathogen was classed as ‘present’ in that grid 346 

cell (j). Outputs from both model iterations were then compared to observed records of 347 

pathogen presence at country or state scale (hereafter collectively referred to as ‘region’, 396 348 

regions total), from the CABI Plantwise database. Pathogen names in this dataset were 349 

updated according to the SFD or Mycobank [accessed 2019 - 2020] to improve matching to 350 

the Pathogen dataset (Table S7). Discovery and sanction author(s) of species were not 351 

provided in this dataset, and so were not considered here. 13 pathogens (Alternaria 352 

cucumerina, Botrytis cinerea, Cercospora carotae, Didymella arachidicola, Diplocarpon 353 

earlianum, Fusarium oxysporum f.sp. conglutinans, Fusarium roseum, Globisporangium 354 

ultimum, Nothopassalora personata, Puccinia menthae, Septoria glycines, Stigmina 355 

carpophila, and Wilsoniana occidentalis) were excluded from model validation, due to an 356 

apparent lack of observational records. 357 

Models were run at 5 arc minute resolution, whereas observed pathogen records were at 358 

regional scale (Fig. S9a, c). Hence, model outputs were summed to regional scale (Fig. S9b, 359 

d). If a pathogen was modelled as ‘present’ in any grid cell (j) in a region, for any month (i), 360 

the pathogen was modelled as ‘present’ at the regional scale. Country-level gross domestic 361 

product based on purchasing power parity (GDP (PPP)) and research output (number of 362 

publications) were obtained from the World Bank Data website (data.worldbank.org) 363 

[accessed November 2018]. For the climate-host model, GDP (PPP) and research output were 364 

compared by Welch's Two Sample t-test between countries where (1) both the climate-host 365 

model estimated, and the CABI Distribution Maps of Plant Diseases recorded, a pathogen as 366 

present (true positive (Sensitivity)), and where (2) the climate-host model estimated a 367 

pathogen as present, but the CABI Distribution Maps of Plant Diseases recorded a pathogen 368 

as absent (false positive (Type 1 error)). Where GDP (PPP) and research output were 369 

recorded at country scale, but pathogen records were recorded are state scale, states were 370 

assigned country-level GDP (PPP) and research output. 371 

Changes in global pathogen infection temperature suitability 372 
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Pathogen presence was calculated for current and future average monthly (i) grid cell (j) 373 

temperature (T{i,j}), utilising two alternative host-restriction approaches. First, pathogens 374 

were restricted by host distributions estimated from EarthStat, for each future climate 375 

scenarios (RCP 2.6, 4.5, 6.0, and 8.5). Second, pathogens were restricted by host distributions 376 

estimated from MIRCA2000, and RCP 6.0 was used to estimate future average monthly 377 

temperature. This allowed for comparison between host restriction method on model outputs 378 

of change in spatial patterns of pathogen infection temperature suitability. 379 

For each model, the change in pathogen burden was calculated as the difference in pathogens 380 

modelled as ‘present’ under future climate conditions, minus those under current climate, for 381 

each grid cell (j), for each month (i). Within a grid cell, increases or decreases in pathogen 382 

burden do not reflect the change of species composition 8. Therefore, for each model, a 383 

modified Jaccard (J) index (1 - J) of community dissimilarity (species turnover) 8,38 was 384 

calculated to characterize the change in community composition in each grid cell (j), for each 385 

month (i). High pathogen turnover represents high community dissimilarity or high species 386 

turnover, indicating a high change in species composition. 387 

Change in pathogen infection rate under RCP 6.0 388 

Change in spatial patterns of pathogen infection temperature suitability was calculated, as 389 

above, with the following modifications. First, a model was constructed for each host 390 

separately, using MIRCA2000 estimates of host distributions. Second, pathogen infection 391 

rate was not converted to binary presence/absence using Trange(0.5). Instead, the change in a 392 

pathogens infection rate was calculated as the difference in infection rate under future climate 393 

conditions, minus that calculated under current climate, for each pathogen, for each grid cell 394 

(j), for each month (i). Only RCP 6.0 was used for future estimates of global temperature. We 395 

used estimates from MIRCA2000 for pulses as a proxy for pea crop (Pisum sativum). The 396 

average change of infection rate for each pathogen was calculated at each latitude (5 arc 397 

minute resolution), and then averaged to 5-degree resolution. The calculated average change 398 

in pathogen infection rate was compared to climate change-driven changes in yield for each 399 

crop, respectively. The number of pathogens included for each host is provided in Table S2. 400 

Pathogen sampling bias 401 

Northern and southern latitudinal ranges for plant pests and pathogens were extracted from 402 

the CABI Plantwise database. As above, some pathogen names in this dataset were updated 403 
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according to the SFD or Mycobank [accessed 2019 – 2020] to improve matching to the 404 

Pathogen dataset (Table S7) and 13 pathogens were excluded from the analysis, due to an 405 

apparent lack of observational records. Pathogen names were not updated in this dataset if 406 

they were absent from the Pathogen dataset. Northern and southern latitudinal ranges for 407 

pathogens included in the Pathogen dataset were compared to that of all fungi and oomycetes 408 

pathogens for which latitudinal ranges were available. 409 
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