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Abstract 19 

Proteins are the workhorses of the cell, yet they carry great potential for harm via misfolding 20 

and aggregation. Despite the dangers, proteins are sometimes born de novo from non-coding 21 

DNA. Proteins are more likely to be born from non-coding regions that produce peptides that 22 

do little to no harm when translated than from regions that produce harmful peptides. To 23 

investigate which newborn proteins are most likely to “first, do no harm”, we estimate fitnesses 24 

from an experiment that competed Escherichia coli lineages that each expressed a unique 25 

random peptide. A variety of peptide metrics significantly predict lineage fitness, but this 26 

predictive power stems from simple amino acid frequencies rather than the ordering of amino 27 

acids. Amino acids that are smaller and that promote intrinsic structural disorder have more 28 

benign fitness effects. We validate that the amino acids that indicate benign effects in random 29 

peptides expressed in E. coli also do so in an independent dataset of random N-terminal tags in 30 

which it is possible to control for expression level. The same amino acids are also enriched in 31 

young animal proteins. 32 

  33 
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Introduction 34 

Proteins are the workhorses of the cell, but they are dangerous. For example, the polypeptide 35 

backbone is the key structural feature of amyloids, putting all proteins at risk of forming 36 

insoluble aggregates (Chiti and Dobson 2017), and most proteins are expressed at or just 37 

beyond their solubility limits (Vecchi, et al. 2020). Despite these dangers, new protein-coding 38 

genes are nevertheless born de novo from essentially random sequences (McLysaght and 39 

Guerzoni 2015; Van Oss and Carvunis 2019; Vakirlis, Carvunis, et al. 2020). To be beneficial 40 

enough for de novo birth, a random peptide must first do no serious harm, i.e. it must not be 41 

detrimental to the basic functioning of a cell. Here we quantify the degree to which, and the 42 

summary statistics via which, a random peptide’s propensity for harm can be predicted. 43 

Neme et al. (2017) competed over 2 million Escherichia coli lineages, each containing a 44 

plasmid designed to express a unique random peptide, and tracked lineage frequencies over 45 

four days using deep DNA sequencing. This study has been criticized for providing too little 46 

support for the beneficial nature of the top candidates (Weisman and Eddy 2017; Knopp and 47 

Andersson 2018). But these criticisms do not detract from using the dataset to identify 48 

statistical predictors of serious harm versus relatively benign effect. Neme et al. (2017) used a 49 

strong promoter, so evaluation is of tolerance to high expression. Some fitness differences 50 

might be due to variation in expression e.g. due to auto-downregulation at the RNA level 51 

(Knopp and Andersson 2018) - we will return to this point in the last portion of the Results. 52 

Here we pursue analyses based on the hypothesis that the properties of the peptides 53 

contribute to variation in fitness among lineages.  54 
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Conveniently, computational predictors from peptide sequences alone are available for 55 

some properties, such as intrinsic structural disorder (ISD) and aggregation propensity. Because 56 

insoluble proteins have been implicated in toxicity and disease (Chiti and Dobson 2017) and 57 

peptides with high ISD are less prone to forming insoluble aggregates (Linding, et al. 2004; 58 

Angyan, et al. 2012), we hypothesize that highly disordered peptides are least likely to be 59 

strongly deleterious. Random sequences with high predicted disorder are well-tolerated in vivo 60 

(Tretyachenko, et al. 2017). Existing mouse (Wilson, et al. 2017) and Drosophila (Heames, et al. 61 

2020) proteins, which are the product of evolution, are predicted from their amino acid 62 

sequences to be more disordered than what would be translated from intergenic controls.  63 

Younger protein-coding sequences should be particularly constrained to first do no 64 

harm, as they have had little time to evolve more sophisticated harm-avoidance strategies (Foy, 65 

et al. 2019). In support of the idea that high ISD is an accessible way to avoid harm, young 66 

animal and fungal domains (James, et al. 2021) and genes (Wilson, et al. 2017; Foy, et al. 2019; 67 

James, et al. 2021), and novel overprinted viral genes (Willis and Masel 2018) have higher 68 

predicted disorder than their older counterparts. Some studies have found that putative de 69 

novo protein candidates in Saccharomyces yeasts have lower rather than higher ISD (Carvunis, 70 

et al. 2012; Basile, et al. 2017; Vakirlis, et al. 2018), but this could be an artifact of 71 

proportionately greater inclusion of non-genes within the younger age classes. When Wilson et 72 

al. (2017) reanalyzed Carvunis et al.’s (2012) “proto-genes” of different ages, using more 73 

rigorous criteria to exclude non-genes from the data, the direction of the ISD trend was 74 

reversed. The same reversal of trend following a quality filter was also found by Vakirlis et al. 75 

(2018).  76 
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How much do amino acid frequencies matter compared to the order in which those 77 

amino acids are arranged? Prior research on young genes has suggested that high predicted ISD 78 

in that context is driven primarily by amino acid frequencies, with amino acid order playing a 79 

more minor role (Wilson, et al. 2017). Fortunately, the dataset of Neme et al. (2017) is large 80 

enough to look at the frequencies of each amino acid as predictors, rather than assume that 81 

existing prediction programs such as IUPred (Dosztányi, et al. 2005; Meszaros, et al. 2018) or 82 

Tango (Fernandez-Escamilla, et al. 2004; Linding, et al. 2004; Rousseau, et al. 2006) integrate all 83 

information about both amino acid frequencies and ordering in the best possible way. We can 84 

then test whether such programs have additional ability to predict peptide fitness, above and 85 

beyond the influence of amino acid frequencies. In doing so, we can estimate the relative roles 86 

of amino acid frequencies versus amino acid ordering in predicting fitness, as well as determine 87 

which amino acids have which effects. 88 

Here we investigate the degree to which amino acid frequencies and amino acid 89 

ordering can predict the fitness effects of random peptides, and if so, which properties are 90 

most predictive. We also investigate whether the properties that help random peptides avoid 91 

harm in E. coli are also enriched in young eukaryotic proteins. With our work, we hope to 92 

further our understanding of how peptides avoid harm. 93 

Methods 94 
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Data retrieval 95 

Neme et al. (2017) performed seven experiments where E. coli lineages, each with a plasmid 96 

containing a unique random peptide, were grown and tracked using deep DNA sequencing. We 97 

downloaded sequencing counts from Dryad at http://dx.doi.org/10.5061/dryad.6f356, and 98 

obtained amino acid and nucleotide sequences directly from Rafik Neme. Experiment 7 was by 99 

far the largest with over 4 million reads, more than five times larger than the 2nd largest 100 

experiment and over 1.2 million reads more than all other experiments combined. Experiment 101 

7 contained all the peptides that the other six experiments classified as “increasing” or 102 

“decreasing,” and more. Small datasets from these other six experiments yield limited 103 

information because of the need to model changing mean fitness in a population, including not 104 

just the tracked lineages but also cells with an empty vector (see Estimating lineage fitness from 105 

random peptide sequencing counts section). We therefore chose to restrict our analysis to 106 

experiment 7. Experiment 7 consists of the numbers of reads of each random peptide sequence 107 

in 5 replicate populations of E. coli at 4 time points. We assume that fitness is identical across 108 

replicates, so we summed across all 5 replicates to obtain a total number of reads for each 109 

polypeptide at each time point.  110 

Following Neme et al. (2017), we took the 1061 peptides out of over one million that 111 

had ≥5 reads across all 5 replicates of experiment 7. Neme et al. (2017) used this cutoff because 112 

it is not possible to infer fitness with any reasonable resolution for individual peptides with 113 

fewer than five reads. The dramatic nature of this data reduction is unsurprising, firstly because 114 

each initial unique peptide was present in only one copy, and secondly because most peptides 115 
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are likely deleterious. We note therefore that our analyzed subset of peptides with at least five 116 

reads are certainly non-lethal, and likely less deleterious than the average random peptide. 117 

Nonetheless, we achieved enough resolution to distinguish between more and less harmful 118 

peptides, with remarkably large effect sizes considering the restricted fitness range. 119 

We further excluded the six peptides that, while meeting the criterion of ≥5 reads, had 120 

all of those reads at the same timepoint, leaving 1055 peptides for analysis.  121 

 122 

Estimating lineage fitness from random peptide sequencing counts 123 

The expected number of reads 𝜆𝑖𝑡 of peptide 𝑖 at times 𝑡=1,2,3,4 was modeled as: 124 

𝜆𝑖𝑡 = 𝑁𝑡𝑝𝑖0 ∏
𝜔𝑖

𝑊𝑘−1

𝑡

𝑘=1

, 125 

where 𝑁𝑡 is the observed total number of reads, 𝑝𝑖0 is the initial frequency of peptide 𝑖 at the 126 

beginning of the experiment (prior to the round of selection used to produce the first measured 127 

timepoint 𝑡 = 1), 
𝜔𝑖

𝑊𝑡
 is the fitness of bacteria with peptide 𝑖 at time 𝑡 (i.e. their propensity to 128 

contribute to the next time point), and 𝑊𝑘 is population mean fitness at time 𝑘, including 129 

bacteria containing empty vectors for which we have no direct count data.  130 

The likelihoods of observed peptide counts were estimated from this expectation and 131 

two different error models. A Poisson distribution, which captures sampling error alone, was 132 

used to generate our initial estimates of 𝑝𝑖𝑜, 𝜔𝑖, and 𝑊𝑘 (collectively yielding 𝜆𝑖𝑡) because it is 133 
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analytically tractable. Under a Poisson error function, the likelihood of observing 𝑛𝑖𝑡 reads of 134 

peptide 𝑖 at time 𝑡 is 135 

𝑓𝑃𝑜𝑖𝑠𝑠(𝑛𝑖𝑡|𝜆𝑖𝑡) =
𝜆𝑖𝑡

𝑛𝑖𝑡ⅇ−𝜆𝑖𝑡

𝑛𝑖𝑡!
. 136 

To also capture variance inflation 𝜅 due to PCR amplification, we used a negative binomial 137 

distribution in the Polya form: 138 

𝑓𝑁𝐵𝑃(𝑛𝑖𝑡| 𝜆𝑖,𝑡, 𝜅) = (
Γ (𝑛𝑖𝑡 +

𝜆𝑖,𝑡

𝜅 − 1
)

𝑛𝑖𝑡! Γ (
𝜆𝑖,𝑡

𝜅 − 1)

) (
1

𝜅
)

𝜆𝑖,𝑡
𝜅−1

(1 −
1

𝜅
)

𝑛𝑖𝑡

 139 

where Γ( ⋅ ) is the gamma function. We used the initial estimates of 𝑝𝑖𝑜, 𝜔𝑖, and 𝑊𝑘 to 140 

numerically fit the negative binomial model. For the specifics of fitting the Poisson and negative 141 

binomial models, see Supporting Information. Weights were calculated, for use in downstream 142 

linear models, from this likelihood inference procedure, as the inverse of Fisher information 143 

(see Supporting Information). 144 

An existing software package for estimating lineage fitness from sequencing counts is 145 

Fit-Seq (Li, et al. 2018), which captures the amplification of PCR error through a more 146 

sophisticated distribution for the number of reads that is derived in the supplementary 147 

information of Levy et al. (2015). However, Fit-Seq assumes that mean fitness is a simple 148 

average of all measured lineages’ fitness, requiring all individuals to be tagged and measured. 149 

But Neme et al.’s (2017) experiment included lineages carrying an empty plasmid, i.e. with the 150 

selectable marker but no random peptide. Worse, the proportion of cells with an empty vector 151 

can be presumed to increase over time. In the absence of a reliable way to directly quantify 152 
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cells with empty vectors, we instead consider mean population fitness over time to be a set of 153 

independent parameters to be fitted. 154 

Clustering non-independent sequences 155 

Upon visual inspection, we found that some peptide sequences were extremely similar, with 156 

only one or two amino acid differences; these data points will not contain independent 157 

information about the relationship between sequence and fitness. To account for non-158 

independence, we clustered peptides by their Hamming distance, and either took only the 159 

peptide whose fitness had the highest weight within its cluster, or took weighted means within 160 

clusters, or included cluster in our regression models as a random effect term. Single-link 161 

clustering with Hamming distance cutoffs of 6 to 29 amino acids all produced an identical set of 162 

646 clusters for our 1055 peptides. The largest cluster had 228 random peptides, and the 163 

second largest had only 13. The vast majorities of clusters contained only 1 sequence (Dataset 164 

S1). A few peptides had mutations in their non-random regions; these mutations were counted 165 

in our Hamming distance measurements. 166 

Such similar sequences are highly unlikely to arise by chance if the peptides were truly 167 

random; 2050 ≈ 1065 peptides are possible, far more than the ~2 × 106 observed. Because we 168 

analyze only peptides with at least 5 reads, replicated sequencing error is an unlikely cause. We 169 

see the same nearly-identical sequences appearing in every experimental replicate, suggesting 170 

either that mutations occurred during Neme et al.’s (2017) initial growth phase, or that the 171 

“random” peptides synthesized for the experiment are not entirely random. We note that 172 
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construction of the “random” peptide library involved ligations of a smaller set of “seed” 173 

sequences, introducing non-randomness at this stage.  174 

Predictors of fitness 175 

All peptides are exactly 65 amino acids long with 50 amino acids of random sequence, so there 176 

was no need to control for length. 177 

GC content 178 

Many amino acid sequences mapped to several possible nucleotide sequences, as part of the 179 

same problem of mutation or non-random construction discussed above. To calculate one GC 180 

content for each random peptide, we calculated a simple average of GC content across all the 181 

nucleotide sequences in the dataset that map to the peptide with the largest weight in the 182 

cluster.  183 

To calculate GC content for the over two million peptides with at least one sequencing 184 

read, we took a simple average of the GC content from the random portion of the peptides. 185 

Disorder 186 

Protein disorder was measured using IUPred2 (Dosztányi, et al. 2005; Meszaros, et al. 2018) for 187 

amino acid sequences, and using disorder propensity (Theillet, et al. 2013) for individual amino 188 

acids. IUPred2 returns an ISD score between zero and one for each amino acid in a sequence, 189 

with higher scores indicating greater intrinsic disorder. To calculate an ISD score for each 190 

random peptide, we took the average of the scores for the whole sequence (i.e. including non-191 

random parts). We used a square root transform because it produced a more linear relationship 192 
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with fitness than no transform. All measurements referring to ISD or IUPred used IUPred2 193 

except ΔISD, which used the original IUPred program – differences between the two are 194 

minimal (Meszaros, et al. 2018).  195 

Disorder propensity gives each amino acid a score based on the frequency it is found in 196 

disordered proteins relative to ordered proteins (Theillet, et al. 2013). The disorder propensity 197 

score for a peptide was determined by averaging the disorder propensity scores for the amino 198 

acids in the random region. When we use the disorder propensity metric, we explicitly refer to 199 

it as “disorder propensity” and not as “ISD.” 200 

Aggregation propensity 201 

Tango (Fernandez-Escamilla, et al. 2004; Linding, et al. 2004; Rousseau, et al. 2006) returns an 202 

aggregation score for each amino acid in a sequence. At least five sequential amino acids with a 203 

score greater than or equal to five indicates an aggregation-prone region. We scored peptide 204 

aggregation propensity as the number of amino acids within regions scored as aggregation-205 

prone, including contributions from non-random regions. 206 

Solubility 207 

CamSol (Sormanni, et al. 2015) returns a solubility score for each amino acid in a sequence, as 208 

well as a simple average of all scores for a sequence, which CamSol calls a “solubility profile.” 209 

We used the solubility profile of the full sequences, including non-random regions. 210 

Amino acid frequencies 211 

We counted frequencies among the 50 amino acids in the random portion of each peptide.  212 

The values for all the above predictors for each peptide are listed in Dataset S1. 213 
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Statistics 214 

All statistical tests were carried out in R version 3.6.3 (R Core Team 2019), with figures 215 

generated using “ggplot2” (Wickham 2016). Weighted linear mixed models were implemented 216 

using the “lmer” function from the “lme4” package (Bates, et al. 2015), with cluster as a 217 

random effect. See Supporting Information for details, including justification of a log-transform 218 

for fitness. When R2 values were needed, we instead averaged peptides within the same cluster 219 

into a combined datapoint, allowing us to avoid the use of random effect term. We calculated 220 

R2 and adjusted R2 values using the base R “lm” function. Adjusted R2 is a modification of R2 to 221 

penalize additional predictors, and is calculated using the formula: 222 

𝑅𝑎𝑑𝑗
2 = 1 − (1 − 𝑅2)

𝑛−1

𝑛−𝑝−1
, 223 

where 𝑛 are the number of data points and 𝑝 are the number of predictors. Raw P-values are 224 

reported unless otherwise noted, i.e. without correction for multiple comparisons. 225 

Data and code availability 226 

All code and supplemental tables are available on GitHub at 227 

https://github.com/MaselLab/RandomPeptides. The original Neme et al. (2017) data can be 228 

found at Dryad http://dx.doi.org/10.5061/dryad.6f356, and the original sequences are available 229 

at the European Nucleotide Archive (ENA) under the project number PRJEB19640. 230 

Results 231 
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Estimating the fitness effects of random peptides 232 

Assessing predictors of the fitness effects of random peptides requires those fitness effects to 233 

be measured accurately and precisely. Neme et al. (2017) tracked lineage frequencies over four 234 

days, and categorized a peptide as increasing or decreasing in frequency by comparing the DNA 235 

sequencing counts of day 4 to day 1 using DESeq2 (Love, et al. 2014).  236 

We reanalyze the same data, instead using a custom maximum likelihood framework 237 

(see Materials & Methods) to quantitatively estimate “fitness” and its associated confidence 238 

interval / weight. “Fitness” here refers to allele frequency changes over an entire cycle of 239 

population growth and dilution, rather than per generation. Our method classifies peptides 240 

quantitatively rather than qualitatively. It accounts for the fact that mean population fitness 241 

increases over the four days (see Materials and Methods). Our use of all available data within 242 

an appropriate maximum likelihood framework should make our method more sensitive and 243 

specific for identifying benign vs harmful peptides (see Supplementary Text).  244 

Note that some peptides are pseudoreplicates (see Materials & Methods). There were 245 

646 total clusters, of which there was statistical support for increases in frequency for the 246 

highest-weighted peptide in 138 clusters, and for decreases in 488 clusters. Some of our 247 

statistics use cluster as a random effect within a linear mixed model. When fixed-effect models 248 

are used, such as to generate interpretable R2 values, we collapse each cluster into a single 249 

pseudo-datapoint with value given by the weighted mean and weight given by the sum of 250 

weights. 251 
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Most predictive power stems from amino acid frequencies rather than amino acid 252 

order 253 

We estimated peptide disorder using several metrics that contain information both about 254 

amino acid frequencies and about their order: IUPred as an estimate of intrinsic structural 255 

disorder (Dosztányi, et al. 2005; Meszaros, et al. 2018), CamSol as an estimate of water 256 

solubility (Sormanni, et al. 2015), and Tango as an estimate of general aggregation propensity 257 

(Fernandez-Escamilla, et al. 2004; Linding, et al. 2004; Rousseau, et al. 2006). Fewer than 6% of 258 

the random peptides have a predicted transmembrane helix (Dataset S1) from TMHMM (Krogh, 259 

et al. 2001), so our choice of these predictors is guided by our assumption that the random 260 

peptides are predominantly located in the cytosol. Having a predicted transmembrane helix did 261 

not in itself predict random peptide fitness effects (P = 0.2, likelihood ratio test relative to 262 

mixed model with only the intercept as a fixed effect). In contrast, each of our cytosol-263 

solubility-inspired metrics significantly predicted random peptide fitness (Fig. 1A – 1C), with 264 

effects in the predicted direction (more disorder and more solubility are good, more 265 

aggregation propensity is bad). Adjusted R2 values for IUPred, CamSol, and Tango are 0.027, 266 

0.029, 0.016, respectively. Another aggregation predictor, Waltz (Maurer-Stroh, et al. 2010), 267 

that specializes in β aggregates, was in the right direction but did not quite meet statistical 268 

significance (P = 0.06). 269 
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 270 

Fig. 1. Many metrics predict peptide fitness effects, but most predictive power comes from 271 

amino acid frequencies. Three metrics that combine information on both amino acid 272 

frequencies and amino acid order ((A) IUPred, (B) CamSol, and (C) Tango), and two that contain 273 

only amino acid frequency information ((D) 19 custom weights on amino acid frequencies and 274 

(E) independently estimated disorder propensities used as weights on amino acid frequencies), 275 

each significantly predict peptide fitness on their own (P = 7 × 10-4, 0.003, 0.02, 5 × 10-6, and 9 × 276 

10-7, respectively, likelihood ratio test in mixed model compared to intercept-only model). Each 277 

point (n = 646) shows a cluster of sequences with similar amino acid sequences (see Methods 278 
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for more details), and the area displayed for each point is proportional to summed weights 279 

across that cluster. Blue lines are fixed-effect weighted linear regressions of cluster fitness on 280 

the x-axis predictor, where clusters are collapsed to a single pseudo-datapoint by their 281 

weighted average and weights are sums within each cluster. Metrics that include both 282 

frequency and order information fail to outperform frequency-only based metrics, as shown by 283 

regression slopes (blue lines) and adjusted R2 values (top right of each figure panel). Adjusted R2 284 

is calculated as 𝑅𝑎𝑑𝑗
2 = 1 − (1 − 𝑅2)

𝑛−1

𝑛−𝑝−1
, where 𝑛 is the number of data points and 𝑝 is the 285 

number of degrees of freedom in the predictor. Note that in part D the predictor (model-286 

predicted fitness) is a composite of 19 degrees of freedom that have all been trained on the 287 

dataset, so care should be taken in comparing its blue regression line to that of the other 288 

panels, each of which has a predictor with only one degree of freedom – this problem does not 289 

apply to comparisons of adjusted R2 values. Seven clusters with fitness greater than 2 are not 290 

shown here for ease of visualization; a complete y-axis is shown in supplemental fig. 1. Log-291 

transforming fitness would remove high fitness skew, but creates systematic heteroscedasticity, 292 

and so was not done (supplemental fig. 2). The lack of systematic heteroscedasticity can be 293 

seen here in the form of similar point size across fitness values.  294 

 295 

Next we asked whether these sophisticated metrics offer additional predictive power 296 

beyond mere amino acid frequencies, in the light of prior work on young genes in which little 297 

additional predictive power was found (Wilson, et al. 2017). To do this, we fit a model of fitness 298 

predicted by amino acid frequencies, measured from counts of each amino acid in each 299 
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peptide’s random region (Fig. 1D), and compared its performance to predictors that 300 

incorporate ordering information (Figs. 1A-C). The amino acid frequency-only model was a 301 

significant predictor of fitness (P = 4.5 × 10-6, likelihood ratio test compared to an intercept-only 302 

mixed model). It is also more biologically predictive than other metrics, with adjusted R2 = 0.15 303 

(adjusted to account for the number of predictors used) being far greater than the values of 304 

0.027, 0.029, and 0.016 found in Figs 1A-1C. Another, non-adjusted, way to look at biological 305 

effect size is the far steeper blue line in Fig. 1D than in Figs. 1A-1C.  Statistically, when the 306 

frequencies of each of the twenty amino acids are used as predictors (Fig. 1D), then IUPred, 307 

CamSol, and Tango drop out of the model (P = 0.2, 0.2, and 0.3, respectively, likelihood ratio 308 

test in mixed model, see Supplemental Table S1), suggesting that their predictive power in Figs. 309 

1A-1C came largely from being metrics of amino acid frequencies. These results are surprising: 310 

one might expect sophisticated metrics that incorporate both amino acid frequencies and order 311 

information to offer more predictive power and explain a greater range of fitness than simple 312 

amino acid frequencies, yet they fail to do so. 313 

Our Fig. 1D model using the frequencies of the 20 amino acids involves 19 degrees of 314 

freedom, while the other metrics we examine involve only one. This makes it inappropriate to 315 

compare the slopes of the blue lines, although adjusted R2 values can still be compared, and the 316 

fact that the other metrics drop out of a combined model is also informative. We also 317 

investigated a one degree of freedom model of amino acid frequencies, in which relative 318 

weights were specified in advance by a disorder propensity metric that assigns each amino acid 319 

a score based on how frequently it is found in known disordered versus ordered proteins 320 

(Theillet, et al. 2013). Average disorder scores over each peptide’s random region significantly 321 
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predicted random peptide fitness effects in a linear mixed model (Fig. 1E, P = 9 × 10-7, likelihood 322 

ratio test compared to an intercept-only model). The effect size on predicted fitness from the 323 

10% to the 90% quantiles of disorder propensity is 0.49 to 0.70, and the adjusted R2 for the 324 

disorder propensity model 0.047. For comparison to other predictors with a single degree of 325 

freedom, the largest effect size model that incorporates both amino acid frequency and order 326 

information was IUPred with an effect size from 0.51 to 0.69, and the best adjusted R2 model 327 

was CamSol with 0.029. This further suggests that predictive power resides with amino acid 328 

frequencies, not order information.  329 

To understand whether order information has additional predictive power beyond that 330 

of amino acid frequencies, we next investigated a metric of ISD that is comprised of only order 331 

information. This can be calculated as the excess IUPred score of the real peptide in comparison 332 

to the average IUPred score of a set of hypothetical peptides in which the order of the amino 333 

acids has been randomly scrambled; this metric was previously found to be elevated in younger 334 

mouse genes (Wilson, et al. 2017). However, adding this ΔISD metric to our model with amino 335 

acid frequencies as predictors did not significantly improve the model (P = 0.2). This further 336 

supports our conclusion that amino acid ordering plays only a minor role compared to amino 337 

acid frequencies in the fitness effects of the random peptides examined here.  338 

 339 

Small and disorder-promoting amino acids predict benign fitness effects 340 

Next we quantify the statistical effect of each of the 20 amino acids on fitness. Naively, we 341 

could take the associated slope coefficient in a multiple regression model, which represents the 342 
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change in fitness when one amino acid is gained. But in a peptide of fixed length, one amino 343 

acid cannot be gained without another amino acid being lost. We therefore instead calculate 344 

the marginal fitness effect of each amino acid on fitness (see supplementary text and Table S2, 345 

displayed in fig. 2, y-axis), representing the effect of gaining that amino acid and losing a 346 

randomly selected alternative.  347 

Amino acids with smaller volumes (Tsai, et al. 1999) and higher disorder propensities 348 

(Theillet, et al. 2013) tend to have higher marginal fitness effects (fig. 2A and 2B; P = 0.01 for 349 

both disorder propensity and volume, likelihood ratio test for dropping either term from a 350 

weighted regression of marginal effect on both volume and disorder propensity). Volume and 351 

disorder propensity together explain over half the weighted variation in marginal fitness effect 352 

(weighted adjusted R2 = 0.52). Other properties of amino acids, such as stickiness (Levy, et al. 353 

2012), relative solvent accessibility (Tien, et al. 2013), amino acid cost in E. coli (Akashi and 354 

Gojobori 2002), and isoelectric point (Liu, et al. 2004) did not provide significant explanatory 355 

power on top of disorder propensity and volume (all P > 0.1, likelihood ratio test).  356 
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 357 

Fig. 2. Amino acids that are small and are associated with disorder promote higher fitness. 358 

The y-axis shows each amino acid’s marginal effect on fitness, which is the change in fitness 359 

when one amino acid of the focal type replaces one randomly chosen amino acid of a different 360 

type in a random peptide (see Supporting Information). Error bars are +/- one standard error. P-361 

values and correlation coefficients come from weighted Pearson’s correlations, where weights 362 

for marginal effects are calculated as 1 / s.e. (marginal fitness effect)2, and volume and disorder 363 

propensity are unweighted.  364 

 365 

Tryptophan is an outlier for amino acid effects on fitness, with a slightly positive effect 366 

on fitness despite both its large volume and its underrepresentation in disordered regions (fig. 367 

2). Removing tryptophan from a weighted regression model of volume and disorder propensity 368 

predicting marginal effect increases the weighted adjusted R2 from 0.52 to 0.68. Tryptophan, 369 

encoded only by UGG, is nearly 60% more common among peptides with at least 5 sequence 370 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2020.04.28.066316doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.28.066316
http://creativecommons.org/licenses/by-nc-nd/4.0/


Article (Investigation) 

22 
 

reads than we expect from the 58% GC content of our dataset. Together with the confidence 371 

interval for its marginal fitness effect including 1, this provides further evidence that tryptophan 372 

is not harmful, making it a distinct outlier, for reasons that are not clear to us.  373 

Isoleucine also stands out, as even more harmful than expected by its large size and 374 

order propensity. Isoleucine’s harmful effects may be exacerbated by its role in amyloid 375 

formation. For example, familial amyloid cardiomyopathy is most commonly caused by a valine 376 

to isoleucine mutation (Jacobson, et al. 1997; Dubrey, et al. 2015), suggesting that isoleucine 377 

has potential to form dangerous amyloids where other hydrophobic amino acids do not. 378 

Isoleucine, valine, and leucine are all hydrophobic amino acids with a branched carbon, but only 379 

raised isoleucine levels are associated with a higher risk of Alzheimer’s disease (Larsson and 380 

Markus 2017), further suggesting that isoleucine may be especially prone to amyloid formation. 381 

 382 

Young animal sequences are enriched for amino acids that increase fitness in 383 

random peptides 384 

As discussed in the Introduction, young domains have higher predicted ISD than their 385 

older counterparts. One hypothesis to explain this observation is that in order to be successfully 386 

born de novo, a protein sequence is especially constrained to first do no harm (Wilson, et al. 387 

2017). However, the “phylostratigraphy” approach of assigning ages to genes is contentious. 388 

Detecting homologs is more difficult for fast-evolving sequences, which may be erroneously 389 

scored as young (Alba and Castresana 2007; Moyers and Zhang 2015, 2016). Disordered 390 

proteins tend to be fast evolving (Chen, et al. 2011), suggesting that highly disordered genes 391 
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could be misclassified as young because of their fast evolutionary rate. If the amino acid 392 

enrichments of higher fitness random peptides match the amino acid enrichments of young 393 

genes, this would be evidence that the de novo gene birth process, rather than homology 394 

detection bias alone, causes trends in protein properties as a function of apparent gene age. 395 

To test this, we took the slopes of amino acid frequencies with protein domain age from 396 

James et al. (2021), as quantified across over 400 eukaryotic species. As predicted, amino acids 397 

that are good for random peptides are enriched among the youngest animal Pfams (fig. 3A). 398 

This prediction was not, however, supported for trends among recent plant domains (fig. 3B) 399 

nor among ancient (fig. 3C) domains older than 2.1 billion years. Plant and ancient trends 400 

reflect a de novo gene birth process that enriches for the most abundant amino acids in their 401 

respective lineages, such as cysteine, rather than for amino acids that promote ISD (James, et 402 

al. 2021). It is interesting that we find that ISD still predicts harmlessness in E. coli, even though 403 

we do not find evidence it shaped de novo gene birth in its distant ancestors. We also note that 404 

ISD does shape recent de novo gene birth in viruses (Willis and Masel 2018). 405 

 406 

 407 
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Fig. 3. Purportedly young animal Pfams are enriched for amino acids that predict high fitness 408 

in random peptides. The y-axis represents how the frequency of each amino acid depends on 409 

the age of the sequence in billion years (BY), estimated as a linear regression slope for non-410 

transmembrane Pfam domains (James, et al. 2021). Frequency is in number of percentage 411 

points, e.g. a difference in glutamic acid content of 5% vs. 6% is a difference of one percentage 412 

point. The x-axis shows each amino acid’s marginal effect on fitness, which is the change in 413 

fitness when one amino acid of the focal type replaces one randomly chosen amino acid of a 414 

different type in a random peptide (see Supporting Information). Error bars are +/- one 415 

standard error. Fitness effects predict A) animal, but not B) plant, or C) ancient (older than 2.1 416 

billion years) Pfam phylostratigraphy slopes. Correlation coefficients and P-values come from 417 

weighted Pearson correlations. Note that the P-value for animal phylostratigraphy slopes vs 418 

marginal effects survives a conservative Bonferroni correction (P = 0.002 < 0.05/3 = 0.017).  419 

 420 

 421 

Fitness is better predicted by amino acid frequencies than by GC content 422 

Long et al. (2018) proposed that selection acts directly on GC content, perhaps due to the three 423 

hydrogen bonds of G-C pairs. Amino acids encoded by Gs and Cs tend to promote higher ISD 424 

(Angyan, et al. 2012), making it difficult to distinguish between selection for high GC content 425 

and selection for disorder-promoting amino acids. To attempt to distinguish between the two, 426 

we compare amino acids that always have G or C to those that always have A or T, at both the 427 

first and second nucleotide positions in the codon. If selection were for GC nucleotides, we 428 
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would expect GC to predict high marginal amino acid fitness effects at both positions. But if 429 

results are dramatically different at the two positions, this would show that it is selection on 430 

amino acid content that drives GC as a correlated trait. Results are statistically significant in the 431 

predicted direction at the second position (fig. 4A, P = 0.001, weighted Welch’s t-test), and in 432 

the predicted direction but not statistically significant at the first (fig. 4B, P = 0.2). The effect 433 

size of GC content on fitness could not be statistically distinguished between the first and 434 

second position (fig. 4C), with wide and hence inconclusive error bars. 435 

Linear models are compatible with partially independent contributions of both amino 436 

acid frequencies and GC content to harm avoidance. GC content is a statistically significant 437 

predictor of fitness by itself (P = 6 × 10-11, likelihood ratio test for nested fixed-effect models 438 

relative to intercept-only model). However, the weighted adjusted R2 of 0.06 for GC content is 439 

much lower than the weighted adjusted R2 of 0.15 (P = 10-18) for full amino acid frequency 440 

information, suggesting it explains less of the variation than amino acid frequencies. Adding GC 441 

content to the amino acid frequencies-only model offers a modest improvement (P = 0.004, 442 

weighted adjusted R2 values improves from 0.15 to 0.16), while adding amino acid frequencies 443 

to a GC content only model offers a notably larger improvement (P = 10-11, weighted adjusted 444 

R2 improves from 0.06 to 0.16). These weighted adjusted R2 values suggest that while there 445 

may be some direct selection on GC content, the effect of amino acid frequencies appears to be 446 

well beyond what can be explained by GC content. 447 
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 448 

Fig. 4. Amino acids that are constrained to use Gs and Cs tend to have higher marginal effects 449 

on fitness than those constrained to use As and Ts. The difference is significant for constraints 450 

at the second nucleotide position of a codon (A) (P = 0.001, weighted Welch’s t-test), but not at 451 

the first (B) (P = 0.2). Point area is proportional to weight, which is calculated as 1 / 452 

s.e.(marginal fitness effect)2, as described in Supporting Information. The y-axis is the same as 453 

the fig. 2 y-axis and fig. 3 x-axis. C) The mean advantage of amino acids constrained to use GC 454 

rather than constrained to use AT is not distinguishable in size between the first and second 455 

codon positions. Y-axis gives the difference in the two weighted means of marginal fitness 456 

effects from A) and B). Error bars represent 95% confidence intervals on the difference 457 

between the means (calculated as difference +/- tcrit × se), where tcrit ≈ 2.1 is the critical value of 458 

the t-statistic with the appropriate degrees of freedom. Weighted Welch’s t-test statistic and 459 

the corresponding standard error of the difference in means were calculated using the 460 

“wtd.t.test” function from the “weights” R package, version 1.0.1. 461 

 462 
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The same amino acids predict benign fitness effects in random N-terminal tags   463 

The degree to which benign effects are due to low expression of a random peptide, vs. benign 464 

effects of the peptide once expressed, remains unclear. We therefore tested the ability of our 465 

amino-acid-frequencies-only model, trained on the data of Neme et al. (2017), to predict 466 

residual fitness effects in a dataset that controls for peptide expression level. Goodman et al. 467 

(2013) tagged the N-prime end of green fluorescent protein (GFP) with 137 different short 468 

random sequences (11 amino acids long), allowing random peptide expression level to be 469 

measured via fluorescence. Frumkin et al. (2017) measured the fitness effects of these random 470 

peptide-tagged GFPs in E. coli using FitSeq (Li, et al. 2018). For 89 of them, Frumkin et al. (2017) 471 

were able to calculate a “fitness residual” based on the deviation from the fitness expected 472 

from the level of GFP expression. Note that while this fitness residual controls for expression 473 

level, it still contains the cost of inefficient expression in addition to the fitness effect of the 474 

peptide itself. Frumkin et al. (2017) found that low fitness residuals were associated with 475 

hydrophobic and expensive-to-synthesize amino acids. These findings are consistent with our 476 

own estimates of direct peptide effects, as hydrophobic amino acids tend to be order-prone 477 

(Linding, et al. 2004; Angyan, et al. 2012), and amino acid volume is highly correlated with 478 

synthesis cost in E. coli (Pearson’s correlation coefficient = 0.85, P = 2 × 10-6, cost for amino acid 479 

synthesis in E. coli taken from (Akashi and Gojobori 2002)). Indeed, predicted fitness values for 480 

Frumkin et al.’s (2017) N-terminal tags were significantly correlated with their actual fitness 481 

residuals (fig. 5). The consistency between our results and the findings of Frumkin et al. (2017), 482 

who control for peptide expression level, provides an external validation of our results and 483 
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suggests that our findings are unlikely to be due to differences in peptide expression levels 484 

alone. 485 

 486 

Fig. 5. Fitness predictions trained on the random peptides of Neme et al. (2017) also work for 487 

short random tags attached to the N-terminus of GFP. Predicted fitness comes from our amino 488 

acid frequencies-only mixed model. “Fitness residuals” of N-terminal tags are from Frumkin et 489 

al. (2017), and represent the difference between the fitness of the construct and the expected 490 

fitness from expression level. n = 89. 491 

Discussion 492 

We found that, while many metrics of peptide properties have some ability to predict the 493 

fitness effects of random peptides expressed in E. coli, most predictive power stems from 494 

amino acid frequencies. Simply knowing how many of which amino acids are present in these 495 
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random peptides can account for 15% of the variance in fitness among lineages, and adding 496 

more predictors to account for amino acid order fails to add more predictive power. This 497 

indicates both the success of our statistical method for minimizing the noise in our fitness 498 

estimates, and that mere amino acid frequencies without amino acid order can be informative 499 

of peptide fitness effects. Amino acids that are small and promote disorder predict high fitness 500 

in E. coli, and align with those that are enriched in young protein domains in animals. 501 

Most studies of random peptides have focused on finding peptides that have specific 502 

binding or function (e.g. Kaiser, et al. 1987; Keefe and Szostak 2001; Frulloni, et al. 2009). Some 503 

were motivated as proof-of-concept that random peptides can exhibit properties of native 504 

proteins, such as folding (Davidson and Sauer 1994; Chiarabelli, et al. 2006; LaBean, et al. 2011) 505 

and being soluble (Prijambada, et al. 1996). Others focus on how to increase the percentage of 506 

native-like random peptides, e.g. by showing that more hydrophilic random peptide libraries 507 

have a higher percentage of stable and soluble peptides (Davidson, et al. 1995). Our work has a 508 

different intent, identifying properties that make a peptide less likely to be harmful. Neme et 509 

al.’s (2017) experiment was suitable for this purpose because it used a large library of peptides 510 

with diverse properties, competed lineages growing under permissive conditions, and 511 

measured relative growth rates (i.e. fitness). In contrast, a study design such as that of Knopp et 512 

al. (2019), who selected random peptides that rescue viability in the presence of antibiotics, is 513 

less suitable for our purposes because so few peptides, including harm-avoiding peptides, are 514 

viable. Neme et al.’s (Neme, et al. 2017) study was also convenient because all peptides were 515 

the same length – 65 amino acids with 50 amino acids of random sequence – allowing us to 516 

neglect length in our analysis. 517 
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Having a higher proportion of random peptides do no harm is expected to increase the 518 

success rate of future screens for peptide with specific properties. Nucleotide sequences with 519 

high %GC content tend to encode peptides with more benign fitness effects, suggesting that 520 

higher %GC should be used in future random peptide libraries. However, very high GC content 521 

will yield low complexity sequences, which our predictor has not been trained on. The marginal 522 

fitness effects of each amino acid might be different in this very different context.  523 

While the library used by Neme et al. (2017) was designed to have equal frequencies of 524 

each nucleotide in the random region, and thus 50% GC content, the over two million random 525 

peptides that had at least one sequencing read had a GC content of ~59% in their random 526 

portion. The mean GC content of the peptide clusters we analyzed (see Materials and Methods) 527 

was similar, at ~58%, with higher fitness peptides within this group having still higher %GC, as 528 

discussed in the Results. The enrichment from 50% GC to ~59% GC might be because many 529 

lower GC content sequences were so harmful that lineages that carried them went extinct prior 530 

to detection via sequencing. Note that it might also reflect a bias toward GC in sequencing 531 

methods (Benjamini and Speed 2012; Choudhari and Grigoriev 2017) – a bias that affects all 532 

time points equally and so should not affect our fitness estimates. 533 

Long et al. (2018) proposed that there is direct selection for high GC content, as 534 

evidenced in part by a preference for amino acids with G or C at the second position of codons, 535 

in excess of that predicted from mutation accumulation experiments. Our findings cannot 536 

exclude this hypothesis, but show stronger selection on amino acid frequencies, selection that 537 

is capable of driving increased GC content in coding regions as a correlated trait. In intergenic 538 

regions, elevated %GC is likely driven mostly by GC-biased gene conversion. However, elevated 539 
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GC content could also be due, at least in part, to selection on peptides from non-coding regions 540 

translated by error (Rajon and Masel 2011; Wilson and Masel 2011). Selection on translation 541 

errors is for example strong enough to shape non-coding sequences beyond stop codons in 542 

Saccharomyces cerevisiae (Kosinski and Masel 2020). 543 

Fitness effects in Neme et al. (2017) might not be directly caused by peptide properties 544 

alone but instead by the effect of both nucleotide and peptide properties on expression (Knopp 545 

and Andersson 2018), with lower expression being less harmful. For example, auto-546 

downregulation at the mRNA level can cause significant difference in expression among 547 

peptides, despite identical promoters. However, the properties we find to be predictive, such as 548 

disorder and amino acid size, are not a priori related to auto-downregulation of mRNA in wild-549 

type E. coli, making the latter an unlikely explanation for our findings. 550 

While driven by amino acid frequencies, our findings are still consistent with the 551 

hypothesis that peptides with low structural disorder tend to be harmful. Disorder-promoting 552 

amino acids may help a peptide remain soluble even if unfolded. Small amino acids also tend to 553 

be benign, perhaps because they are hydrophobic enough to promote some amount of folding 554 

but flexible enough to avoid too much hydrophobic residue exposure. 555 

Our findings suggest that the easiest way to avoid harm is through disorder and small 556 

size, but do not rule out other strategies that rely on capacity for folding. Indeed, BCS4, a de 557 

novo evolved protein in Saccharomyces cerevisiae, has a hydrophobic core and is capable of 558 

folding (Bungard, et al. 2017). Vakirlis et al. (2020) found that de novo proteins can emerge as 559 
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transmembrane proteins, which need to be lipid soluble, presumably requiring different harm-560 

avoidance strategies than peptides that are located in the cytosol.   561 

The correlation between the extent to which an amino acid is enriched in young animal 562 

protein domains and its marginal fitness effect in random peptides in E. coli is intriguing, and 563 

consistent with a body of literature that de novo gene birth favors protein disorder. What is 564 

more, our ability to externally validate animal phylostratigraphy slopes against random 565 

peptides in E. coli provides additional support that these slopes represent more than mere bias, 566 

in contrast to suggests that all patterns are due to homology detection bias (Alba and 567 

Castresana 2007; Moyers and Zhang 2015, 2016). That is, if phylostratigraphy trends were due 568 

to an artifact such as homology detection bias, such an artifact would be unlikely to bias our 569 

random peptide analysis in the same direction.  570 

Plants have different trends in amino acid frequencies as a function of sequence age 571 

than animals do, with young genes seeming to prefer readily available amino acids, rather than 572 

amino acids that promote ISD (James, et al. 2021). This could be because: 1) plants are less 573 

susceptible to harm from random peptides, 2) other properties, such as amino acid availability, 574 

drive the emergence of de novo genes in plants, or 3) the plant data lack the resolution needed 575 

to identify a correlation with the properties studied here. We do not have the ability to 576 

differentiate between these three possibilities here. 577 

Nevertheless, our finding of consistency between what is benign in E. coli and what is 578 

benign in animals suggests the possibility of a deep concordance in what makes a peptide 579 

harmful between two apparently disparate branches of life. The forces that drive protein birth 580 
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therefore appear to share a key similarity between bacteria and Animalia. Monod once 581 

suggested that what is true in E. coli must also be true in elephants; our work suggests that this 582 

may apply to the properties that tend to make peptides less harmful. To modify Monod’s 583 

famous quote, what is harmful in E. coli is also harmful in elephants, but not necessarily in 584 

eucalyptus. 585 

A major idea in our understanding of proteins is that form – that is, the fold that is 586 

determined by the exact sequence of amino acids – determines function and thus fitness. 587 

However, for these random peptides in E. coli, the amino acid content but not the sequence in 588 

which they occur is the main determinant of benign vs harmful effects. Random peptides likely 589 

exist as a diverse ensemble of structural states, but the same is increasingly acknowledged to 590 

be true of functional proteins. While the ordering of amino acids in functional proteins no 591 

doubt plays a role, perhaps mere amino acid frequencies are also more important than once 592 

thought in this context too, especially in structurally disordered protein regions. 593 
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