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Abstract4

To be able to deal with uncertainty is of primary importance to all organisms. When5

cues provide information about the state of the environment, organisms can use them6

to respond flexibly. Thus information can provide fitness advantages. Without environ-7

mental cues, an organism can reduce the risks of environmental uncertainty by hedg-8

ing its bets across different scenarios. Risk mitigation is then possible by adopting a9

life-history of bet-hedging, either randomly switching between phenotypes (diversifying10

bet-hedging) or adopting intermediate phenotypes (conservative bet-hedging). Hence, un-11

derstanding patterns of bet-hedging is necessary in order to quantify the fitness benefit of12

environmental cues, since it provides a baseline fitness in the absence of informative cues.13

Quantifying fitness benefits in terms of mutual information reveals deep connections be-14

tween Darwinian evolution and information theory. However, physiological constraints15

or complex ecological scenarios often lead to the number of environmental states to ex-16

ceed that of potential phenotypes, or a single intermediate phenotype is adopted, as in the17

case of conservative bet-hedging. Incorporating these biological complexities, we gen-18

eralise the relationship between information theory and Darwinian fitness. Sophisticated19

bet-hedging strategies - combining diversifying and conservative bet-hedging - can then20

evolve. We show that, counterintuitively, environmental complexity can reduce, rather21

than increase, the number of phenotypes that an organism can adopt. In conclusion, we22

develop an information-theoretic extensible approach for investigating and quantifying23

fitness in ecological studies.24
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1 Introduction27

Change is a significant constant in the natural world. Organisms have to be plastic enough to28

ride out the variability in the environment. A potential strategy to cope with this variability29

is to be plastic by relying on information provided by environmental cues. An informative30

cue is “a feature of the world, animate or inanimate, which can be used by an animal to guide31

future actions” [1, 2], or development. Many organisms demonstrate a plastic response to the32

environment, using environmental cues to modulate their phenotype [3].33

However, some of the most basic adaptive mechanisms do not require informative cues.34

For instance, a wide genetic diversity results in a better response of populations to random35

environmental fluctuations [4]. Another way can be for an organism to adopt a life history of36

“bet-hedging”. This is possible via adopting a generalist phenotype (conservative bet-hedging)37

or by randomly switching between different phenotypes, within or between generations (diver-38

sifying bet-hedging) [5, 6, 7, 8]. Hereafter we use bet-hedging as a synonym for diversifying39

bet-hedging.40

Even without genetic variation in the population, bet-hedging enables coping with un-41

certain environments [9, 10, 11]: when all individuals in a population experience the same42

environmental state, developmental variability in the phenotypes of an individual’s offspring43

will ensure that at least part of its progeny will develop a proper phenotype for the current44

environmental state. The theory of bet-hedging has had a long history [12, 13, 14, 15] and45

instances of this phenomenon can be observed in nature [16, 17, 18]. The bet-hedging theory46

hinges on the trade-off between maximizing short term fitness and reducing the adverse long47

term effects of its variability due to the stochasticity of the environment. Interestingly, even48

when cues are present but do not provide full information, bet-hedging can still occur as a49

consequence of their uncertainty [19].50

Previous studies quantified the fitness values of informative cues by comparing the fitness51

of plastic strategies relying on cues and of bet-hedging strategies, not relying on any cue.52

These studies pointed to a tight relationship between evolution and information. In simple53

cases where the number of phenotypes equals that of environmental states, bits can quan-54

tify the evolutionary benefit of an informative cue [20]. While information theory provides a55

promising framework to study evolution, relatively few studies used this framework to study56

ecological and evolutionary phenomena [21]. In this study, we extend the information theory57

approach previously described by Bergstrom and Lachmann [20, 22] to examine the effects58
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of more complex scenarios. In nature, often environmental complexity exceeds physiological59

and evolutionary flexibility, and the number of possible environmental states might exceed60

that of phenotypes. For example, the phenotypes might lie far from each other in the fitness61

landscape to be accessible, or physiological constrains in an organism might limit the variety62

of phenotypes it can develop. Besides, one of the available phenotypes may perform better63

in more than one environment. In these cases, as environmental complexity increases, the64

optimal strategy is more likely the one in which the same phenotypes are adopted in response65

to different environmental states, i.e. conservative bet-hedging occurs along with diversifying66

bet-hedging. These instances, in which the number of environmental states exceeds the num-67

ber of phenotypes, are the focus of this study. We show that in these cases, vibrant patterns of68

bet-hedging emerge and that, counterintuitively, the potential fitness value of informative cues69

can decrease.70

We first begin by reviewing the connection between Shannon and Gould information as per71

[20, 22], by following the calculations from Donaldson-Matasci et al. [22] where an organism72

can have as many phenotypes as the number of environmental states (represented by a square73

matrix). Then we generalize this analysis to any number of phenotypes and environmental74

states. Inequality between the number of phenotypes and environmental states (represented75

by a non-square matrix) is also possible. We explore representative cases of asymmetric sce-76

narios, characterized by simple probability distributions describing the occurrence of different77

environmental states. In these cases, the best bet-hedging strategy depends on the probability78

of the environmental states in a non-linear fashion. We discuss some examples, among which79

those of organisms adapted only to a range of environmental conditions, for which often in-80

creased environmental uncertainty is present at the borders of their distribution. We show that81

relatively more complex scenarios, the fitness value of the informative cues is less than the mu-82

tual information between the cue and the environment. We generalize this observation to any83

asymmetric scenarios, showing that under the more natural asymmetric conditions of complex84

environments, a lower boundary to the fitness benefit of an informative cue is expected.85

In biology, a direct method to quantify the impact of a cue is to compare the fitness when86

knowing and not knowing the cue. The difference in the fitness of the strategy adopted when87

knowing the cue and not knowing the cue is the value of the cue measured in units of fitness88

gained [23, 24]. Examples where such cues are essential range from the germination in seeds89

and diapause in insects, to offspring clutch size control by parents. If a cue provides complete90

information about the predators’ presence, then the animal can opt more likely for a proper91

course of action. This measure is Gould information.92

A classical method to quantify the value of an environmental cue is Shannon Information.93

Consider a fair coin. The two possible outcomes “heads” (1) and “tails” (0) are both likely with94
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equal probabilities (p0 = p1 = 0.5). Hence the amount of surprise which we have when we95

know the result of a certain coin toss event E is simply, H(E) = −p0 log2 p0−p1 log2 p1 = 1.96

This is the Shannon entropy as defined in classical information theory [25, 26]. Traditional97

approaches in statistical physics, communication, engineering and related fields make use of98

the concept of ‘mutual information’. The amount by which a cue (C) reduces the uncertainty99

about the environment (E) is defined as mutual information (I(E;C)). It is measured in terms100

of entropy as,101

I(E;C) = H(E)−H(E|C) (1)

where H(E) = −∑e pe log pe is the ‘entropy’ of the random variable E denoting the envi-102

ronment. Similarly H(E|C) = −∑c pc
∑

e p(e|c) log p(e|c) is the entropy when the cue has103

been received. Here pc is the probability of observing the cue c and the probability that the104

environment is in state e when cue c is observed is given by p(e|c). If a cue is not related105

to the environment, then the entropy remains unchanged (H(E|C) = H(E)) and the mutual106

information between the cue and the environment is zero. However for a perfect cue this prob-107

ability is p(e|c) = 1 and hence H(E|C) = 0. Thus the cue reveals the environment entirely,108

and the mutual information is precisely equal to the entropy of the system I(E;C) = H(E).109

Strong links exist between the two measures of the value of informative cues [20, 22].110

Studies show that if the environmental cue is flawlessly informative then for an intermediate111

probability of an adverse event occurring, the best approach is to bet-hedge. This region of112

probability space in which bet-hedging occurs is a function of the Shannon entropy, and the113

fitness value of information is bounded above by the Shannon entropy [20]. Thus an intimate114

connection exists between the classical information-theoretic approach and the biologically115

intuitive Gould information approach.116

Throughout the analyses we adopt a geometric mean approach [27, 28, 22]. Whereas117

the arithmetic-mean does not capture the effects of environmental variance on fitness, the118

multiplicative nature of geometric-mean efficiently describes the effects on the growth rate119

as long as there are no interactions between the phenotypes, i.e. where the average fitness is120

frequency independent [12, 29, 30, 31]. Indeed, in a variable environment the allele having121

the higher geometric mean takes over the population [32, 33, 34]. Therefore short term fitness122

(usually considered in the frequency-dependent analysis, e.g. in evolutionary game theory)123

might not be the most useful statistic in case of environmental variability. Instead, a geometric124

mean approach can be fruitfully adopted in these cases, elucidating the role of bet-hedging125

strategies in minimizing fitness variability in the absence of informative cues [20, 22, 8].126
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2 Model and Results127

2.1 Symmetric case: two environmental states with two phenotypes128

Traditionally bet-hedging models have focused on the example of annual plants. We use it129

here as well, presenting a representative case using simple fictitious interaction matrices. A130

detailed description of possible ecological interpretations follows in the discussion.131

A year could be wet e1 or dry e2. Seeds of desert annuals are better off staying dormant132

over dry years and do better by germinating in wet years. This relationship can be represented133

in the form of an interaction matrix as follows,134

( e1 e2

Germinate 5 1

Dormant 2 2

)
, (2)

The probability that a flash flood occurs and a year is wet is p, while the year is dry with the135

probability (1 − p). The gain of the two phenotypes averaged over the two environments are136

thus given by,137

fG = 5 p+ 1 (1− p)
fD = 2 p+ 2 (1− p) (3)

These are the average fitnesses of the two phenotypes. The internal equilibrium of this system138

is at p∗ = 1/4, where the fitnesses of the two strategies are equal. In the short run organisms139

will maximize their expected fitness by employing a strategy that maximizes its single gener-140

ation expected fitness, F (E) = max[fD, fG] where E is a random variable representing the141

state of the environment (Fig. 1). Hence if the probability of a flash flood is greater than p∗ it142

is better to germinate else staying dormant is a safe bet.143

F (E) =

fG for p > p∗ always Germinate

fD for p < p∗ always Dormant.
(4)

In order to quantify the reduction in fitness due to environmental uncertainty, we can now144

suppose that the organisms might receive a cue C, which indicates the environmental state145

precisely. Therefore, then there is no confusion over choosing to germinate or not regardless146

of p. In this case the single generational expected fitness will be, F (E|C) = 5p + 2(1 − p).147

The value of the cue is then is the difference between the fitness with the cue and without the148

cue,149

∆F (E;C) = F (E|C)− F (E) (5)
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Figure 1: Average fitnesses of the Germinate and remain Dormant strategies as a func-
tion of the probability of a flood p. The internal equilibrium is given by the vertical line at
p∗ = 1/4. For p < p∗ it pays to remain dormant while for p > p∗ it is better to germinate.
Knowing the state of the environment exactly from the cue a seed can obtain F (E|C). Hence
the fitness benefit due to the cue is given by the shaded area.

This is the result which we expect if the organism maximizes the single generational expected150

fitness. However, in a temporally varying environment, the phenotype that is most likely to fix151

over the long term is the one with the highest expected long-term growth rate. To approach152

this question, we define the frequencies with which each phenotype is adopted in a given153

season as x (Germinate) and 1− x (Dormant) respectively. The mean log fitness can estimate154

the long-term growth rate of a given strategy, or, equivalently, the log of the geometric mean155

fitness [12, 35, 36, 19]. The expected long term growth rate is then given by,156

g(x) = p log[env(e1, x)] + (1− p) log[env(e2, x)] (6)

where the fitnesses in the two environments are given by,157

env(e1, x) = 5x+ 2(1− x)

env(e2, x) = x+ 2(1− x). (7)
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Maximizing the expected long term growth rate results in,158

x∗(p) =


0 for p ≤ 1/4 (Dormant)
2
3
(4p− 1) for 1/4 < p < 5/8 (Bet Hedging)

1 for 5/8 < p (Germinate).

(8)

We can therefore identify a bet-hedging region, namely a region in probability space where159

probabilistic switching between the phenotypes occurs. Substituting this result back in the160

growth rates we get,161

G(E) =


log(2) for p ≤ 1/4 Dormant

(1− p) log(8/3) + p log(8)−H(E) for 1/4 < p < 5/8 Bet Hedging

(1− p) log(5) for 5/8 < p Germinate.

(9)

whereH(E) = −p log(p)−(1−p) log(1−p) is the entropy of the random variableE. Making162

use of a perfectly informative cue the growth rate can be given by, G(E|C) = p log(5) + (1−163

p) log(2). Hence now the value of the cue is the difference between the growth rate with the164

cue and the one without i.e. G(E|C)−G(E) illustrated in Fig. 2,165

∆G(E;C) =


p log(5/2) for p ≤ 1/4 Dormant

H(E) + (1− p) log(6/8) + p log(5/8) for 1/4 < p < 5/8 Bet Hedging

(1− p) log(2) for 5/8 < p Germinate.

(10)

Previous studies show that ∆G(E;C) peaks within the region of bet-hedging and is bounded166

by the mutual information between the cue and the environment [?]. As in this case where167

the cue is perfect this mutual information is simply the Shannon entropy of the environment168

H(E).169

2.2 Examples with asymmetry in strategies and environments170

The environment can vary in time and space. Generally, an organism is adapted only to a171

limited range within an environmental spectrum. Thus including intermediate environmental172

states can better represent relevant environmental variability. For example, the risk of meet-173

ing a predator or the occurrence of certain climatic events can vary along both large or short174

ecological gradients. Drought or extreme flooding generally limit the growth of the seedlings175

while a moderate amount of rain is preferable, and precipitations might vary along with geo-176

graphic distances.177
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Figure 2: The value of the cue and the probability to germinate as function of the prob-
ability of environmental state e1. The value of the cue ∆G(E;C) increases until it peaks
within the area of bet-hedging. The bounds of the area of bet-hedging can be calculated
analytically Eq. (8). These bounds delineate the transitions in the effective probability of ger-
minating x∗(p) which shifts from 0 (Dormancy) to 1 (Germination) via a linear increase within
the area of bet-hedging.

8

.CC-BY-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted April 30, 2020. ; https://doi.org/10.1101/2020.04.28.066571doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.28.066571
http://creativecommons.org/licenses/by-nd/4.0/


Here we consider the different possible fitness effects of multiple environmental states for178

the example of seed dormancy. For simplicity we take into account the possibility that two179

consecutive storms occur within one season (e1), only one (e2), or none, leading to a dry year180

(e3). These events occur respectively with probabilities p2, 2(1−p)p and (1−p)2. In principle,181

we can assume a complicated function with two variables instead of only p. However, as we182

show below, even this simple parameterisation, is capable of resulting in intricate bet-hedging183

patterns, which is sufficient to make our point.184

2.2.1 Adaptation to intermediates185

Assuming that a single flood might provide the necessary humidity but two consecutive ones186

might damage the seedlings we can write down the following interaction matrix,187

( e1 e2 e3

Germinate 1 4 1

Dormant 2 2 2

)
, (11)

We have a non-monotonic behaviour of the value of the cue (Appendix, Fig. 3 (a)). However,188

the satisfactory probability of playing the ‘Always Germinate’ strategy never materialises.189

Instead, the seeds do best remaining dormant close to the extreme conditions and only ger-190

minating about half the time at most when hedging their bets. The bet-hedging region in this191

particular case explores the mixed phenotype space between the pure phenotypes.192

2.2.2 Adaptation to extremes: Multiplicity of bet-hedging.193

Contrary to the previous example, it might also be possible that some plants do better in ex-194

tremes rather than in common environmental conditions. For example, annual pioneer plants195

can be easily outcompeted by others in intermediate environments (e2). However at environ-196

mental extremes (e1 and e2) their seeds have an advantage.197

( e1 e2 e3

Germinate 4 1 6

Dormant 3 3 3

)
, (12)

In such a case, we see that the probability of germinating decreases after a specific threshold198

value of p Fig. 3 (b). The non-linear decrease is up to the pure strategy of dormancy. After a199

specific threshold value of p, it is better to hedge bets with a non-linear increasing probability200

of germination reaching the ‘Always Germinate’ extreme. The value of the cue peaks locally201

in the bet-hedging regions (Appendix and Fig. 3 (b) bold curve).202
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Figure 3: The value of the cue and the probability of germinating as function of the
probability of a single flash flood p. Panel (a) is for the example where the intermediate
environmental state is favourable for germination. In this case the value of the cue peaks in
the area of bet-hedging. The probability of germinating (x∗(p)) increases in frequency but just
explores the intermediate regime without ever reaching pure Germination. Panel (b) explores
the case where germinating in extreme environments is favourable. This case results in two
regions of bet-hedging where again the value of the cue (∆G(E;C)) peaks locally. The prob-
ability of germinating goes from 0 Always Dormant) all the way to the other pure phenotype
1 (Always Germinating) non-linearly hedging its bets along. It changes again in the second
region of bet-hedging decreasing to 0 (Always Dormant) where it remains until p reaches 1.
For both the cases, the bounds of the area of bet-hedging can be calculated analytically (ESM).
These bounds delineate the transitions in the effective probability of germinating x∗(p).
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Figure 4: Bet hedging regions in the probability space for the illustrative examples. For
general probabilities of the three environmental states obeying e1+e2+e3 = 1, we can plot the
effective probability of dormancy x∗ for the three illustrative examples. The solid parabolas
are the quadratic binomial curves used to describe the examples. For (a) we see a hump in
the probability of germinating but the pure Germination strategy is not reached. In (b) the
probability of germinating decreases and reaches the pure Dormancy state but then it reduces
to pure Germination as the system comes closer to the e1 vertex.

2.3 Environmental gradients in the simplex203

The probability distribution considered in the previous examples traces a quadratic binomial204

cline. Such parabolic clines are typical of those distributions in which e2 is an intermediate205

environmental state between the others. Thus the distribution of the environments has a direct206

impact on the bet-hedging regions. For skewed non-linear distributions, it is possible to have207

multiple regions of bet-hedging. We can extend this case to an arbitrary probability distribu-208

tion of the environmental states. Assuming that the three states occur with probability pe1 , pe2209

and pe3 where they all sum up to unity (pe1 + pe2 + pe3 = 1). Hence now bet-hedging can210

occur in a simplex defined by these three probabilities as shown in Figure 4.211

We explore the evolution of bet-hedging in the simplex of environmental probabilities by212

using stochastic simulations for finite populations, in order to relax the assumption of popula-213

tions as unbounded and growing at an exponential rate used for the geometric mean approach.214

We consider the interaction matrix (11), and performed Wright-Fisher simulations consider-215

ing a population size of 1000 individuals, evolved for 1000 generations. Analyzing 100 such216

realizations in Fig. 5 (a) we show the probability of expressing a phenotype, germination,217

for general environmental distributions. The gradient of the probability of germination was218

obtained by interpolating a grid of 10000 points for the whole simplex.219

In Fig. 5 (right panel) we show further simulations performed for the points marked on220

the clines in Fig. 5 (simplex). The clines represent the particular probability distributions221

for the environmental states. For instance, the previous examples considered a second-order222

binomial indicated by the grey dashed cline, where e1 occurs with probability p2 and e3 with223

(1− p)2. The second black cline indicates the environmental states distributed according to a224

fourth-order binomial. Thus e1 occurs with probability p4 while e3 with probability (1− p)4.225

The state e2 occurs with the complementary probability. Depending on the eccentricity of the226

clines we can get one or two regions of bet-hedging. We see the hump shape of the probability227

of germinating as predicted by the infinite population size case in Fig. 3 (a) also recovered via228
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Figure 5: Stochastic simulations of the mean probability of germinating as a function
of particular distribution s of environmental states. Wright-Fisher simulations were per-
formed with a population size, N of 1000. After N generations the mean probability of
germination was calculated. The results were then interpolated to generate the density ternary
plot (a). The marks along the clines represent the probability distributions in the simplex space
used for the simulations in (b), shown along the clines. Grey dots indicate the second order
binomial clines also used for the examples. Black squares indicates instead a fourth order
binomial, where the mixed term are assigned to the intermediate state e2.

stochastic simulations. For the higher-order cline, the simulation results in the ‘Germinating’229

being almost fixed as is the predicted case on the eccentricity of the cline (Fig. 5 simplex).230

Hence not only the interaction matrix but also the particular distribution of the environments231

influences the observed patterns of bet-hedging.232

Note that we chose to explore parabolic clines for simplicity and to represent environmen-233

tal gradient on a single axis. However, exploring indipendently the probabilities of different234

environments in the simplex can be relevant for more complex environments or when different235

events interact with each other. We provide some examples in an interactive R notebook on236

Github237

2.4 The fitness value of information in presence of constraints238

In all previous examples, the fitness value of a cue, ∆G(E,C), is calculated with an infor-
mation theory approach, despite the non-linear interactions between environment and phe-
notypes. Donaldson-Matasci et al. [22] have shown that in the symmetric case, its value
is bounded by the mutual information between the distribution of an informative cue C and
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that of the environment E, I(E;C). Self-information, denoted as I(E;E), is equal to H(E).
Hence, for an entirely informative cue, the fitness value is bound by the entropy H(E). Does
this boundary always hold even in the asymmetric case? If yes, is it possible to draw a lower
boundary? Let us consider environmental state ei with i in 1 . . . n and phenotypes φj with
j = 1, . . . ,m. Previous models [20, 22] explored cases in which the optimal response to each
different environmental state ei is a phenotype φi. In this case, a square n x n interaction matrix
defines the payoff for each phenotype φi in each different environmental state ei [22], occur-
ring with probability pi. The optimal matches between the environmental state and phenotype
appear along the diagonal, the corresponding gains being ai,i for every i = {1, 2, . . . n}.

e1 . . . ei . . . en

φ1 a1,1 . . . a1,i . . . a1,n
... . . . . . . . . . . . . . . .

φn an,1 . . . an,i . . . an,n

(13)

However, the assumption of an optimal, accessible phenotype for each environmental state239

might not hold, particularly in the context of the evolution to multiple environments, where a240

single phenotype might represent the best option in response to multiple environmental states.241

Here we extend the information-theoretic approach developed in Bergstrom et al. [20] to242

estimate the fitness value of a cue but applied to such cases.243

To do this, we start by the proportional betting case, in which the best phenotype response
for environmental state ei provides a payoff ai,i = ai while all the other phenotypes are fatal
(ai,j = 0 for i 6= j)[22], resulting in a diagonal payoff matrix. In general, the best bet-hedging
strategy x, employing a phenotype φj with probability xj , can be determined by solving the
Lagrangian [26] of the long term growth rate with constraint (

∑
i xi = 1):∑

i

pi log
∑
j

(aj,i xj)− λ(
∑
i

xi − 1). (14)

In the proportional betting case, each phenotype is adopted with a probability equal to the
occurrence of the environmental state where the payoff is non-zero, denoted as ai. Hence, in
the symmetric case, when for each environmental state, a different optimal phenotype exists:

G(E)n =
n∑
i=1

pi log piai =
n∑
i=1

pi log ai −H(E). (15)

We study the asymmetric case with the number of environments n larger than the number244

of phenotypes m. To this aim, we can extend a diagonal payoff matrix m x m to include245

additional columns representing the payoffs of the different phenotypes to environments j >246
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m. Hence, we investigate payoff matrices for which ai,j 6= 0 only when i = j or for am,j and247

j ≥ m. We write ai,i = ai for i < m, and am,i = bi for i ≥ m. We can the write:248

G(E)m =
n∑
i=1

pi log

(
m∑
j=1

aj,ixj

)
=

=
m−1∑
i=1

pi log

(
m∑
j=1

aj,ixj

)
+

n∑
i=m

pi log

(∑
j

aj,ixj

)
=

=
m−1∑
i=1

pi log (aixi) +
n∑

i=m

pi log (am,ixm) =

=
m−1∑
i=1

pi log xi +
n∑

i=m

pi log xm +
n∑
i=1

pi log ai (16)

Which gives a maximum at249

G(E)m =
m−1∑
i=1

pi log pi +
n∑

i=m

pi log
n∑

j=m

pi + (17)

+
m−1∑
i=1

pi log ai +
m−1∑
i=1

pi log bi (18)

Therefore:250

G(E)m −G(E)n =

=
m−1∑
i

pi log pi +
n∑

i=m

pi log

(
n∑

j=m

pj

)
−

n∑
i

pi log pi −
n∑

i=m

pi log ai/bi =

=
m−1∑
i

pi log
pi
pi

+
n∑

i=m

pi log

∑n
j=m pj

pi
−

n∑
i=m

pi log ai/bi

(19)

When the cue C provides full information about the environment, the right phenotype will be251

chosen in each case, with payoff ai, except for environmental states i > m, when one strategy252

cannot develop phenotype φi. Therefore just as in the symmetric diagonal case, G(E|C)n =253 ∑n
i=1 pi log ai, while G(E|C)m = G(E|C)n −

∑n
i=m pi log ai/bi, and254

∆G(E;C)n −∆G(E;C)m =
n∑

i=m

pi log

∑n
j=m pj

pi
(20)

This is the Kulback-Leibler divergence between the optimal strategy when all phenotypes255

1 . . . n are available, and used with frequency pi, and when no optimal specific types for en-256

vironments m. . . n are available, and for all those phenotype m is used with the sum fre-257

quency
∑n

m pi. The expression is independent of the payoffs and always positive, confirming258
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that the mutual information bound for the fitness value of an informative cue exists for the259

asymmetric case as well. Furthermore, this quantity is part of the conditional entropy of the260

environment given a fully informative cue, reflecting the residual uncertainty of a cue unable261

to discriminate between environmental states for which a single phenotype is optimal. Since262

I(En|C) − H(E|Ci≥m) = I(Em|C), this indicates that in the presence of a generalist phe-263

notype, the fitness of an informative cue is further decreased by the amount of information264

necessary to differentiate between the equally paying environmental states. The decrease is265

equal to the mutual information of the environment with a cue informative only on environ-266

mental states for which different phenotypes are optimal.267

These results, shown for the proportional bet-hedging case for simplicity, are also valid268

in the general case of non-completely specific phenotypes, in which the payoff of the least269

advantageous phenotype-environmental state combinations may provide non-zero payoffs. In270

fact, following Donaldson-Matasci et al.,2008 [37], note that the fitness profile of these phe-271

notypes in different environments can be represented as a mixture of specialized phenotypes272

with zero-payoffs for disadvantageous phenotype-environmental state combinations, i.e. as273

in the proportional bet-hedging case. Thus, also bet-hedging strategies employing these non-274

completely specialized phenotypes can be seen in turn as mixtures of completely specialized275

phenotypes. Hence, even in the more complex cases, we see that the value of the cue is bound276

by the mutual information between the cue and the environment (Fig. 6 and Appendix). Since277

we are dealing with perfect cues, this mutual information is simply the entropy of the environ-278

ment H(E) = −∑3
i=1 pei log pei (equal to H(Em) (yellow surface) in the asymmetric case).279

280

2.5 Limits of bet-hedging in increasingly complex environments281

So far we focused on cases in which the number of potential phenotypes m is lower than that
of environmental states n, i.e. payoffs matrices with m < n. We now describe why these
cases are relevant and likely universal in nature, by showing that even when more potential
phenotypes are available and m > n, evolution leads to organisms using only a reduced set of
phenotypes. Note that non-trivial instances of m > n matrices correspond to cases in which
at least a phenotype provides a non-zero payoff for multiple environmental states, thus of-
fering an opportunity for conservative bet-hedging. An extreme case is that of a phenotype
that provides the same payoff for all environmental states. An alternative case is that of an
intermediate phenotype that can be adopted in spite of two or more optimal phenotypes for
specific environmental states. Hence, our question corresponds to investigating when conser-
vative bet-hedging strategies evolve over diversifying bet-hedging ones, i.e. when a matrix
m × n reduces effectively to a matrix with a smaller number of rows/phenotypes. To do this
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Va
lu
e

e1

e2

e3
ΔG(E;C)

H(En)
H(Em)

Figure 6: Boundedness of the value of information by the entropy of the environment.
Considering all possible distributions, the parameter space of the possible environmental states
is then defined on a simplex given by p1, p2 and p3 where the vertices are the pure environ-
mental states e1, e2 and e3 respectively. The value of the cue ∆G(E;C) over such a space
(gray triangle) is bounded by the mutual information between the environment and the cue
(transparent triangle), that in the asymmetric case decreases to H(Em) (yellow surface). We
demonstrate this for the most complicated case described by the interaction matrix (12).
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we examine a matrix:

e1 . . . ei . . . en

φ1 a1,1 . . . a1,i . . . a1,n
... . . . . . . . . . . . . . . .

φn an,1 . . . an,i . . . an,n

φn+1 bn+1,1 . . . bn+1,i . . . bm+1,n

... . . . . . . . . . . . . . . .

φm bm,1 . . . bm,i . . . bm,n

, (21)

where for each environmental state i we arranged the phenotype providing the highest pay-
off ai,i as phenotype i. Further potential phenotypes are denoted as φj with j > n, and by
construction, payoffs bj,i ≤ ai,i. Our previous analysis presents a simple method for investi-
gating under which environmental circumstances such asymmetries might evolve. Consider
a strategy G(E)m adopting a generalist phenotype φj with payoffs bj,k > ai,k rather than
the specialized phenotypes φk with payoffs ak,k for k > i, as strategy G(E)n. By recalling
Eq. (19)-(20), we can see that G(E)m is advantageous if

G(E)m −G(E)m = H(E|Ci≥m)−
n∑

i=m

pi log ai/bi > 0 (22)

indicating that the maximum decrease in payoff of the generalist strategy is bound by the282

entropy of the system that is removed by adopting it. This simple relationship helps us to283

illustrate the instances in which generalist phenotypes are employed. To do this, we devise an284

example in which specialized, intermediate and generalist phenotypes evolve, following the285

general payoff matrix described in Eq. (21). We consider n equally frequent environmental286

states, subdivided in nk groups of size k, biologically representing environmental states with287

similar features. Intermediate phenotypes allow to respond to any of the similar environmental288

states, but with maximum payoff lower than the specialized phenotypes, i.e. for each of the289

nk groups, an intermediate phenotype φi≥n exists, providing payoff bnk,i as in Eq.21. Also, a290

perfect generalist phenotype exists, providing the same payoff c in all environmental states.291

By manipulating the number of environmental states, while keeping constant the size of292

the groups, the total entropy (H(En)) of the system increases, while the entropy within the293

groups (H(E(k)) is not affected (Fig.7a). Furthermore, the conditional entropy of the envi-294

ronmental states with the same intermediate phenotype is unaffected; intermediate phenotypes295

are not favoured over specialized ones as the total entropy increases. Whether intermediate296

phenotypes evolve or not depends exclusively on the ratio of the payoffs. On the other hand,297

generalist phenotypes (i.e. conservative bet-hedging strategies) eventually become advanta-298

geous as entropy increases.299
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Figure 7: Limits of bet-hedging in increasingly complex environments. Long term log-
growth rates for different bet-hedging strategies for environments with an increasing number
of uniformly distributed environmental states (a) or an increasing size of the partitions of
environmental states for which an intermediate generalist phenotype exist. These partitions
are represented under the plots with environmental states (brown circles) grouped on the basis
of a potential suitable generalist phenotype (represented as black rectangles). We assume a
square environment payoff matrix in which the optimal payoff for any environmental state
give payoff 1 (ai,i = 1) and 0 in all non matching cases ( and ai6=j = 0), leading to a fully
diversifying bet-hedging strategy (blue dots). We also show the log-growth rate for a fully
generalist strategy with fixed payoff in all environmental states c (red dots) and partially bet-
hedging strategies that instead of hedging their bets on the optimal phenotypes, they hedge
more generalist phenotypes matching the different partitions, providing payoff b in those and
0 in the rest. a) Partition size is fixed to two.
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By manipulating the size of the groups, only the conditional entropy, H(E|Ci≥m) (here300

H(Ek)), of the groups increases (Fig.7b). In this case, the growth rates of pure diversify-301

ing and conservative bet-hedging remain constant. However, strategies bet-hedging between302

intermediate phenotypes become more advantageous as H(Ek) increases.303

To summarize, in both cases, strategies employing generalist phenotypes evolve as the un-304

certainty of the system increases. In turn, the growth rate and the fitness value of information305

can be described using asymmetric matrices.306

3 Discussion307

Organisms facing complex and variable environments often evolve complex adaptive mecha-308

nisms to acquire information about the environment in the form of informative cues. What is309

the fitness values of these cues? What is the fitness value of these complex adaptations? An-310

swers to these vital questions remain elusive in natural populations. A significant advantage311

of information theory is that it provides a theoretical boundary to these quantities, and could312

aid quantify the fitness benefits based on the uncertainty of the environment, thus informing313

empirical as well as theoretical research. However, its application has been so far limited [21],314

possibly because the models usually focused on simple systems for tractability.315

Natural systems, on the other hand, can be exceedingly complex. Organisms have so-316

phisticated bet-hedging strategies to deal with environmental uncertainty without relying on317

informative cues. In these cases, organisms do not need to respond flexibly to the environment.318

Spreading the risk of facing adverse environmental conditions by betting on diverse or inter-319

mediate phenotypes can work. This mechanism can explain several biological phenomena,320

from intergenerational phenotypic stochastic switching to animal personalities [38], although321

hard evidence for bet-hedging in the animal world has been so far elusive [18]. While it is322

possible to study bet-hedging experimentally in microbes [6, 7], the evolutionary mechanisms323

underpinning the use of informative cues is still elusive. Different levels of environmental un-324

predictability present along environmental or geographical clines exacerbate the complexity325

of bet-hedging and informative cues. Natural populations could then potentially display non-326

trivial bet-hedging patterns. We illustrate this through the example of organisms adapted only327

to intermediate states of environmental gradients such as temperature or salinity. Intermedi-328

ate levels of such gradients are taken as discrete environmental states. For example, seasonal329

plants adapted to intermediate water levels: the total absence of flash floods might lead to a330

harsh dry year, as well as two consecutive floods could damage the growth of seedlings. In331

this example (Fig. 3) we show two cases in which bet-hedging occurs only within confined332

regions of the parameter space, i.e. regions with intermediate probabilities of rain, surrounded333
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by more stable regions where only one phenotype is adopted. These hypothetical clines, de-334

scribed in Figures 5, could be geographic transects going from environmental extremes such335

as from desert to rain-forests. For example, dormancy is advantageous in response to mul-336

tiple extreme events (e.g. drought, fire [39], extreme cold) and occurring from alpine [40]337

to wetland [41] and desert plants. We suggest that such studies might highlight interesting338

patterns of bet-hedging along environmental gradients, primarily if a species exist across such339

environmental transect [42].340

We show that universally, the fitness benefit of an informative cue is bound by the mutual341

information between the cue and the environment. Besides, when the variety of phenotypes342

that can be adopted by phenotypic switching strategies and plasticity is limited, the maximum343

potential fitness benefit of an informative cue is further reduced. Precisely, the reduction is due344

to the conditional entropy between the environment and a cue informative about the inacces-345

sible phenotypes, i.e. H(E|Ci≥m), where a single phenotype has the highest environmental346

states, i ≥ m. This result implies that plasticity is less advantageous when physiological347

constraints limit the phenotypes that can be adopted. This result is intriguing because counter-348

intuitively the number of phenotypes that can be adopted can decrease - and in-turn, the fit-349

ness benefit of information can decrease, rather than increase - as environmental uncertainty350

increases. In practice, under high environmental variation, an organism might decrease the351

amount of explored phenotypes explored through bet-hedging, further reducing the benefit of352

relying on informative cues.353

Note that information theory provides insights into many possible scenarios in which the354

relationship between bet-hedging and cues is complicated. For example, when cues are un-355

reliable and idiosyncratic (i.e. each individual - a different cue) relying on cues can be used356

as another means towards bet-hedging [19]. Hence, we advocate that the collection of more357

empirical data on the environmental uncertainty of species that live on environmental gradi-358

ents might provide exciting insights into bet-hedging, and that would allow a quantification359

of the fitness benefits of informative cues using the framework described above. To this aim,360

we showed in the examples and the accompanying R notebook (Github) how such data could361

be analyzed. We emphasize that this approach is general, and we used parabolic environmen-362

tal clines only as an example. Conversely, the approach applies to cases in which multiple363

environmental states and environmental factors could affect the fitness of an organism. For364

instance, density dependence and competition are essential predictors of bet-hedging [43], as365

in advancing pioneer plants, in which dormancy can evolve in response to the competition366

with plants adapted to prevailing environmental conditions. Most importantly, this approach367

provides theoretical upper limits for the fitness advantage of specific cues or adaptive mech-368

anism even in the absence of precise knowledge of fitness, a task that is otherwise hard to369
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achieve. To illustrate this, we look at a hypothetical case inspired by the marine midge Clunio370

marinus (Chironomidae, Diptera). Clunio is adapted to one of the most complex environ-371

ments on earth, the intertidal zone of seacoasts. Synchronising the adult emergence time to372

multiple environmental cycles of tidal, diurnal and lunar cycles, the marine midge, has suc-373

cessfully adapted in processing complex informative cues [44]. Using cues, adults emerge374

when conditions are favourable. Assuming a narrow window of opportunity for successful375

reproduction, we provide a theoretical upper boundary for the fitness advantage of this trait376

equivalent to about 0.31 bits (see Github for additional explanation and examples). Providing377

a metric in bits, valid across species, a thorough quantification of environmental variability in378

different species along environmental gradients could allow for a clearer understanding of the379

ecological conditions promoting plasticity and the usage of informative cues.380

In conclusion, we have extended the study of bet-hedging to asymmetric cases where phe-381

notypes are scarcer than the number of different environmental states. We show that in realistic382

conditions, the patterns of bet-hedging might be more complicated than previously expected.383

The results could potentially help clarify some of the mixed results of empirical observations384

[18], and better describe the evolution of bet-hedging along complex environmental gradients.385

However, even the most complicated cases, still obey the limit on the fitness value of a cue386

imposed by the mutual information.387
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Figure A.1: Average fitnesses of the strategies Germinate and Dormant as a function of
the probability of a single flood event p. Panel (a) describes the situation where the interme-
diate environmental state is the only one favourable for germination. However knowing the
exact state of the environment can lead to an increase in fitness given by F (E|C). Hence the
fitness benefit due to the cue, ∆F (E|C), is given by the shaded area. Panel (b) describes the
case where the optimal gains for germinating are obtained in extreme environments. For this
particular example the we get two internal fixed points given by {1/2, 3/4}. Below and above
these fixed points it is best to germinate but in between it pays to stay dormant. Again for a
perfect cue the fitness is given by increases by ∆F (E;C) to F (E|C).

[45] Hauert C, Michor F, Nowak MA, Doebeli M. Synergy and discounting of cooperation in486

social dilemmas. Journal of Theoretical Biology. 2006;239:195–202.487

[46] Gokhale CS, Traulsen A. Evolutionary games in the multiverse. Proceedings of the488

National Academy of Sciences USA. 2010;107:5500–5504.489

A Examples with asymmetries in strategies and environments490

Adaptation to intermediate environments. If the difference in benefits in the three environ-491

ments switch their signs then this satisfies a necessary condition for getting two internal fixed492

points [45, 46]. Herein we set up an example where we do get two internal fixed points for the493

three environment case. Here494

( e1 e3 e2

Germinate 1 4 1

Dormant 2 2 2

)
, (A.1)

The fitnesses of the two phenotypes are,495

fG = p2 + 8p(1− p) + 1(1− p)2 (A.2)

fD = 2p2 + 4p(1− p) + 2(1− p)2 (A.3)

In the absence of any external information about the environment the single generational ex-496

pected fitness is F (E) = max[fG, fD]. However with a perfectly informative cue C, the497

single generational expected fitness, F (E|C) = 2p2 + 8p(1 − p) + 2(1 − p)2. We look at498

the difference between the fitness with perfect information and the strategy of probabilistic499
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allocation according to the game theoretic outcome. The value of information is measured as500

the difference between the fitness with the cue and without the cue ∆F (E;C) (Figure A.1).501

The frequency with which seeds germinate is assumed to be x while they remain dormant502

with a complementary probability. The average fitnesses of the population in the different503

environments is then given by,504

env(1, x) = x+ 2(1− x)

env(2, x) = 4x+ 2(1− x)

env(3, x) = x+ 2(1− x) (A.4)

Maximising the long term population growth rate means maximising,505

g(x) = p2 log[env(1, x)] + 2p(1− p) log[env(2, x)] + (1− p)2 log[env(3, x)]

(A.5)

The maxima of this function appears when xmax = −1 + 6p− 6p2. Restricting to values of p506

which give us results for x between 0 and 1 we get,507

x∗(p) =


0 for p ≤ 1

6

(
3−
√

3
)

or p ≥ 1
6

(
3 +
√

3
)

, Dormant

xmax otherwise, Bet Hedging

1 never, Germinate.

(A.6)

The growth rate without the cue therefore is given by,508

G(E) =



log(2) for p ≤ 1
6

(
3−
√

3
)

or p ≥ 1
6

(
3 +
√

3
)

−H(E) + p2 log
(

3(1−2p(1−p))
p2

)
+2p(1− p) log(6)

+(1− p)2 log
(

3(1−2p(1−p))
(1−p)2

)
otherwise

2p(1− p) log(4) never.

(A.7)

If the cue provides perfect information then the long term fitness value is,G(E|C) = p2 log(2)+509

2p(1 − p) log(4) + (1 − p)2 log(2). The gain in fitness due to knowing the environment, i.e.510

the fitness value of information is therefore given by, ∆G(E;C) = G(E|C)−G(E),511

∆G(E;C) =



2p(1− p) log 2 for p ≤ 1
6

(
3−
√

3
)

or p ≥ 1
6

(
3 +
√

3
)

H(E) + p2 log
(

2p2

3(p2+(1−p)2)

)
−2p(1− p) log(3/2)

+(1− p)2 log
(

2(1−p)2
3(p2+(1−p)2)

)
otherwise

(p2 + (1− p)2) log(2) never.

(A.8)
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The bet-hedging region in this particular case explores the mixed phenotype space between the512

pure phenotypes. Therefore in the bet-hedging region such “exploratory bet-hedging” occurs513

that would never be affordable as a pure strategy.514

Adaptation to extremes: Multiplicity of bet-hedging. Contrary to the previous example515

now we consider seeds which perform better germinating in extreme environments.516

( e1 e2 e3

Germinate 4 1 6

Dormant 3 3 3

)
, (A.9)

Equating the average fitness of the two phenotypes which are given by,517

fG = 4p2 + 2p(1− p) + 6(1− p)2 (A.10)

fD = 3p2 + 6p(1− p) + 3(1− p)2, (A.11)

we get two fixed points denoted by p∗ = {1/2, 3/4}. Thus depending on p the best phenotype,518

according to the fitnesses, switches from germination to dormancy to germination again.519

However if the cue provides perfect information about the environment then the fitness520

conditioned upon the cue is F (E|C) = 4p2 + 6p(1 − p) + 6(1 − p)2. The value of the521

information received due to the cue is the difference between the fitness with the cue and522

without the cue ∆F (E;C) (Figure A.1). Assuming that the seeds germinate with probability523

x and stay dormant with probability 1 − x, the average fitnesses of the population in the524

different environments are then given by,525

env(1, x) = 4x+ 3(1− x)

env(2, x) = x+ 3(1− x)

env(3, x) = 6x+ 3(1− x) (A.12)

Maximising the long term population growth rate, we get526

g(x) = p2 log[env(1, x)] + 2p(1− p) log[env(2, x)] + (1− p)2 log[env(3, x)]

(A.13)

whose maxima is given by,527

x±max = 1
4

(
−3− 10p+ 14p2 ±

√
196p4 − 280p3 + 208p2 − 180p+ 81

)
. While one of the528

solutions is outside the range of x (0 ≤ x ≤ 1) the other results into the following piecewise529

solution of x∗,530

x∗(p) =


0 for 0.5 ≤ p ≤ 0.75 (Dormant)

x+max for 1
19

(
10−

√
62
)
< p < 0.5 and 0.75 < p < 1

19

(
10 +

√
62
)

(Bet Hedging)

1 for p ≤ 1
19

(
10−

√
62
)

or p ≥ 1
19

(
10 +

√
62
)

(Germinate).

(A.14)
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This shows an interesting situation where there are two regions of bet-hedging. The first one531

changes the phenotype from pure germination to pure dormancy and vice versa in the second532

region (Fig. A.1). The growth rate without the cue therefore is given by,533

G(E) =



log(3) for 0.5 ≤ p ≤ 0.75

−H(E) + p2 log
(

9−φ
4p2

)
+2p(1− p) log

(
φ+9

4(1−p)p

)
+(1− p)2 log

(
3(1−φ)
4(1−p)2

)
for 1

19

(
10−

√
62
)
< p < 0.5 and 0.75 < p < 1

19

(
10 +

√
62
)

p2 log(4) + (1− p)2 log(6) for p ≤ 1
19

(
10−

√
62
)

or p ≥ 1
19

(
10 +

√
62
)

(A.15)

where we use the abbreviation534

φ = 10p−14p2−
√

196p4 − 280p3 + 208p2 − 180p+ 81. For a perfectly informative cue the535

long term fitness value is, G(E|C) = p2 log 4 + 2p(1− p) log 3 + (1− p)2 log 6. The gain in536

fitness due to knowing the environment, i.e. the fitness value of information is therefore given537

by, ∆G(E;C) = G(E|C)−G(E),538

∆G(E;C) =



p2 log 4/3 + (1− p)2 log 2 for 0.5 ≤ p ≤ 0.75

H(E) + p2 log
(

4p2

4−φ

)
+2p(1− p) log

(
6(1−p)p
2φ+1

)
+(1− p)2 log

(
2(1−p)2
2−φ

)
for 1

19

(
10−

√
62
)
< p < 0.5 and 0.75 < p < 1

19

(
10 +

√
62
)

2p(1− p) log 3 for p ≤ 1
19

(
10−

√
62
)

or p ≥ 1
19

(
10 +

√
62
)
.

(A.16)

Thus even for this complicated case with two regions of bet hedging we can see that the value539

of the cue is a composite of the mutual information between the environment and the cue and540

a non-linear function in p, which can be interpreted as the probability of a single flood.541
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