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Abstract 

 

 

EEG slow waves, the hallmarks of NREM sleep, are closely linked to the restorative function of sleep 

and their regional cortical distribution reflects plasticity- and learning-related processes. Here we took 

advantage of simultaneous EEG-fMRI recordings to map cortical and subcortical hemodynamic 

(BOLD) fluctuations time-locked to sleep slow waves. Recordings were performed in twenty healthy 

adults during an afternoon nap. Slow waves were associated with BOLD-signal increases in the 

brainstem and in portions of thalamus and cerebellum characterized by preferential functional 

connectivity with limbic and somatomotor areas, respectively. At the cortical level, significant BOLD-

signal decreases were found in several areas, including insula and somatomotor cortex, and were 

preceded by slow signal increases that peaked around slow-wave onset. EEG slow waves and BOLD 

fluctuations showed similar cortical propagation patterns, from centro-frontal to temporo-occipital 

cortices. These regional patterns of hemodynamic-electrical coupling are consistent with theoretical 

accounts of the functions of sleep slow waves. 
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Introduction 

 

 Slow waves of sleep are thought to be crucial for the regulation of several important sleep-related 

processes, including sensory disconnection and synaptic plasticity related to learning and memory 

consolidation (Crunelli et al., 2018; Timofeev and Chauvette, 2017; Tononi and Cirelli, 2014). Recent 

work also suggested that a direct relationship may exist between electroencephalographic (EEG) slow 

waves, hemodynamic and cerebrospinal fluid (CSF) dynamics, ultimately resulting in the removal of 

metabolic wastes from the brain (Fultz et al., 2019; Hablitz et al., 2019; Xie et al., 2013). 

The appearance of NREM slow waves in the EEG signal depends on the coordinated oscillations 

of cortical neuronal populations between a hyperpolarized down-state with neuronal silence and a 

depolarized up-state characterized by intense neuronal firing (Steriade et al., 1993). While this slow 

oscillation appears in both cortical and thalamic networks, its origin is believed to be cortical. In fact, 

slow waves persist in the neocortex after thalamic lesions or pharmacological blockade of thalamic 

activity (David et al., 2013; Steriade et al., 1993). Moreover, slow waves are expressed in isolated 

cortical slabs in vivo and in cortical slice preparations in vitro (Crunelli and Hughes, 2010; Lőrincz et 

al., 2015; Sanchez-Vives and McCormick, 2000; Timofeev et al., 2000). On the other hand, the slow 

oscillation disappears in the thalamus of decorticated animals (Timofeev and Steriade, 1996). 

However, a growing body of evidence indicates that the thalamus and other subcortical structures, 

including the basal forebrain and several brainstem nuclei, may have an active role in regulating the 

expression of cortical slow waves in physiological conditions (Gent et al., 2018b; Neske, 2016). 

Indeed, an increase in thalamic activity has been shown to precede the initiation of cortical up-states 

in animal models (Gent et al., 2018a; Sheroziya and Timofeev, 2014; Slézia et al., 2011; Ushimaru 

and Kawaguchi, 2015). Moreover, thalamic deafferentation of the cortex results in a reduced frequency 

of the slow oscillation (David et al., 2013; Lemieux et al., 2014). 

At the cortical level, each slow wave behaves as a traveling wave characterized by a specific origin 

and propagation pattern (Massimini et al., 2004; Menicucci et al., 2009; Murphy et al., 2009). 

Interestingly, slow waves appear to originate more often within the somatomotor cortex and the insula 

(Massimini et al., 2004; Murphy et al., 2009), from which they spread towards anterior and posterior 

brain areas, especially along the medial surfaces of the two brain hemispheres (Menicucci et al., 2009; 

Murphy et al., 2009). Such a propagation seems to mostly occur through cortico-cortical white matter 

connections (Avvenuti et al., 2020; Buchmann et al., 2011; Murphy et al., 2009; Piantoni et al., 2013). 

Importantly, the organized and systematic traveling of slow waves along connected pathways has been 

suggested to have an important role in sleep-dependent network-level processes related to plasticity 

and memory consolidation (Cox et al., 2014; Massimini et al., 2004). 

In summary, slow waves of sleep appear to involve complex interactions among multiple cortical 

and subcortical structures. Understanding such interactions is crucial to improve our knowledge 

regarding the regulation and functional role of (NREM) sleep, as well as its alterations under 

pathological conditions. However, conventional EEG investigations in humans have a low spatial 

resolution and are unable to accurately describe changes in the activity of subcortical and deep cortical 

structures. These issues may be overcome by combining the optimal temporal resolution of EEG with 

the high spatial resolution offered by functional magnetic resonance imaging (fMRI; Mullinger and 

Bowtell, 2010). In fact, one EEG-fMRI investigation on slow-wave correlates reported significant 

BOLD-signal increases in several brain areas, including the brainstem, cerebellum, inferior frontal 

cortex, precuneus and posterior cingulate areas (Dang-Vu et al., 2008). Surprisingly, however, no clear 

changes in thalamic activity were found in association with sleep slow waves. Moreover no cortical 

regions showed significant decreases in brain activity despite the well-known association of slow 

waves with a highly synchronized suppression of neuronal firing (Steriade et al., 1993). These 

inconsistencies could have their roots in the non-stationary nature of sleep slow waves, as conventional 

analyses may fail to capture time-varying changes in brain activity (Mitra et al., 2015). Furthermore, 

the previous investigation only focused on large-amplitude slow waves and was thus unable to 
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determine how slow-wave amplitude relates to changes in hemodynamic activity measured through 

fMRI. In order to address these issues, here we took advantage of simultaneous EEG-fMRI recordings 

to obtain spatially and temporally detailed maps of cortical and subcortical hemodynamic fluctuations 

time-locked to sleep slow waves (0.5-2 Hz). 

 

 

Results 

 

Final sample and sleep macrostructure. Simultaneous EEG-fMRI recordings were performed in 

twenty healthy adults during an afternoon nap. However, three subjects (all males) were excluded from 

further evaluation as they did not reach stable sleep (n=1) or presented strong artifactual activity in the 

EEG-signal (n=2). Thus, the final sample included 17 subjects (age 28.8 ± 2.3 years, range 25-35). 

These participants completed three to five 10-min long EEG-fMRI runs (mean 4.9 ± 0.6), including 

on average 29.3 ± 10.3 min of NREM sleep (range 13.5-53.0 min; N1 = 58.6 ± 25.2%; N2 = 41.2 ± 

24.9%; N3 = 0.2 ± 0.8%; Figure S1). A total of 2021 slow waves (118.9 ± 79.4 per participant) were 

automatically detected using validated algorithms (Mensen et al., 2016; Siclari et al., 2014) based on 

the identification of consecutive signal zero-crossings (0.25-1.0 s half-wave duration, no amplitude 

thresholds; see Material and Methods) and were included in subsequent analyses. 
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Figure 1. Scoring and analysis of EEG recordings. (A) Sleep hypnogram of one study participant. Vertical lines mark the 

end of EEG-fMRI acquisition runs. (B) EEG traces of a N2 epoch of the same participant shown in panel A. (C) Schematic 

representation of the approach used to detect and characterize sleep slow waves. Negative half-waves were automatically 

detected through the identification of negative peaks comprised between consecutive signal zero-crossings. A = amplitude; 

d = half-wave duration; d1 = time from first zero-cross to negative peak; d2= time from negative peak to second zero-

cross. (D) Mean power spectral densities (PSD) obtained across all studied volunteers for wakefulness (W), N1, N2, and 

N3 sleep. PSD values were computed in two frontal (F3, F4) and two central (C3, C4) electrodes and then averaged. (E) 

Changes in delta and alpha power across sleep stages were evaluated to verify the accuracy of sleep scoring procedures. 

As expected, all sleep stages are characterized by a reduction in alpha activity (8-12 Hz) with respect to wakefulness, while 

delta activity (0.5-4 Hz) increase from N1 to N3 sleep. 

 

 

Changes in cortical and subcortical hemodynamic activity. A voxel-wise regression analysis (Figure 

2) was used to identify significant changes in brain activity associated with the occurrence of NREM 

slow waves. We found that slow waves were associated with two distinct blood-oxygen-level-

dependent (BOLD) responses (q < 0.01, FDR corrected with an additional minimum cluster threshold 

of 50 voxels). Specifically, significant signal increases were found in subcortical structures comprising 
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the bilateral thalamus, the cerebellum, mainly posterior portions of the brainstem, and the right caudate 

nucleus (Figure 3A and Figure S2A, Table 1). Significant hemodynamic decreases were instead 

observed at cortical level in the bilateral somatomotor cortex, visual cortex and posterior insula, as 

well as in the left parahippocampal gyrus, in the right hippocampus and in the left parieto-occipital 

sulcus (Figure 3B and Figure S2B, Table 1).  

 

 

 
 

Figure 2. Schematic representation of procedures applied for the voxel-wise regression analysis. Each slow wave was 

modelled as a square wave with onset-time corresponding to the timing of the first zero-crossing, height equal to the 

absolute value of the maximum negative amplitude of the slow wave (A), and duration corresponding to the duration of the 

descending phase of the wave (d1). The obtained regressor was then convoluted with a standard gamma hemodynamic 

response function (HRF), down-sampled to the fMRI sampling rate and used to regress the BOLD time-series from each 

voxel. At single-subject level, beta-values of each voxel were converted into z-scores calculated with respect to a null 

distribution obtained by re-computing the regression after shuffling the timing of individual slow waves (nPerm =1000). 

A one-sample t-test was performed to assess statistical significance at group-level. 
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Figure 3. Results of the regression analysis. Brain structures associated with a significant (q < 0.01, cluster size ≥ 50 

voxels) BOLD-signal (A) increase (red) or (B) decrease (blue). Brain images were generated using MRIcron 

(https://www.nitrc.org/projects/mricron). (C-D) Mean BOLD-signals (up-sampled to the EEG sampling rate) and relative 

standard errors for three subcortical (C) and three cortical (D) of the identified significant clusters. Time t = 0 s 

corresponds to slow-wave onset. 

 

 

 

Signal change Region Voxels CM x CM y CM z 

      

Positive 

Brainstem (Medulla) 120 -0.8 -38.5 -46.7 

Brainstem (Midbrain) 95 -7.3 -25.3 -15.7 

Caudate Nucleus 76 +17.9 -0.8 +25.5 

Cerebellum 6322 -5.2 -62.7 -29.2 

Cerebellar Tonsil 121 -2.4 -54.7 -61.3 

Medial Thalamus 734 +1.0 -19.0 +7.6 

      

Negative 

Left Posterior Insula 64 -39.0 -4.8 +10.2 

Right Posterior Insula 123 +37.9 -5.3 +12.1 

Right Hippocampus 135 +24.8 -10.1 -18.9 

Left Parahippocampus 50 -22.0 -54.6 -4.9 

Letf Parieto-Occipital Sulcus 64 -17.0 -58.6 +17.5 

Left Somatomotor Cortex 800 -57.4 -7.4 +32.5 

Right Somatomotor Cortex 279 +58.4 -2.1 +34.5 

Left Visual Cortex 176 -15.5 -90.5 -5.7 

Right Visual Cortex 268 +13.5 -90.8 -3.5 

 
Table 1. Results of regression analysis. Brain areas showing a significant BOLD-signal increase (positive) or decrease 

(negative) in relation to the occurrence of sleep slow waves (q < 0.01, cluster size ≥ 50 voxels). The table includes the 

number of voxels and the coordinates of the center of mass of each significant cluster in standard MNI space. 
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An evaluation of the average temporal profile of the hemodynamic response in each significant 

cluster revealed that the onset of subcortical BOLD-signal increases was temporally aligned with the 

onset of the sleep slow wave (t ≈ 0 s). These initial increases were followed by a slow negative BOLD-

signal deflection that was especially evident in the thalamus and cerebellum. On the other hand, the 

strong negative signal deflection in neocortical areas was delayed by 2-4 s with respect to slow-wave 

onset, and was preceded by a slow, positive BOLD-signal deflection that started 4-12 s prior to slow-

wave onset. 

 

Thalamic involvement in sleep slow waves. Previous work in animal models suggested that especially 

centro-medial thalamic nuclei may have a key role in the modulation of sleep slow waves (Gent et al., 

2018b). In order to investigate whether this may be true also in humans, here we analyzed and 

characterized the anatomical and functional nature of thalamic portions recruited during the occurrence 

of human sleep slow waves (Figure 4). First, we determined the percentage of activated voxels that 

fell within specific thalamic substructures identified using a probabilistic atlas of the human thalamus 

based on diffusion-weighted imaging (Najdenovska et al., 2018). For both the left and the right 

thalamus, we found that significant BOLD-signal changes especially involved medial nuclei located 

anteriorly, centrally and posteriorly (Figures 4D-E). In particular, activated portions of the thalamus 

included ~40% of anterior thalamic nuclei (A), ~30% of posterior nuclei (medial pulvinar, PuM; 

central lateral nucleus, CL; lateral posterior nucleus, LP), ~20% of ventral anterior nuclei (VA) and 

~18% of mediodorsal nuclei (MD). 
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Figure 4. Thalamic involvement in sleep slow waves. (A) The seven canonical networks used to determine the preferential 

connectivity of each thalamic voxel. (B) Parcellation of the thalamus based on the preferential functional connectivity of 

each voxel. (C) Radial plot showing the proportions of activated voxels having a preferential connectivity with each of the 

seven canonical networks with respect to the totality of thalamic voxels. (D) Parcellation of the thalamus based on the 

Najdenovska atlas. (E) Radial plot showing the proportions of activated voxels attributed to each anatomical area with 

respect to the totality of thalamic voxels. In (B) and (D), the portion of the thalamus activated in association with the 

occurrence of sleep slow waves (q < 0.01, cluster size ≥ 50 voxels) is highlighted and enclosed with a black line. 

 

 

Second, we evaluated the functional organization of activated thalamic portions by determining the 

preferential functional connectivity of each voxel with each of the seven main canonical brain 

networks (Hwang et al., 2017; Yeo et al., 2011): visual, somatomotor, dorsal attention, ventral attention, 

limbic, fronto-parietal and default mode (Figure 4A-B). We found that the portion of thalamus 

recruited during sleep slow waves was especially connected with areas of the limbic system (Figure 

4C). Indeed, the activated thalamic cluster included ~70% of all thalamic voxels showing a preferential 

connectivity with this particular network. Other represented networks included the default mode 

network (~22%) and the frontoparietal network (~20%). 

 

Cerebellar involvement in sleep slow waves. Changes in cerebellar activity have been previously 

reported as a function of sleep stage as well as in association with the occurrence of sleep slow waves 

(for a detailed review see Canto et al., 2017). Yet, the determinants of sleep-dependent changes in 

cerebellar activity and the possible role of the cerebellum in sleep regulation are still largely unknown. 

In order to advance current knowledge on these key aspects, here we performed a detailed evaluation 

of cerebellar activity related to the occurrence of NREM slow waves (Figure 5). As described above 

for the thalamus, we first determined the percentage of activated voxels that fell within specific 

cerebellar areas identified using the SUIT anatomical atlas (Diedrichsen et al., 2009, 2011). The results 
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of this analysis are presented in Figure 5C-D and indicate a broad involvement of the vermis and of 

the superior portions of both cerebellar hemispheres. Then, we evaluated the functional relationship 

between activated cerebellar portions and the seven canonical brain networks (Figure 5A-B). We found 

that the fractions of cerebellum involved in sleep slow waves were especially connected with areas of 

the somatomotor network. In fact, the activated cluster included ~45% of all cerebellar voxels showing 

a preferential connectivity with this particular network. Other represented networks included the 

frontoparietal network (~34%) and the ventral attention network (~28%). 

 

 

 
 

Figure 5. Cerebellar involvement in sleep slow waves. (A) The seven canonical networks and the correspondent 

parcellation of the cerebellum based on the preferential connectivity of each voxel. (B) Radial plot showing the proportions 

of activated voxels having a preferential connectivity with each of the seven canonical networks with respect to the totality 

of cerebellar voxels. C) Anatomical parcellation of the cerebellum based on the SUIT anatomical atlas. (D) Radial plot 

showing the proportions of activated voxels attributed to each anatomical area with respect to the totality of cerebellar 

voxels. In (A) and (C), the portion of the cerebellum activated in association with the occurrence of sleep slow waves (q < 

0.01, cluster size ≥ 50 voxels) is highlighted and enclosed with a black line. 
 

 

Cortical involvement in sleep slow waves. Macro-scale hd-EEG studies in humans showed that slow 

waves are not stationary events, but instead propagate at cortical level through anatomically connected 

pathways (Avvenuti et al., 2020; Massimini et al., 2004; Murphy et al., 2009). This propagation of 

electrophysiological slow waves may determine a relative variability in the timing of hemodynamic 

changes across cortical regions. Of note, BOLD-changes occurring ahead or delayed with respect to 

the actual onset of slow waves, could be missed by conventional fMRI analyses (Mitra et al., 2015). 

In line with this possibility, a preliminary evaluation of the mean BOLD-signal time-courses within 

areas of the seven canonical networks showed similar patterns of changes in all regions, thus 
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suggesting that most cortical areas may actually present some level of modulation in association with 

the occurrence of sleep slow waves (Figure 6). 

 

 

 
 
Figure 6. Slow-wave-related hemodynamic changes across the cortical mantle. (A) Mean BOLD-signal time-courses (± 

standard error) associated with sleep slow waves in the seven canonical networks. Time t = 0 s corresponds to slow-wave 

onset (positive-to-negative zero crossing). (B) Amplitude of the positive (top) and negative (bottom) peaks in each of the 

200 ROIs of the Schaefer atlas. Brain surface plots were generated using the Surf Ice software 

(https://www.nitrc.org/projects/surfice/). The largest negative amplitudes were found in primary cortices, while the largest 

positive amplitudes were also found in areas of the limbic network. 

 

 

In light of these observations, further analyses were performed to investigate whether hemodynamic 

cortical changes showed a relative propagation similar to the one described for electrophysiological 

slow waves. Specifically, we first computed the average BOLD-signal across slow waves and subjects 

within 200 cortical regions of interest (ROIs) of the Schaefer functional atlas (Schaefer et al., 2018; 
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Figure 6B shows the relative amplitude of positive and negative BOLD-signal peaks for all ROIs). 

Then, a cross-correlation analysis was performed between a seed time-series corresponding to the left 

somatomotor cortex and the time-series of all brain ROIs. This investigation confirmed that most brain 

areas showed similar slow-wave-dependent hemodynamic changes, which however occurred at 

different delays in distinct brain regions (Figure 7; also see Figure S3). In particular, the lowest delays 

were found in areas encompassing the somatomotor cortex, the premotor-prefrontal cortex and the 

anterior insula, while the highest delays were found in the inferior and lateral occipital and temporal 

cortex. These observations were substantially confirmed through a network-level analysis based on 

seven large bilateral ROIs. In fact, the lowest latency was found in the somatomotor network, followed 

by the ventral attention (+ 0.07 s) and the dorsal attention (+ 0.33 s) networks. The highest delays were 

instead found in the visual (+ 0.80 s) and limbic (+ 1.00 s) networks. 

Interestingly, while spanning a much broader time-frame (in the order of seconds vs. tens to few 

hundred of milliseconds), the fMRI delay-map was strikingly reminiscent of the one obtained from the 

analysis of slow-wave propagation in source-level hd-EEG data (Murphy et al., 2009). In order to 

allow a direct comparison between the hemodynamic and the electrophysiological delay-maps, here 

we re-analyzed NREM-sleep hd-EEG recordings (256 electrodes, EGI-Philips; 500 Hz sampling 

frequency) obtained in a distinct set of 12 healthy adult volunteers (see Materials and Methods). In 

particular, slow waves were automatically detected in the first 30 min of N2/N3 sleep, and their 

regional propagation delays were computed in source space using a previously described approach 

(Murphy et al., 2009; Siclari et al., 2014). In line with results obtained for hemodynamic changes, 

electrophysiological slow waves showed the lowest latency in areas encompassing somatomotor 

cortex, insula and premotor areas, while the highest delay was observed in temporal and occipital 

regions. A correlation analysis at ROI-level (N=182) confirmed the existence of a significant 

association between hemodynamic and electrophysiological delay-maps (Pearson’s  = 0.264; p = 

0.0003; Figure S4). The same analysis performed at network-level (N=7) also yielded a strong 

correlation with  = 0.893 (p = 0.007; Figure 7C), suggesting that the relatively modest correlation 

coefficient obtained at ROI-level could be in part ascribed to inaccuracies in source estimation. 
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Figure 7. Hemodynamic and electrophysiological signal propagation during sleep slow waves. (A) Mean cortical delay-

maps. Brain surface plots were generated using the Surf Ice software (https://www.nitrc.org/projects/surfice/). Here the 

yellow color indicates a high delay, while the dark-blue color indicates a low delay. All the 200 ROIs of the Schaefer atlas 

are shown. It is important to note that these maps reflect a mean propagation pattern, which may not correspond to the 

propagation pattern of each individual slow wave. (B) Mean hemodynamic brain activity changes (z-score) in the 200 

ROIs, sorted according to relative delay values. ROIs characterized by a non-significant cross-correlation with the seed 

region were put in the bottom section of the image and are covered by a gray shadow. (C) Mean propagation delays 

computed for the seven (bilateral) canonical networks for BOLD (left) and EEG (right) signals. SM: somatomotor, VA: 

ventral attention, FP: fronto-parietal, DA: dorsal attention, D: default mode, V: visual, L: limbic. 

 

 

Relationship between slow-wave amplitude and BOLD-signal variations. Finally, we investigated 

whether variations in the properties of electrophysiological slow waves corresponded to variations in 

the profiles of regional hemodynamic responses. A correlation analysis between slow wave amplitude 

and point-by-point BOLD-signal changes revealed a significant positive relationship between EEG 

amplitude and the absolute magnitude of the observed positive subcortical and the negative cortical 
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signal-deflections (q < 0.01; Figure 8 and Figure S5). Of note, the small positive BOLD-signal 

deflection observed in cortical areas immediately before or around slow-wave onset, and the late 

negative component observed in subcortical structures were also significantly modulated by slow wave 

amplitude. Interestingly, significant positive correlations were found up to 4 s before slow-wave onset 

in thalamus, somatomotor cortex, insula and hippocampus, in line with previous evidence indicating a 

possible central role of these regions in slow wave generation (Murphy et al., 2009). The evaluation 

of hemodynamic changes for distinct slow-wave amplitude percentile classes (A1: 0-33; A2: 33-66; A3: 

66-100) confirmed that larger slow waves were associated with larger BOLD-signal changes, and also 

revealed a relative modulation of the latency of such changes (trend analysis, p < 0.01). In fact, larger 

slow waves were associated with larger hemodynamic variations that occurred earlier in time, while 

smaller slow waves were associated with smaller hemodynamic changes that tended to be shallower 

and to peak later in time (Figure 8 and Figure S6). 
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Figure 8. Relationship between EEG slow-wave properties and regional hemodynamic changes. (A) Temporal evolution 

of BOLD-signals (averaged across subjects), for three classes of slow waves defined based on amplitude percentiles (A1: 

0-33; A2: 33-66; A3: 66-100). (B) Point-by-point correlation between slow-wave amplitude and BOLD-signal change for 

representative subcortical (thalamus) and cortical (visual cortex) structures. The gray shadowed areas indicate significant 

effects with q<0.01. (C) Relative delays of the positive (for thalamus) and the negative (for visual cortex) BOLD-signal 

peaks for each of the three wave classes. A regression was performed to determine whether a relationship existed between 

slow wave amplitude and the relative latency of hemodynamic peaks. Correspondent beta and p-values are reported in the 

gray boxes. 
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Discussion 

 

To the best of our knowledge this is the first study to provide an in-depth characterization of cortical 

and subcortical brain-activity patterns associated with sleep slow waves in humans. Our results can be 

summarized in four main findings. First, we showed that sleep slow waves are associated with 

significant BOLD-signal increases in subcortical structures, including the brainstem, thalamus and 

cerebellum, whereas in cortical areas a slow BOLD-signal increase precedes slow-wave onset and is 

followed by a prominent decrease. Second, we showed that positive subcortical changes occur within 

specific portions of thalamus and cerebellum, including medial thalamic nuclei having a strong 

connectivity with bilateral limbic functional networks, and cerebellar areas having a preferential 

connectivity with the somatomotor network. Third, we showed that cortical hemodynamic responses 

occur at different delays across a broad extent of the cortical mantle, with the shortest delay observed 

in somatomotor areas and the highest delay in temporal and lateral occipital areas. Importantly, the 

BOLD-signal propagation pattern substantially mirrors the spreading of electrophysiological slow 

waves. Finally, by investigating the relationship between EEG slow waves and hemodynamic activity, 

we found that slow-wave amplitude is directly correlated to the magnitude and the latency of the 

hemodynamic BOLD-signal changes in both cortical and subcortical areas. Overall, these findings 

indicate that human slow waves are associated with a complex chain of interactions among subcortical 

and cortical brain structures, in line with evidence obtained in animal models. 

 

Sleep slow waves are associated with hemodynamic changes in brainstem and thalamus. Our results 

indicate that human sleep slow waves are associated with hemodynamic changes in the brainstem and 

the thalamus, including an initial signal increase followed by a late, less pronounced negative 

deflection. Of note, the thalamic activation especially involves midline nuclei presenting a strong 

connectivity with the limbic network - the so-called ‘limbic thalamus’ (Colavito et al., 2015; Vertes et 

al., 2015). At the brainstem level, two main clusters of activation were found in the posterior midbrain 

and medulla. The posterior brainstem contains the reticular formation (Brown et al., 2012; Moruzzi 

and Magoun, 1949), which is known to send projections to the thalamic reticular nucleus and the 

midline and intralaminar thalamic nuclei (Mountcastle and Poggio, 1974; Steriade and Glenn, 1982). 

This may explain the co-activation of these structures in association with sleep slow waves. 

The involvement of brainstem and medial thalamus in human slow waves is consistent with 

previous findings in animal models (Gent et al., 2018a; Neske, 2016). Indeed, while the slow 

oscillation underlying the generation of sleep slow waves is traditionally regarded as a prominently 

cortical phenomenon due to its persistence after thalamic lesion (Steriade et al., 1993) and in 

deafferented cortical slabs (Timofeev et al., 2000), accumulating evidence indicates a direct 

involvement of the brainstem and the thalamus in modulating important properties of NREM slow 

waves. In particular, these structures have been suggested to play a fundamental role in triggering and 

synchronizing the up-state at each cycle of the slow oscillation (Amzica and Steriade, 1995; Contreras 

and Steriade, 1995; Eschenko et al., 2012; Mena-segovia et al., 2008; Schweimer et al., 2011). 

Consistent with this view, previous work showed that cortical up-states are preceded by spontaneous 

thalamic spikes (Gent et al., 2018a; Sheroziya and Timofeev, 2014; Slézia et al., 2011; Ushimaru and 

Kawaguchi, 2015) and may be induced through electrical or optogenetic stimulation of the thalamus 

(David et al., 2013; Gent et al., 2018a; Honjoh et al., 2018; Poulet et al., 2012). Moreover, thalamic 

deafferentation of the cortex leads to a significant reduction in the frequency of slow oscillations 

(David et al., 2013; Lemieux et al., 2014). Our results support the possibility of a similar regulating 

role of subcortical structures during human slow waves. Moreover, the specific recruitment of limbic-

related thalamic portions is congruous with evidence indicating a key-role of NREM slow waves in 
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learning and memory consolidation (Diekelmann and Born, 2010; Miyamoto et al., 2017; Tononi and 

Cirelli, 2014). 

 

Cerebellar involvement in human sleep slow waves. A mainly positive hemodynamic modulation 

similar to the ones found in the brainstem and the thalamus was also observed in the cerebellum. In 

fact, an association between sleep slow waves and cerebellar activity has been previously described 

both in animal models (Roš et al., 2009; Steriade et al., 1971a, 1971b) and in humans (Dang-Vu et al., 

2008). In addition, during N2 sleep, changes in cerebellar activity have been found to accompany the 

occurrence of K-complexes (Jahnke et al., 2012). Evidence obtained in ketamine-anesthetized rats 

suggests that the neocortex may entrain the cerebellum during the alternation of down- and up-states 

(Rowland et al., 2010), while the cerebellum may in turn have a relevant role in the fine-tuning of 

cortical slow waves (Canto et al., 2017). Nevertheless, the mechanism and functional meaning of 

cerebellar recruitment during cortical slow oscillations is still to be fully understood. One intriguing 

possibility is that changes in cerebellar activity play a role in the consolidation of motor memories, 

and possibly of other cognitive skills (Canto et al., 2017). In line with this view, here we found that 

portions of the cerebellum activated during sleep slow waves especially include those connected with 

the somatomotor network and, to a lesser extent, to the spatially close frontoparietal and ventral-

attention networks. 

 

Human slow waves are coupled with cortically propagating hemodynamic waves. At the cortical 

level, we found that slow-wave onset is associated with a negative BOLD-signal deflection that could 

reflect the occurrence of locally synchronized down-states characterized by neuronal silence. In 

particular, we observed significant cortical clusters displaying large BOLD-signal decreases in 

bilateral insula, somatomotor cortex and visual cortex, as well as in the right hippocampus, left 

parahippocampus and left parieto-occipital sulcus. However, similar hemodynamic changes were also 

found to occur at different delays across distinct brain areas, covering a broad extent of the cortical 

mantle. In fact, we found that the insula, somatomotor and premotor regions were among the areas 

with the lowest relative delay, while the highest delays were found in the occipital and temporal cortex. 

This finding is consistent with the known cortical propagation of electrophysiological slow waves. 

Indeed, previous work showed that most EEG slow waves have a well-defined and circumscribed 

origin that more often involve brain areas located around the somatomotor cortex and the insula 

(Avvenuti et al., 2020; Massimini et al., 2004; Menicucci et al., 2009; Murphy et al., 2009), from 

which they propagate toward more anterior and posterior areas. In line with this, here we showed that 

the regional delays of hemodynamic changes significantly correlate with the propagation delays of 

electrophysiological slow waves, thus implying a direct coupling between the two phenomena. This 

finding is especially interesting in light of recent evidence linking EEG slow waves, hemodynamic 

changes and CSF movements (Fultz et al., 2019). Indeed, while CSF movement was not directly 

assessed in the present work, our results suggest that slow-wave propagation could generate a 

hemodynamic gradient that may ultimately favour CSF flow and the clearance of metabolic wastes. 

Interestingly, this mechanism could also contribute to explain the recent observation of a direct 

relationship between slow wave activity (1-4 Hz, delta power) and glymphatic CSF movement (Hablitz 

et al., 2019). Indeed, here we found that the amplitude of electrophysiological slow waves is positively 

related to the magnitude and inversely related to the delay of cortical (and subcortical) BOLD-signal 

changes. Thus, larger slow waves are associated with stronger and faster hemodynamic changes that 

may lead to a more efficient mobilization of the CSF. This hypothesis would be consistent with 

previous reports of a direct link between alterations of slow wave activity and cognitive decline related 

to the accumulation of β-amyloid in the medial prefrontal cortex of older individuals (De Gennaro et 

al., 2017; Mander et al., 2015). 

Why slow waves show the lowest delay, and thus, a more common origin, in insula and 

somatomotor and premotor cortex, is unclear. These regions are characterized by a strong 
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noradrenergic innervation (Gaspar et al., 1989; Javoy-Agid et al., 1989; Lewis and Morrison, 1989) 

and may thus be particularly affected by the overall reduction of activating neuromodulators from 

wakefulness to NREM sleep. Moreover, the same areas also seem to represent a preferential origin for 

large and widespread slow waves (including K-complexes), whose generation/synchronization 

mechanism has been suggested to depend on phasic activity of ascending activating systems (Bernardi 

et al., 2018; Siclari et al., 2014). Another intriguing possibility is that the spatial distribution of slow-

wave origin reflects a role of slow waves in the maintenance of sensory and motor disconnection during 

sleep (Funk et al., 2016). Possibly consistent with this interpretation, we found that the cortical 

negative signal deflection is preceded by a slow rise of the BOLD-signal, which peaks around the 

timing of slow wave onset. This BOLD-signal increase may reflect spontaneous or stimulus-induced 

increases in cortical activity that eventually trigger a response-suppression represented by the sleep 

slow wave. In fact, a similar mechanism has been suggested to subserve the sleep-protective function 

of stimulus-induced K-complexes (Andrillon and Kouider, 2020; Laurino et al., 2019, 2014; Riedner 

et al., 2011). 

 

Limitations. Present analyses were performed on EEG-fMRI data collected during an afternoon nap 

and most participants failed to reach deep, N3 sleep. It should be noted, however, that the relative 

sparsity of slow waves occurring in light sleep can be expected to minimize potential confounds related 

to the overlap of hemodynamic responses associated with slow waves occurring in close temporal 

sequence. This is especially important given the slow temporal evolution of the hemodynamic response 

and its relative propagation at cortical level. Given these considerations, future studies should verify 

whether trains of large slow waves that occur in N3 may involve partially distinct sets of brain regions 

or be associated with different response patterns. In particular, there is evidence for the existence of 

different subtypes of slow waves, including so-called K-complexes (type I slow waves) and delta 

waves (type II slow waves), which co-exist during NREM sleep and likely rely on different 

synchronization mechanisms (Bernardi et al., 2018; Siclari et al., 2014). It is therefore unlikely that all 

slow waves engage the whole set of brain regions in an identical manner. Indeed, not only each 

individual slow wave may recruit partially different areas depending on its specific origin and 

propagation pattern, but the same areas could be also engaged differently by distinct slow-wave 

subtypes.  

 

Conclusions. Overall, present results indicate that human slow waves are associated with complex 

patterns of hemodynamic changes, including both increases and decreases, and involving cortical as 

well as subcortical structures. These patterns of brain activity are consistent with theoretical accounts 

of the functions of sleep slow waves. In particular, the strong connectivity between activated thalamic 

nuclei and limbic structures is consistent with a role of sleep slow waves in memory processing 

(Miyamoto et al., 2017). Moreover, our results demonstrate coupled electrophysiological and 

hemodynamic fluctuations that orderly propagate from a preferential origin in centro-frontal cortical 

brain areas to more anterior and posterior regions. We hypothesize that these coupled propagation 

dynamics could have a direct role in the generation of gradients of CSF flows and in the clearance of 

metabolic wastes (Fultz et al., 2019). The mechanism and function of the slow-wave-dependent 

electrophysiological-hemodynamic coupling undoubtedly deserves future investigations due to its 

possible implication in pathological conditions. 

 

 

Materials and Methods 

 

Participants. Twenty healthy adult volunteers (age 29.7 ± 3.9 years, range 25-42; 11 females; all right-

handed) participated in the study. A clinical interview was performed to rule out history or presence 

of any disorder that could significantly affect brain function. Then, recruited participants underwent 
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simultaneous EEG-fMRI recording during an afternoon nap opportunity. In order to facilitate transition 

into sleep during the scan session, subjects were asked to wake-up 1 to 2 hours earlier than usual in 

the morning of the experiment and to restrain from consuming caffeine-containing beverages in the 

few hours that preceded the scan session. On average, participants reported to have slept for 4.9 ± 1.5 

h the night before the experiment, which corresponded to 66.2 ± 26.3 % of their usual sleep time.  

As detailed below, we also re-analyzed resting state (rs-)fMRI and hd-EEG data collected in two 

independent samples of healthy adult individuals. Specifically, rs-fMRI data was obtained in a group 

of 28 adult subjects (age 25.0 ± 5.3 years, range 19-43; 14 females; 14 left-handed). Data acquisition 

was performed using the same MRI scanner and acquisition parameters comparable to those employed 

in the present study (see below). The hd-EEG data consisted of overnight sleep recordings obtained at 

the University Hospital of Lausanne (Switzerland) in a distinct set of 12 healthy adult volunteers (age 

25.5 ± 3.7 years, 6 females) who participated in a larger project aimed at exploring the effect of visual 

experience on sleep slow waves (Bernardi et al., 2019a). Here we only included data from the control 

condition, in which subjects remained in the sleep laboratory and watched movies of their choice 

(selected from a pre-defined list) from 3 to 8PM. 

All experiments were conducted under protocols approved by the respective Local Ethical 

Committees, in accordance with the ethical standards of the 2013 Declaration of Helsinki. Written 

informed consent was obtained from all participants. 

 

Data acquisition. All study participants underwent simultaneous EEG, ECG and fMRI recordings 

during an afternoon nap opportunity (2:30-4:00PM). Custom-made foam pads were used to improve 

the comfort of the subjects inside the coil and minimize possible head movements. The participants 

received instruction to relax and try to sleep in the scanner. The study was interrupted after acquisition 

of five 10-min fMRI runs or when the participant started to feel uncomfortable in the scanner and/or 

felt unable to fall asleep.  

The EEG was recorded using an MR-compatible EEG cap (Micromed, Mogliano Veneto, Italy) 

including 32 electrodes online-referenced to FCz (1,024 Hz sampling frequency). The electrode-skin 

impedance was brought below 10 KΩ at the beginning of the scan session. During simultaneous EEG-

fMRI acquisition, electrophysiological data were transmitted through a fibreoptic cable from the high-

input impedance amplifier (22 bits resolution, with range ± 25.6 mV) in the scanner room to a computer 

located outside. Before transmission, the signal was band-pass filtered between 0.15 and 269.5 Hz by 

an anti-aliasing hardware band-pass filter. 

Functional and anatomical data were acquired using a 3T Philips Achieva MR-scanner. T2*-

weighted gradient-echo echoplanar sequences were used to acquire functional data from 39 axial 

contiguous slices (300 volumes per run; TR = 2000 ms; TE = 35ms; FA = 80°; voxel size: 3x3x3 mm). 

A high-resolution T1-weighted MPRAGE anatomical image was also obtained at the end of the 

experimental session. The volume consisted of 170 sagittal slices (TR = 9.9 ms; TE = 4.6 ms; in plane 

matrix = 256x256; voxel size = 1x1x1 mm).  

 

EEG data preprocessing and analysis. All EEG recordings were preprocessed in MATLAB (The 

MathWorks, Inc.) using EEGLAB (Delorme and Makeig, 2004). The FMRIB-plugin (Iannetti et al., 

2005; Niazy et al., 2005) was used to remove fMRI-related artifacts from EEG data through the 

following steps: removal of MR gradient artifacts based on average artifact subtraction (AAS), 

subtraction of the principal components (PC) of artifact residuals (Optimal Basis Sets method; OBS) 

and adaptive noise cancelation (ANC); signal down-sampling to 256 Hz; automated detection of QRS 

complexes in ECG channel followed by removal of ballistocardiographic artifacts (i.e., artifacts caused 

by cardiac pulse-related movement of the scalp electrodes inside the magnetic field; Allen et al., 2000) 

based on subtraction of PCs of artifact residuals (OBS). Of note, all automated QRS detections were 

visually inspected and wrong or missing markers were manually corrected using custom-made 

MATLAB functions. Finally, EEG recordings were band-pass filtered between 0.5 and 18 Hz and an 
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Independent Component Analysis (ICA) was applied to remove any residual activity of artifactual 

origin, including artifacts related to eye movements and muscular activity. Bad channels were visually 

identified, rejected and interpolated using spherical splines from the activity of the nearest sensors. 

The EEG signal was re-referenced to the average of channels T5 and T6, and sleep scoring was 

performed over 30-s epochs according to standard criteria (Iber et al., 2007). Epochs containing 

residual artifactual activity were manually marked through visual inspection and excluded from further 

analyses as detailed below. For the automated detection of sleep slow waves a negative-going signal 

envelope was calculated by computing the average of the fourth, third and second most negative 

samples across all electrodes (Mensen et al., 2016). Of note, the most negative sample was discarded 

to minimize the potential impact of any residual large-amplitude artifactual activity in isolated 

electrodes. The resulting signal was baseline corrected (zero mean-centered) prior to the application 

of a negative-half-wave detection procedure based on the identification of consecutive signal zero-

crossings (Riedner et al., 2007; Siclari et al., 2014). Differently from commonly applied channel-by-

channel detection approaches, this method allows to identify both local and widespread slow waves 

and to define a unique time reference (across electrodes) for each negative wave (Mensen et al., 2016). 

Only negative half-waves detected during NREM sleep epochs (N1/N2/N3) and with a duration 

comprised between 0.25 s and 1.0 s (full-wave period 0.5–2.0 s, corresponding to a 0.5-2.0 Hz 

frequency range) were selected for subsequent analyses. An amplitude threshold was not applied in 

order to allow investigating the relationship between slow wave amplitude and BOLD-signal changes. 

The timing of the first zero-cross (from positive to negative) was used as a reference to mark the 

beginning of each slow wave (slow-wave onset). Moreover, the amplitude (A; unit: µV), defined as 

the absolute value of the maximum negative peak, and the zero-cross-to-negative-peak time (d1; unit: 

s) of all detected half-waves were computed and stored for further analyses. 

 

MRI data preprocessing and analysis. Functional MRI data were preprocessed using AFNI (Cox, 

2012, 1996). First, signal outliers were removed from single-voxel time-series (3dDespike) and the 

time-shift related to slice acquisition was corrected (3dTshift). Data from different runs were then 

registered to a reference volume for motion correction (3dvolreg) and spatially smoothed 

(3dBlurToFWHM) with a 6 mm full-width-at-half-maximum (FWHM) Gaussian kernel. For each 

fMRI run, the signal of each voxel was converted to percent BOLD-signal change with respect to the 

mean BOLD-signal across the corresponding run. Additional preprocessing steps were performed to 

remove potential artifactual components in the fMRI signal. In particular, the BOLD-signal from each 

voxel was cleaned by regressing-out (3dREMLfit) head-motion parameters, movement spike regressors 

(frame wise displacement above 0.3) and the mean signal of cerebro-spinal fluid (CSF), as well as 

accounting for the temporal autoregression (ARMA-1), which typically reflects artifacts of 

physiological origin (Bright et al., 2017). The pre-processed data were then non-linearly transformed 

(3dNwarpApply) into the Montreal Neurological Institute (MNI152) coordinate system and resampled 

to a 2 mm iso-voxel resolution. Finally, to reduce computational effort in the subsequent steps, a gray 

matter spatial mask was also applied (p > 0.10 in the tissue probability map of the ICBM 2009c atlas; 

Fonov et al., 2009). 

Brain regions associated with the occurrence of sleep slow waves were identified through a voxel-

wise regression of BOLD time-series. Specifically, for each subject, an EEG-based regressor was built, 

in which each slow wave was modelled as a square wave with onset-time corresponding to the timing 

of the first zero-crossing of the negative half-wave, height equal to the absolute value of the maximum 

negative peak (A), and duration corresponding to the length of the descending phase of the wave (from 

first zero-crossing to negative peak; d1). The obtained regressor was then convoluted with a standard 

gamma hemodynamic response function (p = 8.6, q= 0.547) and down-sampled to the BOLD time-

series sampling rate (0.5 Hz, TR = 2 s). The regressor and each BOLD time-series were forced 

respectively to zero and the baseline value in correspondence of all artifactual and wakefulness epochs 

(censored intervals). At single-subject level, beta-values of all cortical voxels were converted into z-
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scores calculated with respect to a null distribution obtained by re-computing the regression analysis 

on the same BOLD time-series after shuffling the timing of individual slow waves (intra-voxel and -

subject permutations; nPerm = 1000). Importantly, the number and amplitude of slow waves was kept 

constant across original and shuffled regressors (i.e., relocation of slow waves within censored 

intervals was prevented). A group-level one-sample t-test was then performed at each voxel to assess 

statistical significance (3dttest++). The significance threshold was set to q < 0.01 after FDR correction 

for multiple comparisons (False Discovery Rate; Benjamini and Hochberg, 1995). A minimum, 

arbitrary cluster-size threshold corresponding to 50 voxels was also applied. 

 

Thalamic and cerebellar involvement in sleep slow waves. Specific analyses were performed to 

characterize the anatomical and functional nature of thalamic and cerebellar portions recruited during 

the occurrence of human sleep slow waves. First, anatomical atlases were used to determine the relative 

distribution (percentage) of activated voxels with respect to thalamic (probabilistic atlas based on 

diffusion-weighted imaging; Najdenovska et al., 2018) and cerebellar (SUIT atlas; Diedrichsen et al., 

2011, 2009) subdivisions. Then, thalamic and cerebellar connectivity maps were generated and used 

to determine the preferential functional connectivity of activated voxels with respect to the seven 

canonical cortical networks defined on the basis of cortical intrinsic functional connectivity (Yeo et 

al., 2011): visual, somatomotor, dorsal attention, ventral attention, limbic, fronto-parietal and default 

mode. This analysis was performed using rs-fMRI data collected during wakefulness in an independent 

sample of 28 subjects (see Participants section; T2*-weighted gradient-echo echoplanar sequences 

with 35 axial contiguous slices, TR = 2000 ms; TE = 35 ms; FA = 80°; voxel size: 3x3x4 mm; 230 

volumes per run). In particular, for each subject, we first computed the average BOLD-signal within 

200 cortical ROIs, as defined in Schaefer et al. (2018). Then, the resting state signal from the 200 ROIs 

was further averaged according to the seven cortical networks, separately for each brain hemisphere 

(thus leading to a total of 14 large ROIs). For what concerns the thalamus, we then evaluated the partial 

correlation between the thalamic signal of each voxel and each homolateral cortical functional network 

while removing signal variance from all the left-out functional networks (Hwang et al, 2017). 

Regarding the cerebellum, we applied a similar procedure with two important differences. First, we 

measured the partial correlation between each cerebellar voxel and the contralateral cortical functional 

networks. Second, as described in previous work (Buckner et al., 2011), the mean signal of neocortical 

voxels located in the proximity of the cerebellum (up to 6 mm) was additionally included as variable 

of no interest in the partial correlation procedure. This procedure ensured that the putative 

somatomotor region of the cerebellar anterior lobe remained relatively unaffected by the possible 

‘leakage’ of BOLD-signal from the spatially close visual cortex. The described partial correlation 

procedure led to the generation of a connectivity matrix in each subject. A group-level matrix was 

obtained by computing the median across individual matrices. Finally, a winner-takes-all approach 

was applied to assign the local ‘preferential connectivity’ of each voxel (Hwang et al., 2017). This 

procedure allowed to generate functional connectivity maps of the thalamus and the cerebellum similar 

to those reported in Hwang et al. (2017) and Buckner et al. (2011), respectively. Then, for both the 

thalamus and the cerebellum, we computed the proportion of voxels connected with each of the seven 

networks that resulted included in the significantly activated regional clusters (see Figures 4 and 5). 

 

Cortical involvement in sleep slow waves. At cortical level, the sleep slow waves are known to 

propagate through white matter anatomical pathways between brain areas (Avvenuti et al., 2020; 

Massimini et al., 2004; Murphy et al., 2009). Thus, here additional analyses were performed to 

determine whether the specific changes in hemodynamic activity observed in association with sleep 

slow waves remain confined within specific cortical sites or may propagate with some delay to other 

cortical areas following the spreading of electrophysiological slow waves. To this aim, we used a cross-

correlation procedure to compute the similarity and relative lag of activity in different brain areas and 

a ‘seed’ region chosen as a reference template. Specifically, the left somatomotor cortex, as defined 
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based on the regression analysis, was here selected as seed region (though similar results were obtained 

using different seed areas, such as the right somatomotor cortex or the right visual cortex; data not 

shown). Then, the seed time-series was compared with the average BOLD-signals computed for each 

of the 200 ROIs of the Schaefer atlas (Schaefer et al., 2018). In particular, BOLD time-series in a time-

window ranging from -4 s to +16 s with respect to slow-wave onset were first averaged across voxels 

belonging to each ROI, then across slow-waves and finally across subjects. The time-window of 

interest was selected in order to mainly include the negative portion of the hemodynamic response 

(Figure 6). Such a choice was made for two reasons. First, the negative deflection is larger with respect 

to the slower positive deflection observed before slow-wave onset. Second, the negative deflection 

may be expected to more likely reflect a consequence of the neuronal silence that is associated with 

the down-state of sleep slow waves (Fultz et al., 2019). Of note, time-series included in this analysis 

were up-sampled to 256 Hz (linear interpolation), thus matching the EEG sampling rate, in order to 

improve the alignment with the timing of slow-wave onset. The cross-correlation function between the 

signal profile of the template and the mean time-series of each ROI was computed to estimate the 

relative time-lag that allowed to maximize the similarity between each pair of time-series. In addition, 

the magnitude of the corresponding peak in the cross-correlation function was used to evaluate the 

statistical significance of the similarity between examined signals. To this aim, the above-mentioned 

procedure was repeated following a random shuffling of the onset-timing of individual slow waves in 

each subject (nPerm = 1000), thus eventually obtaining a null-distribution of similarity values. ROIs 

for which the maximum similarity values were significantly greater than those in the null-distribution 

(p < 0.05) were used to build a propagation delay-map in which all regional lag values were re-scaled 

to the minimum delay-value in the map (t = 0 s; Figure 7). 

In order to determine whether cortical delays in hemodynamic changes may reflect the actual 

propagation of electrophysiological slow waves we directly compared the fMRI-based delay-map with 

a delay-map of EEG slow-wave propagation in source space. This map was obtained from the analysis 

of NREM-sleep hd-EEG recordings (256 electrodes, EGI-Philips; 500Hz sampling frequency) 

obtained in a distinct set of 12 healthy adult volunteers (see Participants section). For each participant, 

the first 30 minutes of N2/N3 sleep were extracted and slow waves were automatically detected using 

the same algorithm described above. Then, the EEG signal was band-pass filtered between 0.5 and 4.0 

Hz, and 800-ms-long data segments centered on the slow wave negative peak were extracted and 

source-modeled using the GeoSource 3.0 software (EGI-Philips), as described in previous work 

(Bernardi et al., 2019a, 2019b). In brief, a four-shell head model based on the MNI atlas and subject-

specific co-registered sets of electrode positions (obtained using the Geodesic Photogrammetry 

System, EGI-Philips) were used to construct the forward model. The inverse matrix was computed 

using the standardized low-resolution brain electromagnetic tomography constraint (sLORETA; 

Tikhonov regularization = 10-2). The source space was restricted to 2447 dipoles distributed over 7 

mm3 cortical voxels. For each slow wave, the propagation pattern was determined using an approach 

similar to the one described by Murphy and colleagues (Murphy et al., 2009). Specifically, for each 

slow wave, we defined a time-window of 100 ms centered on the timing of the maximum negative 

peak of the slow wave detected at scalp level. Next, for each voxel, we computed the timing of any 

local maxima that occurred during the time window of interest. For each voxel, after discarding 

secondary peaks (defined as peaks with magnitude lower that the 75% of the maximum peak across 

voxels), we selected the maxima that occurred most closely to the reference peak. The relative timing 

of these local maxima were used to create a preliminary propagation delay-map. A spatio-temporal 

clusterization procedure was applied with the aim of excluding potential propagation gaps (Avvenuti 

et al., 2020): local peaks of two spatial neighbor voxels had to be separated by less than 10 ms in order 

to be considered as part of the same propagation cluster. The propagation cluster including the largest 

signal peak was then identified and used to extract the final delay-map. The minimum observed delay, 

corresponding to the slow wave origin, was set to zero. Delay-maps obtained for each wave and subject 

were averaged in order to obtain a group-level delay-map. In order to allow a comparison with the 
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BOLD delay-map, the EEG-based delay-map was resampled to a 2 mm iso-voxel resolution, matching 

the spatial resolution of the fMRI dataset, and mean delay values were computed for each of the 200 

ROIs of the Schaefer atlas (Schaefer et al., 2018). The Pearson’s correlation coefficient was eventually 

used to quantify the similarity between fMRI and EEG delay-maps. 

 

Relationship between slow-wave amplitude and BOLD-signal variations. Finally, we investigated 

the possible relationship between the amplitude of EEG slow waves and corresponding variations in 

hemodynamic responses within cortical and subcortical structures. To this aim, we first performed a 

time-wise correlation analysis between slow wave amplitude and point-by-point (up-sampled) BOLD-

signal changes for each of the significant clusters obtained from the regression analysis. In addition, a 

trend analysis was performed in the same areas to determine whether a relationship exists between 

slow wave amplitude and the delay of the regional BOLD response. Specifically, the delay of each 

BOLD profile was defined as the timing (relative to slow-wave onset) of the maximum positive or 

negative peak in subcortical and cortical regions, respectively. For this analysis, EEG slow waves were 

divided in three percentile classes (A1: 0-33; A2: 33-66; A3: 66-100) based on their negative amplitude, 

and the mean delay was computed for each class. The potential trend of the mean delay as a function 

of EEG amplitude was then quantified with a regression analysis. Significance of the results for both 

the correlation and the trend analyses was tested using a within-subject permutation-based approach 

(nPerm = 10000), in which the same procedures were applied after randomly shuffling the 

correspondence between EEG amplitudes and fMRI-derived values. Obtained p-values were 

separately evaluated for the positive and negative tails of the distribution, combined across subjects 

using the Fisher’s method (Brown, 1975) and FDR adjusted to correct for multiple comparisons. 

 

Data availability. All relevant cortical and subcortical maps, including main results and parcellations, 

will be made freely available in a public data repository upon publication.  
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