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Abstract

Recent experiments in the developing mammalian visual cortex have revealed that gap
junctions couple excitatory cells and potentially influence the formation of chemical
synapses. Though gap junctions between inhibitory cells are ubiquitous in the adult
cortex, and their presence has been shown to promote synchronous network firing, their
function among excitatory, pyramidal cells remains poorly understood. During
development, pyramidal cells that were derived from the same progenitor cell, called
sister cells, are preferentially connected by a gap junction during the first postnatal
week, while chemical synapses are still being formed. Additionally, these sister cells tend
to share an orientation preference and a chemical synapse in the adult cortex, a
property that is diminished when gap junctions are blocked. In this work, we construct
an idealized model of the mouse visual cortex during the first two postnatal weeks of
development to analyze the response properties of gap-junction-coupled cells and their
effect on synaptic plasticity. Further, as an application of this model, we investigate the
interplay of gap-junction coupling and synaptic plasticity on the order, or organization,
of the resulting cortical map of orientation preference.

Author summary

Gap junctions, or sites of direct electrical connections between neurons, have a
significant presence in the cortex, both during development and in adulthood. Their
primary function during either of these periods, however, is still poorly understood. In
the adult cortex, gap junctions between local, inhibitory neurons have been shown to
promote synchronous firing, a network characteristic thought to be important for
learning, attention, and memory. During development, gap junctions between excitatory,
pyramidal cells, have been conjectured to play a role in synaptic plasticity and the
formation of cortical circuits. In the visual cortex, where neurons exhibit tuned
responses to properties of visual input such as orientation and direction, recent
experiments show that excitatory cells are coupled by gap junctions during the first
postnatal week and are replaced by chemical synapses during the second week. In this
work, we explore the possible contribution of gap-junction coupling during development
to the formation of chemical synapses both into the visual cortex from the thalamus and
within the visual cortex between cortical cells. Specifically, within a mathematical
model of the visual cortex during development, we identify the response properties of
gap-junction-coupled cells and their influence on the formation of the cortical map of
orientation preference.
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Introduction 1

Gap junctions (GJs), or sites of direct electrical coupling between neurons, are present 2

in the primary visual cortex (V1) at many stages of life, from infant to adulthood. In 3

the adult cortex, gap-junction coupling among local, inhibitory cells has been shown to 4

promote synchrony, which has been hypothesized to be important in many cognitive 5

processes such as learning and memory [1, 2]. Though GJs have been measured between 6

excitatory, pyramidal neurons in the adult cortex [3], there are very few experiments and 7

the couplings were found to be very rare; consequently, their function remains unclear. 8

Recent experiments show that pyramidal cells are coupled by GJs during the first 9

postnatal week of development, a time at which chemical synapses are highly plastic 10

and are just beginning to develop, leading to a question about a potential relationship 11

between GJ coupling and the development of V1 neuron response properties. 12

One example of a neuron response property in the primary visual cortex is 13

orientation preference (OP), where neurons preferentially respond to the orientation 14

angle of a visual stimulus. In some higher-level mammals such as monkeys and cats, the 15

visual cortex contains an ordered map of the orientation preference of each neuron, 16

where cells preferring similar angles reside close to one another. In rodents, however, the 17

map of orientation preference appears random and disordered, with little correlation 18

between preferred orientation and location in cortical space. 19

This disordered OP map forms early in development and is dependent upon the 20

synaptic connections from a region of the thalamus called the Lateral Geniculate 21

Nucleus (LGN), which begins forming synaptic connections with the cortical V1 cells 22

shortly before birth [4]. During the first postnatal week, pyramidal cells in V1 are 23

lacking recurrent, or cortical-cortical, synapses; however, sister cells, or pyramidal cells 24

that were derived from the same progenitor cell, are coupled through GJs [5, 6]. The 25

strength and coupling probability of these GJs decreases steadily during the first 26

postnatal week such that no couplings are detected in the second postnatal week [7]. 27

During the second postnatal week, GJs between sister cells in V1 disappear and 28

synapses begin to form between all cortical cells. Specifically, glutamatergic synapses 29

form among the pyramidal cells, while GABAergic synapses begin to form among 30

inhibitory, fast-spiking (FS) interneurons. In addition to the GABAergic synapses, FS 31

cells also develop GJ coupling beginning in the second postnatal week and increasing in 32

strength over time [8]. Turning to the map of orientation preference, visual input is not 33

necessary for cortical cells to develop OP [9,16]. Instead, spontaneous activity in the 34

cortex is generated from intra-cortical circuits, as well as input from spontaneous retinal 35

waves [10], and drives synaptic plasticity during the first two postnatal weeks [11]. By 36

the end of the second postnatal week, a weak OP map has already developed and 37

becomes further stabilized by visual input through the newly-opened eyes. 38

Our aim in this work is to better understand how the developmental timeline, 39

including GJ-coupling among sister cells, might affect the formation of a random or 40

disordered OP map. We develop an idealized model as a conceptual realization of a 41

local patch of V1 during the first two postnatal weeks of development. Our model 42

follows the set-up of Ref. [12] and the model timeline of Ref. [11], but with significant 43

adjustments and parameters appropriate for V1. In particular, our model includes spike 44

timing-dependent plasticity (STDP) of the feedforward synapses from LGN to V1 45

during the first postnatal week, as well as plasticity of the cortical-cortical recurrent 46

excitatory synapses within V1 during the second postnatal week. Using this model, we 47

reproduce experimentally-measured properties of GJ-coupled sister cells, such as a 48

shared OP and preferential synaptic connectivity, and demonstrate that, during the first 49

postnatal week, the OP of GJ-coupled cells develops faster than the OP of those cells 50

that were not GJ-coupled. This increased learning rate results in more selectivity of the 51

sister cells than non-sister cells at a time when synapses within V1 are beginning to 52
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form, proposing a mechanism for the “salt-and-pepper” random OP map observed in 53

mice. We also identify mechanisms by which this OP map can become ordered as 54

observed in higher-level mammals, further supporting our proposed mechanism for the 55

development of disordered OP maps. 56

Methods and Models 57

Broad overview of experiments that measure connections 58

between sister cells 59

Gap junctions between excitatory cells in the developing visual cortex of mice have only 60

recently been discovered and their properties measured. The motivation behind this 61

discovery was in uncovering a functional column, such as the orientation hypercolumns 62

in monkey and cat visual cortex, which seem to be lacking in mice and rats. Because of 63

the radial unit hypothesis, a theory positing that the cortex develops as an array of 64

cortical columns due to clonally-related neurons traveling along the same glial fiber 65

(axon of the progenitor cell), experimentalists began investigating the possible functional 66

similarities between sister cells, or cells that stem from the same progenitor cell. Despite 67

the seemingly random lateral (within layer) distribution of OPs in the visual cortex of 68

mice (salt-and-pepper), it has been shown that radially-distributed clonally-related cells 69

show similar stimulus feature selectivity [6], as well as preferential synaptic connectivity 70

with fellow sister cells [5]. Each of these characteristics, measured in the adult cortex, 71

relies on gap-junction coupling between sister cells during the first postnatal week [7,13]. 72

In particular, experiments by Yu et al. show that by injecting a retrovirus into 73

progenitor cells during embryonic stages, one can illuminate a handful of its offspring 74

(sister cells) later in development [5, 7]. To address the rate of synaptic connectivity 75

among sister cells during postnatal development, Yu et al. concentrated on cells that 76

were labeled by the virus to be sister cells and whose cell bodies were radially-aligned 77

(columnar structure). They specifically measured from clusters of radially-aligned sister 78

cells that were isolated into columns of a tangential width of about 100 µm to be 79

confident that they could distinguish between sister cells from different 80

progenitors.Their results found that no synaptic couplings were detected between any 81

excitatory cells, sister or non-sister, during the first postnatal week (P0-P6). In the 82

second postnatal week, however, sister cells were measured to be coupled with an 83

average probability of 36%, while neighboring (also radially-aligned) non-sister cells 84

were found to be coupled with an average probability of about 6.3% (averaged over P10 85

to P17) [5]. The black lines in Fig 1A show the average percentage of 86

synaptically-coupled sister cells during the second postnatal week. 87

A follow-up study conducted by the same group of experimentalists used quadruple 88

whole-cell recordings to show that these radially-aligned sister cells are coupled by GJs 89

during the first postnatal week when chemical synapses are absent [7]. Specifically, they 90

showed that the sister cells are preferentially coupled by GJs during the first postnatal 91

week (28.2% for sister cells compared to 2.6% for non-sister cells, averaged over P1 to 92

P6), with the probability of GJ connectivity decreasing steadily over the course of the 93

first week (38.9% at P1 to ∼10% at P6), see blue lines in Fig 1A. The strength of this 94

GJ connection, as measured by the coupling coefficient (ratio of the amplitude of the 95

response in the coupled cell to the response in the injected cell) was 5.7% for sister cells 96

and 1.2% for non-sister cells (averaged over P1 to P6). This strength also decreases over 97

the course of the first week for sister cells (from 7.4% at P1 to 2.3% at P6) [7]. 98

Among inhibitory cells, GABAergic synapses and GJs form simultaneously 99

beginning at the start of the second postnatal week [8] (in contrast to the pyramidal 100

cells where GJs precede chemical synapses). Specifically, no GABAergic synapses or 101

April 22, 2020 3/22

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 29, 2020. ; https://doi.org/10.1101/2020.04.29.067942doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.29.067942
http://creativecommons.org/licenses/by/4.0/


GJs are detected between FS cells from P3-P5, with the exception that one functional 102

GABAergic synapse (out of 13 tested pairs) was detected at P5 [8] No recordings were 103

performed before P3. Therefore, we determine that both GJ and synaptic coupling 104

among FS cells are absent during the first postnatal week and grow during the second 105

postnatal week, as shown by the red and green lines in Fig 1A for synaptic and GJ 106

coupling, respectively. 107

To measure the effect of GJ coupling on synapse formation during development, 108

experimentalists block the hemi-channel that connects the interiors of the two 109

GJ-coupled cells at various timepoints. In particular, for pyramidal neurons, 110

experimentalists show that the protein Connexin26 (Cx26) is most abundantly 111

expressed in the neonatal cortex [14] and that blocking this protein (essentially closing 112

the channel) largely eliminates electrical coupling among sister cells (reducing the 113

average probability over the first week from 26% in wildtype mice to 9.8% in the 114

Cx26-blocked mice) [7]. To test if GJ coupling might be responsible for the preferential 115

synaptic coupling that occurs during the second postnatal week, Yu et al. repeated their 116

earlier experiment of measuring synaptic coupling among sister cells for the case of 117

Cx26-blocked mice as well. They found that the synaptic coupling probability dropped 118

from the typical 30-35% between sister cells in wildtype mice to 8.2% between sister 119

cells in Cx26-blocked mice (averaged over P10-P21) [7], demonstrating that GJ-coupling 120

during the first postnatal week is critical to the correct circuit formation in adults. 121

Relatedly, experiments show that excitatory cells that share a similar orientation 122

preference (OP) have an increased likelihood to also be synaptically coupled [15]. Since 123

GJ coupling during the first postnatal week is necessary for preferential synaptic 124

coupling in adults, several experimentalists set out to assess the role that GJ coupling 125

might play in stimulus feature selectivity, such as orientation preference [13,17]. Li et 126

al. used retrovirus labeling (similar to Yu et al. ) to show that radially-aligned sister 127

cells in L2/3 of mouse visual cortex have a similar OP. Specifically, they showed that 128

about 59% of measured sister cells have similar OPs (difference in preferred angle less 129

than 30◦), while neighboring non-sister cells exhibit a difference in OP distribution that 130

was not significantly different from the uniform distribution [13]. When a GJ blocker 131

was employed, the effect was destroyed; the distribution of OP difference for sister cells 132

was no longer significantly different from the uniform distribution or the non-sister cell 133

distribution. Figure 1B shows a schematic of the effect of GJ blocking between sister 134

cells in the first postnatal week. 135

As for the organization of sister cells in the postnatal cortex, sister cells are derived 136

from radial glial cells and migrate to their end location by traveling down the axon of 137

the glial cell. While traveling, these sister cells begin dispersing laterally such that by 138

the end of the second postnatal week, they are dispersed up to 500 µm in radius (see 139

Fig S1 in [5]). Then, sister cells become sparsely intermingled in the mouse visual 140

cortex, with sister cells outnumbered by non-sister cells in a local volume (100-500 µm 141

in diameter) by a factor of six [18,19], a property that seems to be essential for proper 142

synaptic development [20]. While previous experiments concentrated on small groups of 143

radially-aligned sister cells within a radius of about 100-120 µm [6], Ohtsuki et al. used 144

a gene-targeting system to label all of the offspring of a single cortical progenitor cell 145

(about 600 neurons). They showed that sister cells are typically distributed throughout 146

layers 2-6, with the clusters of sister cells having a tangential diameter of about 300-500 147

µm [17]. Measuring the OP of all sister cells, they found that about 50% of each 148

sister-cell pair tends to have an OP within 40◦. They reason that this probability is 149

smaller than that measured by Li et al. due to the significantly larger population of cells 150

that they are measuring. 151

In summary, these experiments show that, during the first postnatal week, 152

radially-aligned sister cells in the cortex are coupled by GJs, but contain no recurrent 153
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GJs between sister cells, [Yu 2012]
Glutamatergic synapses, [Yu 2009]

GABAergic synapses, [Pangratz-Feuhrer 2011]
GJs between FS cells, [Pangratz-Feuhrer 2011]

Sister cells during 
first postnatal 

week

Synaptic 
coupling of sister 

cells in adult

Orientation 
preference of sister 

cells

A B

Fig 1. Summary of the changes in synaptic and electric coupling over the first two postnatal
weeks. A: Plot of the different percentages of couplings over the first two postnatal weeks. The
coupling probability for glutamatergic synapses is measured for radially-aligned sister cells only,
while the GJs and GABAergic synapses are measured between fast-spiking (FS) cells. The
experimental data was often reported as an average over several days, represented here as
horizontal lines. The reference for each type of coupling is given in the legend. B: An
illustration of the effect of GJ blocking on synapse formation among sister cells and orientation
preference development. The yellow curves represent GJ coupling while the arrows represent
glutamatergic synaptic coupling.

synaptic connections. At the start of the second postnatal week, GJs between sister cells 154

disappear and chemical synapses among inhibitory cells (together with GJs between 155

inhibitory cells) and synapses among excitatory cells begin to form. Recall Fig. 1B for 156

the percentages over the two postnatal weeks. As concerns the effect of GJ-coupling 157

between sister cells, experiments show that sister cells that were coupled by a GJ during 158

the first postnatal week preferentially develop a chemical synapse during the second 159

postnatal week and are more likely to have a similar OP by the time of eye-opening. 160

The Mathematical Model 161

In this section, we describe our idealized model of development. Specifically, we use a 162

similar framework as the model in Ref. [12] for the study of spike-timing-dependent 163

plasticity (STDP), but incorporate a more realistic and stable STDP learning rule for 164

the visual cortex adapted from Refs. [22, 25] with added inhibitory plasticity as in 165

Ref. [28]. The details are as follows. 166

We consider 1000 feedforward synapses, representing input from LGN to the visual 167

cortex, coupled to our model neuronal network of either 400 or 256 cortical cells. The 168

cortical neurons are randomly assigned to be excitatory with 80% probability or 169

inhibitory with 20% probability. The subthreshold voltage of the ith cortical neuron of 170

type Q = {E, I} is described using the leaky integrate-and-fire equation as follows 171

τm
dviQ
dt

= −(viQ − vl)− giQE(t)(viQ − vE)− giQI(t)(viQ − vI)− gc,Q
∑
j

(viE − v
j
E), (1)

where τm = 20 ms, vl = −60 mV, vE = 0 mV, and vI = −80 mV. Once the voltage 172

reaches a threshold of −45 mV, the neuron is said to have spiked, the spike time is 173

recorded, and the voltage is reset to −60 mV. Gap junctions are included only among 174

excitatory neurons, such that the conductance term gc,Q takes on a nonzero value gc for 175

Q = E and zero for Q = I, and are incorporated into the model through a direct 176

resistive term where vjE is the voltage of the jth pre-junctional neuron; see the last term 177

in Eq (1). In addition, to model the spikelet induced in the post-junctional cell in 178
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response to an action potential in the pre-junctional cell, a 1 mV instantaneous jump in 179

voltage of the post-junctional cell is included, as in previous models [11,21]. 180

The cortical synaptic conductances are modeled as having instantaneous rise times
and exponential decay at each received spike time so that the excitatory and inhibitory
conductance traces, respectively, follow the equations

σE
dgiQE
dt

= −giQE , where giQE → giQE + ḡiQE at each excitatory presynaptic spike time

σI
dgiQI
dt

= −giQI , where giQI → giQI + ḡiQI at each inhibitory presynaptic spike time

where the neuron type of the postsynaptic cell is represented by Q = {E, I}, σE = 11 181

ms and σI = 15 ms. Note that the synaptic conductances have been normalized by the 182

leakage conductance and are thus unit-less. The maximal excitatory conductance 183

strength, ḡiQE , and inhibitory conductance strength, ḡiQI , can each take one of the 184

following values: {ḡiEE , ḡiIE} and {ḡiEI , ḡiII} where the subscript XY denotes the 185

direction of coupling from Y to X. We implement an absolute maximum on all 186

excitatory synapses at gmax
E and on all inhibitory synapses at gmax

I . In this model, the 187

conductances ḡiII = ḡII and ḡiIE = ḡIE are held constant at 0.3gmax
I and 0.1gmax

E , 188

respectively, for all cells, while ḡiEE and ḡiEI are plastic, changing with rules defined in 189

the following subsection. 190

The external drive to the cortical network has two components: synaptic input from
the LGN and a generic background drive to all cells. This external drive affects the
excitatory conductance, giQE , as follows

giQE → giQE+ḡiLGN at each feedforward LGN synapse spike time

giQE → giQE+ḡiback at each background spike time,

where ḡiLGN is plastic, but ḡiback is constant at 0.02. The spike times of the background 191

drive are generated from a Poisson process with rate 0.5 Hz. Each feedforward LGN 192

synapse generates spikes using a Poisson spike train with a firing rate that depends on 193

its own label. Specifically, the firing rate of LGN synapse labeled a in response to a 194

stimulus at input location s is given by 195

ra = R0 +R1

(
e−(s−a)2/2σ2

+ e−(s+1000−a2)/2σ2

+ e−(s−1000−a2)/2σ2
)
,

as in [12], where R0 = 5 Hz, R1 = 20 Hz, and σ = 80. Input to these synapses consists 196

of brief presentations of a uniformly randomly-chosen stimulus index (a in above 197

equation) for a period of time that is chosen from an exponential distribution with 198

mean 20 ms. All cortical cells receive input from LGN synapses with a 25% probability. 199

While the inhibitory cells have a constant LGN feedforward synaptic strength randomly 200

chosen uniformly between [0, 0.18gmax
LGN], the excitatory cells contain a plastic or variable 201

strength, ḡiLGN. 202

Plasticity Rules 203

In the model, feedforward LGN synapses to excitatory cortical cells, as well as the 204

synapses between cortical excitatory cells, are plastic, with the strength of their 205

connection, ḡiLGN and ḡiEE , respectively, obeying the minimal triplet rule for the visual 206

cortex [22]. We use the triplet rule rather than the standard pre-post STDP rule that 207
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was used in [12] because we wish to reproduce the realistic bi-directional coupling that 208

develops in the visual cortex of mice, a feat that cannot be accomplished with the 209

pair-based STDP rules due to their nature of developing only unidirectional synapses. 210

In addition, experiments show that the STDP curves exhibited by pyramidal cells in the 211

visual cortex of mice do not follow the typical slightly-asymmetric shape of potentiation 212

and depression as in [23], but rather potentiation only occurs if the post-synaptic 213

neuron had recently fired a spike of its own [22,24]. 214

The triplet rule is illustrated in Fig 2A and described as follows. For each pre- and
post-synaptic spike, the strength of the synapse from the pre- to post-synaptic cell, ḡ,
(dropping the EE subscipt) is updated as follows:

ḡ → ḡ − o1(t)ALTD if t = tpre, (2)

ḡ → ḡ + r1(t)o2(t− ε)ALTP if t = tpost, (3)

where ALTD and ALTP represent the strength of depression and potentiation,
respectively. The tracer variables follow the equations

dr1(t)

dt
= −r1(t)

τLTP
if t = tpre, then r1 → r1 + 1 (4)

do1(t)

dt
= −o1(t)

τLTD
if t = tpost, then o1 → o1 + 1 (5)

do2(t)

dt
= −o2(t)

τ tripLTD

if t = tpost, then o2 → o2 + 1, (6)

where r1(t) represents a pre-synaptic tracer, while o1(t) and o2(t) represent 215

post-synaptic tracers. Note that each neuron carries its own tracer variable, but the i 216

index has been dropped here for clarity. The timescales of these tracer variables are as 217

follows: τLTP = 16.8 ms, τLTD = 33.7 ms, and τ tripLTD = 114 ms. To stabilize network 218

activity, we implement a homeostatic mechanism in the form of a rate detector that acts 219

on a fast timescale, known to stabilize the dynamics induced by the minimal triplet rule 220

into recurrent excitatory networks [25]. This homeostatic mechanism works by allowing 221

the amount of depression, ALTD, to change as a function of a moving-average of the 222

post-synaptic firing rate, µ̄E : 223

ALTD(t) =
τLTP τ tripLTD [µ̄E(t)]2

ρ τLTD
ALTP, (7)

where the timescales τLTP, τ
trip
LTD, and τLTD, are those from Eqs (4) - (6), and ρ is the 224

target firing rate, chosen to be 8 Hz to replicate the low firing rate of the mouse visual 225

cortex during early development [27]. The moving average of the firing rate, µ̄E(t), is 226

found by taking a low-pass filter of its spike train as follows 227

µ̄E =
1

τ

∑
k

exp

(
− t− tk

τ

)
,

where tk represents the kth spike time that occurred prior to the current time t and 228

τ = 1 s. Note that the synaptic strength ḡ in Eqs (2) and (3) can take on either ḡLGN 229

for synapses from LGN to the cortex, or ḡEE for synapses among excitatory cortical 230

neurons. These synapses also have different learning rates, ALGN
LTP and Acort

LTP, for the 231

feedforward synapses and recurrent cortical synapses, respectively. See Table 1 for a 232

comprehensive list of parameter values. 233

In addition to the plasticity introduced on the feedforward and recurrent excitatory 234

synapses, we include plasticity on the synapses from inhibitory neurons to excitatory 235
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neurons in the cortex [28]. The motivation behind this inhibitory plasticity is that we 236

found it necessary for the inhibition in the network to mediate the excitation for proper 237

development to occur. If the inhibitory synapses were constant at a high value, then the 238

cortical cells would not fire any action potentials. However, if the inhibition was 239

constant at a low value, then as the excitatory recurrent synapses grew, the firing rate 240

of the network would also grow, and the network would become unstable, a common 241

phenomena for plastic recurrent excitatory networks. Therefore, we chose to model 242

inhibitory plasticity as a stabilizing mechanism, as has been done previously in Ref. [28]. 243

A schematic of this inhibitory plasticity can be found in Fig 2A. The synapse from a
pre-synaptic inhibitory cell to a post-synaptic excitatory cell updates according to the
following rule

ḡEI(t)→ ḡEI(t) + (xE(t)− 2ρτiSTDP)AiSTDP if t = tpre, (8)

ḡEI(t)→ ḡEI(t) + xI(t)AiSTDP if t = tpost, (9)

where AiSTDP is the learning rate and ρ = 8 Hz is the target firing rate of the excitatory 244

cells [the same as in Eq (7)]. Each cell has a tracer variable xQ for Q = {E, I} that 245

follows the equation 246

τiSTDP
dxQ(t)

dt
= −xQ(t),

where τiSTDP = 20 ms and xQ(t)→ xQ(t) + 1 at each spike time of the cell, similarly to 247

the tracer variables r1, o1 and o2 in Eqs (4) - (6). Note the interpretation of these 248

plasticity rules: when the spiking of a pre- and post-synaptic inhibitory and excitatory 249

cell, respectively, occurs within a time window of τiSTDP, either potentiation or 250

depression occurs at each pre-synaptic (inhibitory) spike [as per Eq (8)], while only 251

potentiation occurs at each post-synaptic (excitatory) spike [as per Eq (9)]. 252

Week 1

Week 3
LGN

LGN

GJ coupling between 
sister cells

Synapses from LGN to 
cortex begin to 

strengthen 

No cortico-cortical 
synapses detected

GJs between sister 
cells disappear

Synapses from LGN 
continue to strengthen

Glutamatergic and 
GABAergic synapses 
begin to form in the 

cortex
Pyramidal cells have 

clear selectivity

Glutamatergic and 
GABAergic synapses 

begin to stabilize

eye opening

LGN

Week 2
pre: I cell

post: E cell

t1PRE t2PRE

t1POST

xI(t1POST)

xE(t2PRE)

g̅EI

t1POST t2PRE

r*

if xE > 2ρ0 τiSTDP

if  xE< 2ρ0 τiSTDP

pre: E cell

post: E cell

t1PRE t2PRE

t1POST

r1(t2POST)

g̅EE

t2POST t2PRE

t2POST

o2(t1POST - ε) o1(t2PRE)

Triplet rule iSTDP rule

t

A B

t

t t

t

t

Fig 2. A: Schematic of the triplet rule for excitatory synapses and the iSTDP rule for
inhibitory synapses onto excitatory neurons. For the triplet rule, an example weight
update resulting from a post-pre-post interaction (at tpost2 ) and a pre-post-pre
interaction (at tpre2 ) is shown. For inhibitory plasticity, the weight update is shown for
one potentiation example for a spike time of the excitatory neuron (at tpost1 ) and an
update that depends on the tracer variable of the postsynaptic cell, xE , the target firing
rate ρ, and the timescale of the inhibitory plasticity, τiSTDP. The vertical axis of the top
two plots represent the tracer values, while the vertical axis of the bottom plots
represents the synaptic conductance strength. B: Timeline of events and schematic of
the model for the first three postnatal weeks.

Development is simulated by connecting a subset of the cortical cells by GJs and 253

allowing the LGN synapses onto all excitatory cortical cells to learn for a period of time 254
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Table 1. Model parameter values parametrized for the visual cortex.

Neuron Parameters

Membrane time constant, τm 20 ms Leakage reversal potential, vl -60 mV

Excitatory reversal potential, vE 0 mV Inhibitory reversal potential, vI -80 mV

GJ conductance, gc 0.06 Background firing rate, ν 0.5 Hz

Excitatory synaptic time constant, σE 11 ms Inhibitory synaptic time constant, σI 15 ms

background spike strength, ḡback 0.02

Plasticity Parameters

Learning rate for LGN, ALGN
LTP 0.005 Time constant, τLTP 16.8 ms

Learning rate for V1, Acort
LTP 0.015 Time constant, τLTD 33.7 ms

Time constant, τ tripLTD 114 ms Maximum LGN weight, gmax
LGN 0.02

Maximum I→ E weight, gmax
I 0.05 Max E→ E weight, gmax

E 0.025

Learning rate for iSTDP, AiSTDP 0.008 Time constant, τiSTDP 20 ms

Target firing rate, ρ 8 Hz

(which varies in this work), simulating the first postnatal week of development (see blue 255

panel in Fig 2B). Then, once simulation is in the second postnatal week, gap junctions 256

are turned off [by setting gc,E = 0 in Eq (1)], and recurrent synapses are turned on. 257

Specifically, ḡIE and ḡII go from zero to nonzero values; ḡEE updates (and LGN 258

synapses continue to update) according to the rules defined in Eqs (2) - (3); and ḡEI 259

updates according to the rules defined in Eqs (8) - (9). We simulate this network until 260

the recurrent cortical weights have stabilized and each cortical cell has developed an 261

input preference (called the OP in this work). We note that the network operates in an 262

asynchronous regime known to accentuate the performance of STDP [26]. 263

Tuning properties of the cortical cells are determined by taking the final weights 264

from the simulated network and, for each input stimulus preference from 0 to 1000 in 265

increments of 20, we record the firing-rate responses for all neurons averaged over two 266

seconds of simulation time. Then, tuning curves are calculated for each cortical cell by 267

determining the firing rate of that cell for each input stimulus and normalized by the 268

maximum firing rate across all cells. The OP of the cortical cell is determined as the 269

stimulus location that gives the greatest response. 270

Results 271

In this section, we describe simulation results for three realizations of the cortical 272

network, each with progressively more realistic connectivity properties. These 273

realizations of the network are chosen to illustrate three characteristics of synaptic 274

development in the presence of GJs: (i) GJ coupling serves to increase the rate of 275

synaptic learning of the projections from LGN to the GJ-coupled cells. This increased 276

rate of learning leads pairs of GJ-connected cortical cells to develop similar OPs and 277

preferential synaptic connections; (ii) The distribution of OP that develops when 278

cortical synapses are allowed to form in an all-to-all fashion between excitatory cells is 279

nearly uniform, spanning all possible OPs equally. This distribution becomes less 280

uniform (one prominent OP emerges) when GJs are not present during the first phase of 281

development and cortical synapses are allowed to learn earlier in the developmental 282

timeline; (iii) The OP map that develops when cortical synapses are restricted to form 283

within a small radius centered on each cell can range from ordered to disordered 284
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depending on the relative timing of cortical synapse development to that of LGN 285

synapse development, as well as the presence or absence of GJ coupling between cortical 286

cells during the first developmental phase. 287

Realization (i): GJs and receptive field development 288

We begin by studying the development of the feedforward LGN synapses onto the 289

cortical cells and how this learning is affected by GJ coupling. Then, we allow cortical 290

synapses to form in an all-to-all fashion and investigate the effect of GJ-coupling on 291

synapse formation. Specifically, we demonstrate that a GJ between cortical cells allows 292

those cells to develop a similar OP and a preferential bidirectional synapse, as shown in 293

experiments. In addition, we illustrate that GJ-coupled cells develop an OP at a faster 294

rate than those that are not coupled by a GJ, leading us to hypothesize that the 295

inclusion of GJs during the first postnatal week will enhance spatial disorder in the 296

formation of the OP map. 297

To illustrate these effects, we use a 400-neuron idealized cortical network in which 298

20% of the cells are inhibitory and 80% are excitatory. We allow two excitatory cells to 299

be coupled by a GJ with a 50% probability such that about half of the excitatory 300

population is GJ-coupled in pairs (similarly to the small network explored in Ref. [11]). 301

Following the experimental timeline (recall Fig 1A and Fig 2B), we simulate the first 302

postnatal week of development by allowing the feedforward synapses to learn, via the 303

rules discussed in the Methods and Model section, for 600 seconds of simulation time. 304

During this time, about half of the excitatory cells are GJ-coupled in pairs, while the 305

recurrent synaptic connections are set to zero (phase 1 of development). At the end of 306

this phase, we turn off the GJs between cortical cell pairs and allow recurrent cortical 307

synapses to learn together with the feedforward synapses from the LGN (phase 2 of 308

development). 309

Due to the competitiveness of the STDP learning rule, the strength of the LGN 310

synapses onto one cortical cell develops in such a way that about half of them 311

potentiate to the maximum possible synaptic strength and half are depressed to zero, 312

see Fig 3A. Further, the synapses that become potentiated tend to have a similar 313

labeling (i.e., respond preferentially to a similar input value), resulting in an input 314

preference for the cortical cell at the end of the simulation, see Fig 3B. This input 315

preference is what we refer to as the OP of the cortical cell in this work. The cells that 316

were coupled by a GJ during the first phase of development, i.e., during the time of 317

feedforward learning, develop similar OPs, while cells that did not contain GJ coupling 318

are not likely to share an orientation preference, see Fig 3C,D. Finally, the model 319

reproduces the experimentally-observed behavior for GJ-coupled cells to preferentially 320

form bidirectional synapses, see Fig 3E. Note that the probability of finding 321

bidirectional synapses between GJ-coupled cells is much higher in the model than those 322

observed in real cortex (26% in [7] compared to almost 80% here) since we are directly 323

comparing GJ-coupled cells, while the experiments tested all sister cells (only a fraction 324

of which are coupled by a GJ). 325

We noticed in our simulations that the GJ-coupled cells tend to develop an OP much 326

sooner than the non-GJ-coupled cells. This means that the feedforward synapses from 327

LGN onto the GJ-coupled cells learn much faster than those synapses onto cells that are 328

not GJ-coupled, see Fig 4A for one example cell that was GJ-coupled and one that was 329

not. To see this effect over all GJ-coupled and non-GJ-coupled pairs, for each cell, we 330

average together all feedforward synapses that potentiated to at least 70% of the 331

maximum synaptic weight, and then average over all cells in each population; see Fig 332

4B. Notice that the slope of the average synaptic strength is much larger for those cells 333

with GJ coupling during the first phase of development than for those cells that did not 334

have GJ-coupling during the first phase of development. 335
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A B

D EC

Fig 3. Measurements from a 400-neuron network with pairwise GJ coupling. A: Progression
of the synaptic weights from LGN to one sample excitatory cortical cell; B: Tuning curve of
this sample cell before (dotted curve) and after (solid curve) feedforward synaptic learning; C:
Sample tuning curves. (top) Tuning curves of five sample GJ-coupled pairs, where matching
colors indicate the GJ-coupled pairs. (bottom) tuning curves of non-GJ-coupled excitatory
cells; D: Distribution of the difference in OP between GJ-coupled pairs (blue) and
non-GJ-coupled cells (gray); E: Probability of a bidirectional synapse (purple), a unidirectional
synapse (black), or no synapse at all (gray) between GJ-coupled cells and non-GJ-coupled cells.

The result of an increased learning rate of the LGN synapses onto the GJ-coupled 336

cells is that the GJ-coupled cells are more selective for orientation (have more 337

clearly-defined tuning curves) than the non-GJ-coupled cells. To investigate this 338

hypothesis, we measure properties of the tuning curves of the GJ-coupled and 339

non-GJ-coupled neurons at the end of the first phase of development, before cortical 340

synapses have been allowed to learn. Figure 4B (bottom) shows the tuning curve of a 341

GJ-coupled cell (blue) and non-GJ-coupled cell (gray) at the end of the first phase of 342

development. Notice that the GJ-coupled cell has more selectivity than the 343

non-GJ-coupled cell, as indicated by the tall thin peak. This effect can be quantified 344

over all cells in the network by considering the width and height of the tuning curve for 345

all GJ-coupled cells and non-GJ-coupled cells. In addition, we calculate the 346

orientation-selectivity index (OSI), a measure for selectivity of a cell, defined as follows 347

OSI =
Rpref −Rperp

Rpref +Rorth
,

where Rpref is the firing rate of the neuron at its preferred orientation and Rorth is the 348

firing rate of the neuron at the orthogonal orientation (in this work, the orthogonal 349

orientation corresponds to the orientation that is 500 units away from Rpref). An OSI 350

value close to 1 indicates high selectivity and a value close to 0 indicates no selectivity. 351

Figure 4C shows the average of these three properties over all GJ-coupled (blue) and 352

non-GJ-coupled (gray) neurons. Notice that, for three measures of orientation 353

selectivity, GJ-coupled neurons clearly have more selectivity than non-GJ-coupled cells 354

at the time that cortical synapses begin to form. 355

The implication of GJ-coupled cells having more selectivity than non-GJ-coupled 356

cells is that their tuning properties (i.e., their OPs) are less likely to be influenced 357
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A B C

400 neuron networkFig 4. Rate of learning properties of GJ- vs. non-GJ-coupled cells. A: Top (bottom):
Progression of the feedforward synaptic weights onto a sample GJ-coupled (non-GJ-coupled)
neuron. B: The average weight progression (curve) and standard deviation (shaded region) for
all GJ-coupled neurons (blue) and all non-GJ-coupled neurons (gray). Inset: Sample tuning
curve for a GJ-coupled neuron (solid) and a non-GJ-coupled neuron (dashed) after 600 seconds
of simulation time, before recurrent connections begin to form. C: Width and height of the
tuning curves measured for all cells in the network, as well as the orientation-selectivity index
(OSI), the average reported as the center of each square, the standard deviation as error bars,
over all cells in each group.

(changed) by the recurrent cortical synapses when they begin to form during the second 358

phase of development. If we consider sparsely-coupled GJs (e.g., pair-wise) during the 359

first phase of development, and expect that GJ-coupled cells will preferentially develop 360

similar OPs while different sets of GJ-coupled cells develop different OPs (since they do 361

not communicate during the first phase), then we expect to see pairs of cells with 362

similar OPs scattered throughout the cortex. Assuming that the GJ-coupled cells are 363

sufficiently selective at the initiation of recurrent cortical learning such that their OP 364

does not change during this second phase, one would expect that the final OP map in 365

this case would be salt-and-pepper, as demonstrated in the left schematic of Fig 5. On 366

the other hand, if GJs did not exist during the first phase of development while LGN 367

synapses were forming, then the cortical cells would not be sufficiently selective by the 368

time that recurrent synapses formed, and the development of the cortical recurrent 369

synaptic connections would influence the final OP of each cell. This might result in an 370

OP map that has order, as demonstrated in the right schematic of Fig 5. In the next 371

section, we begin to investigate how the selectivity of the GJ-coupled cells at the start 372

of recurrent cortical learning phase might influence the properties of the final OP map. 373

Realization (ii): recurrent synapse formation (all-to-all network) 374

In this section, we begin to study the effect of GJ-coupling on the formation of cortical 375

synapses by including sister-cell groups in the excitatory population and varying the 376

time at which the synapses between cortical cells form. We do this so that we may 377

consider more realistic GJ coupling between sister cells (rather than simply between 378
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Birth

developmental time

Cortical synapse

formation

Eye opening

LGN synapse

formation

Birth

Cortical synapse

formation

Eye opening

LGN synapse

formation

Disordered OP map Ordered OP map

developmental time

Fig 5. A schematic representing how GJs during the first week might lead to a
disordered (i.e., salt-and-pepper) OP map. Each stage drawn here represents: (i) The
first postnatal week as labeled by “Birth” and “LGN synapse formation”, (ii) the second
postnatal week while chemical synapses are forming, and (iii) the resulting cortical
recurrent synapses and OP as indicated by the color of the cell. Transparency represents
selectivity, where opaque colors indicate a higher amount of selectivity or sharp tuning.

pairs as in the previous section) in the recurrent network and investigate how the 379

resulting OPs of the cortical cells is affected by GJ coupling during the first postnatal 380

week. We also decrease the model network size from 400 to 256 neurons for ease of 381

computation. To create sister-cell groups, we divide the excitatory population into six 382

groups with equal probability, where each group represents a set of sister cells (i.e., all 383

cells in each group are sister cells to only those cells in that group). The motivation 384

behind choosing six groups of sister cells is that, in mouse V1, sister cells are 385

intermingled with other sister cells and outnumbered in a local volume by a factor of 386

six [17]. We assume that 256 neurons corresponds to a small enough volume of the 387

cortex that we can consider only six groups of sister cells that are randomly distributed 388

in the space. Within each sister-cell group, each neuron has a 5% probability of being 389

coupled to a sister cell by a GJ. Figure 6A shows a count of the number of cells in each 390

sister group along with the probability of GJ coupling in each group. Note that this 391

coupling percentage is much sparser than the ∼ 28% coupling probability measured 392

experimentally for radially-aligned sister cells [7]. We found that is was necessary to 393

require a sparse GJ-coupling during the first postnatal week for the GJ-coupled cells to 394

exhibit the experimentally-measured properties of OP sharing and preferential synaptic 395

coupling. We explore the effects of larger GJ-coupling percentages in the Supporting 396

information. 397

The response properties measured for the pairwise GJ-coupled 400-neuron network 398

remain in this 256-neuron network, including the increased rate of learning for 399

GJ-coupled cells compared to non-GJ-coupled cells, see Fig 6B, and the preference for 400

GJ-coupled cells to share an OP, see Fig 6C. The recurrent synapses between excitatory 401

cells can be all-to-all, but due to the competitive STDP rules, each excitatory cell forms 402

a strong synapse with only about half of the other excitatory cells (the other half decay 403

just as in the feedforward synapses). Figure 6D demonstrates an example of the 404

progression of the cortical synapses onto one excitatory cortical cell, indicated by the 405

star. Note that some of the weights correspond to inhibitory synapses and some are 406

excitatory synapses. 407
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Fig 6. Measurements from a 256-neuron network with all-to-all potential cortical
connectivity. A: The number of cells (left) and the probability GJ-coupling (right)
within each of the six sister groups. B: The rate of LGN synaptic learning averaged
over all GJ-coupled cells (blue) and non-GJ-coupled cells (gray). C: The distribution of
differences in OP for GJ-coupled cells (blue) and non-GJ-coupled cells (gray). D: The
normalized recurrent cortical weights for one example excitatory cell, indicated by a
yellow star. The recurrent connections begin at t = 500 seconds and the entire
simulation was run for 1200 seconds.

We use this network to begin to test our hypothesis that GJ-coupling during the first 408

phase of development leads to disorder in the OP map. First, we show that if the GJs 409

are turned off during the time that LGN synapses are learning (the first phase of 410

development), the distribution of OPs that forms has more order than the one that 411

forms when GJs are present during the first phase of development. Recall that we do 412

not include any spatial effects in this second realization of the model, and we allow any 413

cell in the cortex to form a synapse with any other cell. Thus, to measure order in the 414

OP map, we use the idea from Ref. [12] that when cortical recurrent connections are 415

allowed to form between all cells in the network, all cortical cells develop a similar OP. 416

Figure 7A shows that the OPs in the network without GJ coupling tend to cluster 417

around one value (∼ 375), indicating that the recurrent connections influence the 418

resulting OP of each cell, while the network with GJ coupling during the first phase of 419

learning has a more uniform distribution of OPs. To quantify this, we calculate the 420

distance between each resulting OP distribution and the uniform distribution (sum of 421

the squared difference). Notice that the network without GJ coupling during the first 422

phase of development has a distance of 0.182, while the OP distribution for the network 423

containing GJ coupling has a distance about half of that value at 0.099. This indicates 424

that the inclusion of GJ coupling during the first phase of development results in an OP 425

distribution closer to the uniform distribution, where each OP has equal likelihood of 426

occurring. 427

In addition to GJ coupling, the time at which recurrent synapses begin to learn (the 428

start time of the second phase of development) also has an effect on the distribution of 429

OPs. Specifically, the amount of disorder (closeness to a uniform distribution) increases 430

with the start time of recurrent synaptic learning. The intuition is as follows. The 431

sooner that recurrent synapses begin to learn, the less time the feedforward synapses 432

have had to learn, which means that the cortical cells will be less selective by the time 433

that recurrent synapses form. This means that each cell’s OP has not yet been set (the 434

tuning curves are still broad) and communication among cortical cells via synapses will 435
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Without GJs With GJs 
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B

distance = 0.182  distance = 0.099 

Fig 7. Distribution of OPs comparing a network containing GJ coupling to one
without. A: Left (right): Top: Plot of each cell’s OP; Bottom: distribution of OPs, for
a network that does not contain (does contain) GJ coupling during the first phase of
development. The start time of cortical learning is 500 seconds. B: Distance from the
uniform distribution to the OP distribution for the two networks in A. Smaller values
indicate distributions closer to the uniform distribution.

be more likely to influence the final OP formed by each cell. Note that, across all start 436

times of cortical learning, the networks in which GJ-coupling is present during the first 437

phase of development have a more uniform OP distribution than those networks that 438

did not, as shown by the blue curve in Fig 7B. Next, we apply this idea to a cortical 439

network with spatially-restricted synaptic connectivity and analyze the effect of both 440

GJ-coupling during the first phase of development, as well as the effect of timing of the 441

second phase of development on OP organization. 442

Realization (iii): recurrent synapse formation (radius of cortical 443

connectivity) 444

In this section, we introduce spatial restrictions on the potential cortical synaptic 445

connectivity and compare the resulting OP maps across networks that contain 446

GJ-coupling during the first phase of learning and networks that do not. To introduce 447

spatial effects into the model, we draw a fixed radius around each excitatory cortical 448

cell and only allow excitatory synaptic connections from cells within that radius. Note 449

that excitatory to inhibitory, inhibitory to excitatory, and inhibitory to inhibitory 450

synaptic connections still remain all-to-all, with no spatial restrictions. The excitatory 451

to excitatory synaptic strengths are plastic, following the triplet learning rule, while the 452

inhibitory to excitatory synapses are also plastic, following the iSTDP learning rules 453

(recall Fig 2A for a schematic of these learning rules). 454

Figure 8 shows the development of recurrent synapses onto one sample excitatory 455

neuron in the network. The excitatory recurrent connections within a radius of 4 units 456

are turned on at time t=500 seconds, with initial weights chosen randomly from the 457

interval [0.25, 0.35]gmax. As cortical synaptic learning progresses, about half of these 458

excitatory recurrent synapses are potentiated, while half are depressed, as expected and 459

shown in previous sections. The nonzero weights outside of the radius indicate 460

inhibitory synapses onto this excitatory example neuron, which potentiate as the 461

excitatory weights increase to mediate the firing rate of this cell. 462

April 22, 2020 15/22

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 29, 2020. ; https://doi.org/10.1101/2020.04.29.067942doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.29.067942
http://creativecommons.org/licenses/by/4.0/


t = 500 seconds t = 600 seconds t = 800 seconds t = 1200 seconds

Neuron index

N
eu

ro
n 

in
de

x

N
orm

alized w
eight

Neuron index
Fig 8. Evolution of the strength of the recurrent synapses onto one sample excitatory
cortical cell shown at different time points during the second phase of development. The
star indicates the location of the sample neuron. Note that connections outside of the
radius of connectivity represent inhibitory synapses onto this excitatory cell.

We anticipate that excitatory cells within the radius of connectivity will follow the 463

results from the all-to-all coupled network in the second network realization. In 464

particular, cells within the radius of connectivity will develop a similar OP in networks 465

that do not contain GJ coupling during the first phase of learning, or in networks for 466

which the second phase of development occurs very soon after the first phase of 467

development (recall Fig 7). On the other hand, if we allow GJ coupling during the first 468

phase of development, or increase the amount of time that feedforward synapses learn 469

without recurrent synapses, we anticipate that the degree of disorder in the OP map 470

will increase. Indeed, Fig 9 demonstrates that our simulations support this hypothesis. 471

The leftmost plot shows the OP map for a network in which the recurrent synapses 472

form at the same time as the LGN synapses. Notice that there are patches of cells with 473

similar OPs, the sizes of which correspond to the radius of connectivity. If we increase 474

the amount of time that the LGN synapses learn without recurrent cortical synapses to 475

500 seconds (the first phase of development), we observe that the degree of disorder 476

increases until we reach a salt-and-pepper map, see rightmost plots of Fig 9, with the 477

network containing GJ coupling during that first phase of development (top) exhibiting 478

a higher degree of disorder than the network that did not contain GJ coupling during 479

the first phase (bottom). 480

We quantify the degree of disorder in the OP map by calculating the average 481

difference in OP for each cell within the radius of cortical connectivity. The procedure is 482

as follows. For each excitatory cell, we take the difference between the OP of that cell 483

and the OP of the excitatory cells that are within the radius of connectivity (4 units) 484

and then take the average of those differences. Finally, we take the average of this OP 485

difference over all of the excitatory cells in the network to obtain the measure shown in 486

Fig 9. Notice that larger values of this measure indicate larger differences in OP 487

preference, which corresponds to more disorder. As anticipated, we observe that the 488

degree of disorder in the OP map increases as the start time of the cortical synapses 489

(the length of the first phase of development) increases . The networks in which 490

GJ-coupling is present during the first phase of development follow this same trend as 491

the start time of cortical synapses increases, but also exhibit overall higher levels of 492

disorder than those networks that did not contain GJ coupling; see solid blue curve as 493

compared to dotted gray curve in Fig 9. 494

We observe that, in these last two realizations of the network model (all-to-all 495

connectivity and radius connectivity), the resulting OP distribution is close to uniform; 496

see Fig 7A and Fig 10. Though each orientation has about equal representation in all 497

example networks, the spatial distribution of the cells with each OP changes drastically 498

across each network (recall the maps plotted in Fig 9). 499

To see if the choice of radius in calculating the difference in OP greatly affects the 500

results shown in Fig 9, we vary the radius used to calculate the difference in OP; see Fig 501
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Fig 9. Effect of GJ-coupling and timing of cortical learning on the order of OP maps. The
plots shown are OP maps for different types of networks where the color indicates the
preference of the cell at that location and the white boxes indicate the inhibitory cells (that do
not have a preference). The leftmost map is for a network in which the recurrent synapses form
at the same time as the LGN synapses, the top right map is for a network that contains
GJ-coupling during the time that LGN synapses are forming (first 500s) and the bottom right
map is for a network that does not. The graph in the middle shows the average difference in
OP (as defined in the text) for cells within a radius of 4 units, where higher values indicate
disorder. The horizontal axis denotes the time at which recurrent synapses within the cortex
begin to learn (start time of the second phase of development). After this time, if there were
GJs in the network, they are turned off. Note that, for the case of cortical synapses beginning
at 0s, there are no GJs in the network by definition since there is no first phase of development.

LGN and cortical synapses at 0s Cortical synapses at 500s, with GJs Cortical synapses at 500s, without GJs

Fig 10. Distribution of OPs for the three example networks shown in Fig 9. The networks,
from left to right, are as follows: one in which the recurrent synapses form at the same time as
the LGN, one that contains GJs during the 500 seconds that LGN synapses are forming before
cortical recurrent connections form, and one that does not contain GJs during the 500 seconds
that LGN synapses are forming.

11. Notice that the measure is low (there is order in the OP map) for small radii, and 502

increases with increasing radius, implying that cells share an OP at small distances, but 503

not at large distances. Importantly, for the networks containing GJ coupling during the 504

first phase of development, and for cases in which the feedforward synapses were 505

allowed to learn for a sufficient amount of time while the GJs are present, there seems 506

to be no order for any value of the radius, see blue and green solid lines in Fig 11. For 507

the same amount of feedforward learning, there is significantly more order for small 508

radii in networks that did not contain GJ coupling, see green dotted curve in Fig 11. 509

This further supports our hypothesis the GJ-coupling during the first phase of 510

development serves to enhance disorder in the OP map. 511

April 22, 2020 17/22

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 29, 2020. ; https://doi.org/10.1101/2020.04.29.067942doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.29.067942
http://creativecommons.org/licenses/by/4.0/


Fig 11. The effect on the average difference in OP with changing radius. The solid lines
indicate those networks that contain GJ coupling, while the dotted lines indicate those
networks that do not. The colors indicate different start times of the formation of cortical
recurrent synapses.

Discussion 512

We have created an idealized model to describe the development of synaptic connections 513

both into (LGN) and within (recurrent) the visual cortex of mice during the first two 514

postnatal weeks. The model uses STDP plasticity rules explicitly parametrized for the 515

visual cortex to explore potential mechanisms underlying the formation of ordered or 516

disordered OP maps. We find that GJ coupling during the first postnatal week and 517

relative timing of the recurrent synaptic connections compared with LGN synaptic 518

connections are the two main contributors to order vs. disorder in the adult OP map. 519

Specifically, we show that the model captures experimentally-measured phenomena 520

such as the preference for cells that were GJ coupled in the first phase of development 521

to share an OP and develop preferentially a bidirectional synapse later in development. 522

In addition to capturing experimentally-observed phenomena, the model also predicts 523

that GJ-coupled cells have a higher firing rate, leading to a faster rate of learning for 524

their LGN synapses when compared to cells that do not have a GJ. We predict that this 525

increased learning rate for sparsely-coupled GJ sister cells, together with the fact that 526

several sets of sister cells are intermingled in the cortex, leads to the formation of a 527

disordered OP map. 528

We investigate this hypothesis by restricting the recurrent synaptic connections of 529

each cortical cell to a small radius and varying the developmental time at which those 530

recurrent synapses begin learning (which is also the time that GJ-coupling between 531

sister cells disappear). We find that the earlier in developmental time that recurrent 532

synapses are allowed to learn, the more ordered the adult OP map. To understand the 533

influence of GJ-coupling between sister cells, we perform the same analysis for networks 534

in which sister cells were not coupled by GJs in the first phase of development. We find 535

that the timing of recurrent synapses still plays a large role in determining order, but 536

that every network without GJ-coupling in the first phase of development leads to an 537

OP map that exhibits more order than the corresponding network that did have GJ 538

coupling. This leads us to conclude that GJ coupling during the first phase of develop 539

indeed promotes a disordered OP map, but works together with the relative timing of 540

synaptic development from LGN and within the cortex. 541

The mechanism behind the shared OP of GJ-coupled cells lies in the synchrony (or 542

strongly correlated spike times) induced between the two cells by the GJ. As the LGN 543

synapses form, if the cells are firing synchronously, then those cells will preferentially 544
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develop the same set of strengthened LGN synapses, thus forming a similar OP. In our 545

model, sparsity of GJ coupling between the sister cells is essential for this synchrony to 546

occur, and consequently for the shared OP of GJ-coupled cells. When cells are coupled 547

with a probability of 5%, each cell is coupled to an average of 1.5 other cells, leading to 548

isolated pairs or triplets of GJ-coupled cells. As the coupling percentage increases, there 549

are no longer isolated pairs or triplets of cells; rather, each cell may be coupled to 550

several different groups of GJ-coupled sister cells, leading to an overall 551

desynchronization of those cells; see S1 Fig. We note, however, that though the shared 552

OP of GJ-coupled cells is diminished with an increase in GJ-coupled probability, all 553

other properties of OP-map development, such as the discussion of order vs. disorder, 554

do not rely on this assumption; see S2 Fig. In addition, though experimental 555

measurements of the GJ-coupling probability between sister cells during the first 556

postnatal week is about 28%, this was specifically measured for isolated pairs of 557

radially-aligned sister cells [7]. In this work, we are interested in sister cells that are 558

GJ-coupled laterally (within the layer), which hasn’t explicitly been measured. 559

Finally, we note that the model developed in this work is highly idealized, especially 560

in its size, spatial structure, and LGN input organization. Regardless, the model 561

reproduces experimentally-measured properties of GJ-coupled cells and uses these 562

properties to propose two mechanisms affecting the formation of salt-and-pepper OP 563

maps in the mouse V1: the presence of GJs during the first postnatal week and the 564

relative timing of cortical synapse formation to the timing of LGN synapse formation. 565

In the future, we plan to develop a comprehensive large-scale model of the developing 566

visual cortex, including realistic LGN input and spatial organization of the cortex, to 567

further test the hypotheses presented in this work. 568

Supporting information 569

10% GJ-coupling 20% GJ-coupling5% GJ-coupling

S1 Fig. Increasing the number of GJ connections per neuron disrupts the 570

OP-sharing preference of GJ-coupled cells due to less synchronous firing. In the 571

case of a low coupling percentage, the average number of GJ connections per sister cell 572

is 1.5, leading to more cases of isolated GJ-coupled pairs or triplets. For higher 573

percentages, the average number of GJ connections per sister cell increases to 3.5 for 574

10% GJ coupling and 6.8 for 20% GJ coupling (note that there are only about 30 cells 575

in each sister group on average). This leads to larger networks of GJ-coupled cells, more 576

instances of cells that are GJ-coupled to more than one GJ-coupled group, and less 577

synchrony of the GJ-coupled cells. A direct effect of this decrease in synchrony is a 578

disruption in the OP-sharing property of GJ-coupled cells. 579
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S2 Fig. The OP-map formation is largely unchanged by increasing the 580

GJ-coupling probability. No GJ-coupling during the first phase of development 581

leads to an ordered map, while the inclusion of GJs leads to disorder, independent of 582

the GJ connectivity percentage. Note that we only show results for greater than 250 583

seconds of cortical learning to ensure the GJ-coupling has time to affect the dynamics. 584
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