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Vesicles enriched in certain negatively charged lipids, such as phosphatidylserine and PIP2, are
known to undergo fusion in the presence of calcium ions without assistance from protein assemblies.
Other lipids do not exhibit this propensity, even if they are negatively charged. Using our recently
developed methodology, we extract elastic properties of a representative set of lipids. This allows us
to trace the origin of lipid-calcium selectivity in membrane fusion to the formation of lipid clusters
with long-range correlations that induce negative curvature on the membrane surface. Furthermore,
the clusters generate lateral tension in the headgroup region at the membrane surface, concomitantly
increasing its Gaussian bending modulus. Finally, calcium binding also reduces the orientational
polarization of water around the membrane headgroups, potentially reducing the hydration force
acting between membranes. Binding calcium only weakly increases membrane bending rigidity and
tilt moduli, in agreement with experiments. We show how the combined effects of calcium binding
to membranes lower the barriers along the fusion pathway that lead to the formation of the fusion

stalk as well as the fusion pore.

I. INTRODUCTION

Membrane fusion is a fundamental and vital biophys-
ical process. Several well-known examples of fusion in
cells are enabled by the SNARE machinery, which acts
to empty the contents of vesicles from the cytosol into the
extracellular matrix.[1, 2] The established crucial role of
calcium in SNARE mediated fusion[3, 4] may be signif-
icant beyond its regulatory role in binding to the pro-
tein complex itself. Indeed, for certain membrane com-
positions, the calcium cation, Ca?*, is known to trigger
membrane fusion on its own, i.e. even in the absence
of any proteins.[5-7] The study of calcium-lipid inter-
actions and their role in membrane fusion allows us to
gain deeper insight into the physics of the fusion process,
and to identify the underlying principles that may be ob-
scured by the staggering complexity of the full protein
assemblies. Moreover, identifying the driving forces of
membrane fusion can also help make additional predic-
tions about the action performed by the more complex
cellular machinery.

In a recent study of Ca?t and cell-penetrating pep-
tide mediated membrane fusion by Allolio et al.[8], the
entire fusion process was simulated in atomistic detail
using DOPE/DOPS enriched membranes, starting from
a high energy deformation of the bilayers in contact.
It was shown that Ca?* addition led to a destabiliza-
tion of the membrane interface and subsequent exposure
of the hydrocarbon tails to the solvent, thereby initiat-
ing stalk formation. While this nonequilibrium simula-
tion provided unique phenomenological insight into the
fusion process, as a virtual experiment it cannot pro-
vide the physical mechanistic insights to the process. In
other words, on their own, simulations lack a fundamen-
tal molecular framework that can be generalized to other
cases, such as additional lipids and proteins and more-

over the free energies of the process are unknown. All
simulations provide are the atomistic models used to gen-
erate the simulation and the final membrane remodeling
outcome. Thus, in order to make predictions for other
systems, it would be necessary to repeat the (computa-
tionally very expensive) simulation. Even if one could be
satisfied by merely reporting such a large-scale simula-
tion, the larger protein assemblies involved in mediating
large-scale membrane deformations are beyond the scope
of atomistic simulations, necessitating the use of a more
coarsely-grained approach.[9]

Membrane remodeling processes have been very suc-
cessfully described using the continuum Helfrich theory
of curvature elasticity, and its later developments.[10-13]
In particular the introduction of the lipid tilt degree of
freedom by Hamm and Kozlov[14] has been effectively
applied to membrane fusion, as tilt was found to be cru-
cial in stabilizing the fusion stalk.[15] The Hamm-Kozlov-
Helfrich (HKH) theory yields a free-energy functional
with few, easily interpretable parameters and allows to
evaluate the importance of each of the parameters for the
fusion process by gauging its influence on the energetics
of the process. As its application only requires the solu-
tion of a low dimensional variational problem, the HKH
theory can be used to describe very large systems. The
application of HKH theory to calcium mediated fusion
therefore allows to address the large scales required to
probe fusion events while at the same time furnishing
an interpretation of the molecular structure in terms of
continuum quantities.

In this vein, continuum theory has already shown fu-
sion to be facilitated by properties such as lipid negative
intrinsic curvature [6, 16, 17] and membrane tension[18,
19]. When a curvature elastic theory is applied to a
membrane remodeling process, the effect of proteins is
traditionally taken into account either as a scaffolding
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boundary condition[20], a rigid adsorbing surface[10, 21]
or as an ideal insertion[22, 23]. The influence of interfa-
cial interactions on the continuum parameters are gen-
erally neglected, mostly due to the lack of a systematic
way to incorporate them into the theory. Yet, as a small
ion Ca?*, is incapable of membrane remodeling by scaf-
folding or insertion. Thus, inasmuch as calcium influ-
ences membrane properties, it must do so through its
high charge density as well by its strong binding to the
membrane headgroups. In this study, we use molecu-
lar dynamics simulations to resolve how Ca?T modifies
membrane properties and show how in turn these modi-
fications lower the vesicle fusion barrier in a lipid specific
way, most notably by changing the spontaneous curva-
ture of the membrane.

II. RESULTS AND DISCUSSION
A. Continuum Theory

The HKH free energy functional[14, 24] of membrane
elasticity, relates the physical properties of lipid monolay-
ers and flat bilayers to the energy of their deformations,

1, - 1 -
F = /dA[K'é(H — JS)Q + 5:‘430172 + RKG:I (1)

The energy density in this functional is determined by
the bending modulus & that is associated with the mean
curvature H (note that the ~ signifies that the calcula-
tion is performed over the director field, rather than the
membrane normal vectors); the tilt modulus, k¢ and the
spontaneous curvature, J;. The Gaussian bending mod-
ulus & is usually irrelevant, because the integral of the
Gaussian curvature K is a topological constant, accord-
ing to the Gauss-Bonnet theorem. The HKH functional
has been very successful in modeling membrane fusion,
suggesting that knowing the pertinent elastic parameters
should reveal the propensity of a given membrane to-
wards fusion also when lipid properties are modified, for
example in the presence of Ca?T. In particular, the ef-
fect of Ca?t on membranes is known to be highly lipid
specific and this should be reflected in the parameters.

To employ the HKH theory as a predictive tool, we
have examined a representative set of membranes: neu-
tral as well as anionic membranes, both formed of single
components and containing mixtures, including phospho-
lipid membranes with saturated tails (DMPC), hybrid
lipids (POPC) and fully unsaturated tails (DOPC) as
well as ceramides. Importantly, we studied the negatively
charged phosphatidylserine (PS), as well as the nega-
tively charged glycolipids PIP2 and GM1, all of which
are known to interact strongly with Ca?t. We used a
lipid:ion mole ratio of ~ 1:10. Where more ions were
required to ensure charge neutrality, we neutralized the
system with Ca?t.

B. Bending and Tilt

The influence of ions on membrane elasticity has been
examined in a number of studies, with no current con-
sensus. Poisson-Boltzmann and other mean field theo-
ries predict a weak increase in k due to salt ions, which
is nonlinear in salt concentration.[25-29] However, mean
field theory is known to often fail for the interaction of
polyvalent ions with interfaces, due to the rise of strong
coupling between charges in the Coulomb fluid.[30, 31]
Coarse grained simulations have found a decrease in the
bending modulus for polyvalent ions, while confirming
the weak increase for monovalent ions.[32] Experimen-
tal data on the other hand show an increase in mem-
brane thickness through the addition of calcium[33, 34].
Because the bending modulus for a particular lipid is
determined by the packing constraints on the chain in
the lipid[35], any increase in membrane thickness gen-
erally corresponds to an increase in x.[36] To the best
of our knowledge the effect of divalent ions on the tilt
modulus has not been studied at all. Our recently de-
veloped ReSIS methodology provides access to the mem-
brane elasticity of charged lipid mixtures interacting with
Ca?*t from atomistic simulation data.[37] In Fig. 1, up-
per panel we show the resulting bending moduli for all
lipids examined in this study; monolayer thicknesses and
areas per lipid can be found in the SI.

We find that Ca?t barely increases x in most mem-
brane patches, with the only notable exceptions being
pure PIP2 and PS lipids. Despite being charged, GM1
is among the least affected by Ca?T binding. The tilt
moduli shown in Fig. 1, lower panel surprisingly show
a stronger trend than the bending moduli: in all mem-
branes studied we observe an increase of the tilt moduli,
exceeding the membrane stiffening observed in k. The
largest impact of calcium is found for DOPE/DOPS,
DOPS, PIP2 and DMPC. This increase in tilt moduli
should negatively affect fusion rates as stalk formation re-
quires tilt[15], so the change in moduli is not an explana-
tion for the increased propensity towards fusion observed
in PS and PIP2. The surprising reaction of DMPC to the
presence of Ca?™ in simulations is also reflected in the for-
mation of gel-phase domains triggered by the addition of
the ion at 303 K. While this is clearly an unphysical arti-
fact due to overbinding by the Ca?* ions in simulations, a
lowering of the melting temperature of DMPC due to cal-
cium has indeed been measured experimentally.[38] We
have been able to reproduce gel phase formation using
a charge-scaled force field, aimed to correct for some of
the overbinding (see SI). Yet, it should be noted that
in experiments too, Ca?* binds more strongly to DMPC
than to unsaturated lipids.[39] While the stiffening su-
perficially confirms the mean field prediction for mem-
branes in presence of salt, the origins of this effect must
be very different: Because Ca?T ions bind to the charged
membranes, we should expect a softening as the charged
headgroups are neutralized and counterion layers are re-
moved. Instead, in our simulations we observe an in-
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FIG. 1. Elatic moduli for various lipids. Upper panel: Mono-
layer bending moduli of selected membranes in units of kT,
in the absence of ions (or Kt counterions only, for charged
lipids) and exposed to a CaClz solution with one Ca* ion per
ten lipids, or full counterion charge in case of charged lipids.
Lower panel: Tilt moduli for the corresponding membranes
given in kT /nm?, reported per bilayer.

crease in membrane rigidity, accompanied by membrane
thickening.

C. DMonolayer Spontaneous Curvature

Once the monolayer values of x are known, the first
moment of the lateral pressure distribution 7(z) allow
to determine the monolayer spontaneous curvature Jg by
using the following relation.[14]

h
/-@JS:/O zm(z)dz (2)

Here, the integration is carried out along the membrane
normal from the center of the bilayer to the bulk. Thus,
to determine the impact of calcium on monolayer spon-
taneous curvature, we first calculated the membrane lat-
eral pressure profiles. In order to obtain the correct
pressure contribution from the ionic double layer, we

compute the stress tensor using particle mesh Ewald
summation.[40, 41] This step is required to account
for the extremely long range virial contributions of the
charged ion layers (see Methods, and for further discus-
sion see the SI).

Spontaneous monolayer curvatures obtained from Eq.
2 are given in Fig. 2, upper panel. In the absence of cal-
cium, the spontaneous curvatures we calculated for the
different membranes are close to experiment. Specifically,
all PC membranes show low negative curvature[42], while
GM!1 shows positive curvature[43, 44]. Previously, PS has
been measured to have positive spontaneous curvature,
when deprotonated at pH 7.[45] This measurement was
made using PE/PS mixtures in the hexagonal phase. In
our PE/PS mixture, we find significant curvature overall,
but slightly less negative than expected for pure DOPE
(0.3-0.4 nm~1).[42, 45] This is in agreement with the
experimental observation of increased spontaneous cur-
vature in the presence of PS. Surprisingly however, the
spontaneous curvatures of the pure anionic lipids PS and
PIP2 are slightly negative. Especially at low concentra-
tion PIP2 is known to be stable in micellar aggregates in
solutions, indicating positive Js.[46] A possible explana-
tion for this apparent disparity is the confinement of the
counterions to a small volume between lipid slabs due
to the finite size simulation: The KT counterions con-
tribute to the lateral pressure (see also 2, lower panel)
and have an effect on J; proportional to their distance to
the membrane center z. Owing to their high concentra-
tion they also adsorb to a significant extent (see SI). At
low concentration, these ions will be dissolved and reside
far from the membrane, thereby increasing the first mo-
ment of the lateral pressure and hence the spontaneous
curvature. Moreover, due to the finite size and limited
hydration, lipids in simulations are expected to be un-
der significant osmotic stress. Our results indicate, that
structurally (i.e. in absence of net charge) PS and PIP2
lipids have negative curvature, which is overcompensated
by electrostatics. Experimentally, it has also been shown,
that at pH 2 (protonated) PS exhibits strongly negative
Js in PE/PS mixtures, whereas in pH-neutral solutions,
deprotonated PS has a very small J;.[45] There are indi-
cations that similar effects are also present in PIP2.[47]

Recent studies have debated whether Ca?* induces
positive or negative curvature on lipids.[48-51] In our
simulations, we find that Ca?* very strongly induces
negative spontaneous curvature on negatively charged
(pure) DOPS or PIP2 membranes. This is of great sig-
nificance for fusion, as reduced spontaneous curvature is
well known to lower the energy of the fusion stalk and
pore.[11] Due to the finite size and ion confinement ef-
fects mentioned, the decrease of J; is likely to be even
more striking at low ion concentrations.

In Fig. 2, lower panel we show the lateral pressure pro-
file of DOPS in presence and absence of Ca2t. The pres-
sure profile is strongly modified in the head group region
from positive (in presence of K™) to negative pressure (in
presence of Ca?*). The negative pressure is strong at the
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FIG. 2. Impact of calcium on sponatneous curvature. Up-
per panel: Spontaneous curvatures for selected membranes,
red bar no ions (or K counterions respectively, blue bar, ex-
posed to a CaCl solution with one Ca?* ion per ten lipids,
or full counterion charge respectively. Lower panel: Stress
profile of a DOPS bilayer in the presence of KT vs. Ca?*
counterions (left axis) and number density profiles for Ca?"
ions and phosphorus atoms. The vertical lines represent the
position of the water midplane (Gibbs-Luzzatti surface) of
the membrane bilayers, in the presence of KT (grey line) and
Ca?" (black line) ions.

z-position where Ca?" ions are concentrated and drives
membrane thickening by Ca?* as well as induces sponta-
neous curvature. As a rule, neutral membranes display
a much smaller change in J; upon Ca?* addition. The
effect of Ca?" on the curvature, of e.g. the negatively
charged GM1 lipids is also small, despite full binding of
the ions to the lipid (see Supporting information). Closer
examination reveals that, the binding of Ca?* to PS is
complex, with significant contributions from the COO™,
PO; and carbonyl groups (see also Ref. [52] and the SI).
It is therefore impossible to explain the molecular mech-
anism of curvature induction by using simple arguments
based on charge densities alone. The overlap of peaks
in the pressure profile with the density profiles of cal-
cium ions and POy groups, as shown in Fig. 2 does not
do justice to the full complexity of the molecular origins
of the curvature induction, necessitating a more detailed
investigation of headgroup binding.
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FIG. 3. Top panel: Clustering of lipids by Ca?' from sim-
ulations. Bottom panel: Correlation peaks obtained from
the Fourier transformation of the difference of Interfacial
phosphate-phosphate pair correlation functions. For legibil-
ity, the results for different membranes are shifted.

D. Role of Lipid-Calcium Clusters

We have already shown that the curvature of some
lipid membranes is strongly affected by calcium, while
others are almost unaffected. For some membranes, such
as POPC, calcium binding is weak, which explains the
small effect on curvature. Other PC lipids have stronger
interactions (at least in simulation), but still exhibit a
low influence of calcium on spontaneous curvature. Thus,
the strength of binding to the lipid head groups clearly
is not the only cause of curvature induction. Instead,
we propose that long-range lipid clustering by calcium
is responsible for the change in interfacial tension and
the induction of negative curvature. To illustrate this,
we define a local pair correlation function in the volume
of a spherical cap g., that allows us to selectively sam-
ple within the interfacial region (see the SI for details).
The difference in the head group-head group correlation
before and after Ca?* addtion, Agp, p is a measure of in-
duced headgroup ordering. The Fourier transform of this
function ||Agp, p||, allows a visual estimate of the range
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of correlation induced by the ions. The bottom panel
of Fig. 3 shows through the low ¢ patterns modulation
that the presence of Ca?* induces long-range structure in
the lipid head group region. This modulation is specific
to lipids that exhibit negative curvature induction in the
presence of Ca?t. This supports our hypothesis of the
role of extended clusters.

Why do some lipids form long-range clusters that
strongly influence the mechanical properties of mem-
branes while others do not? One particularly interesting
case is GM1, which despite being negatively charged and
shown to complex calcium in experiment[53] as well as in
our simulation, hardly generates negative curvature nor
affects the elasticity of the membranes. We find calcium
to be bound to GM1 in two ways: either it is enveloped
by the sialic acid sugar, or it clusters two GM1 molecules.
Significantly, the negative charge of the sialic acid is po-
sitioned far from the membrane center, and is in contact
with water through a well hydrated sugar moiety. (see
Fig. 3, top right). This prevents the calcium ion from
interacting with the inner-lying parts of the lipid bilayer,
and presumably also prevents long-range mechanical cou-
pling. This finding is confirmed by experiments, where
GM1 lipids have been reported to have only slightly
slower diffusion in presence of calcium[54] and are known
to inhibit Ca?*-mediated membrane fusion[55]. In con-
trast, in simulations PIP2 binding to PO, headgroups
dominates. The Ca?* ions form a network of bridges
across the entire interface, which is facilitated by the ex-
posure of multiple PO, moieties of the lipid. Clustering
of PIP2 by calcium is well established in experiment.[46].
PS also forms extended clusters (see Fig. 3, top left), as
is also established experimentally[56]. For a full overview
of ion binding see the SI.

E. Barriers to Membrane Fusion

Having extracted from MD simulations all parameters
that are used as inputs to the Helfrich elastic energy al-
lows us to use these constants in the continuum theory
and to evaluate the free energy of fusion stalk forma-
tion en route to fusion. With that, we can estimate the
overall effect of Ca?T on the energetic barrier for fusion
stalk formation as well as identify the most important
contributions to the energy barrier for fusion. Closely
following the work of Kozlovsky et al.[15], we assume
the stalk to have rotational symmetry and numerically
solve for the minimal free energy surface, using finite tilt
at the stalk origin and flat membrane surface at infi-
nite distance as boundary conditions, see the SI for full
details. The boundary condition of a high tilt at the
stalk center is designed to model the fusing membrane
interface. In Fig. 4, top panel the free energy of stalk
formation is plotted as a function of J, for the different
membrane compositions. The correlation with sponta-
neous curvature greatly overwhelms all other parameter
changes. Fusion has a low barrier for the lipids which
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FIG. 4. Top panel: Stalk formation free energies for different
lipids at a stalk width of 40 nm, and stalk height of 2(d + 1).
The stalk formation energy in the presence of Ca?* is shown
in blue, in the absence of Ca?* it is given in red. Identical
compositions are connected with grey lines. Inset: Exam-
ple of stalk geometry. The stalk geometry does not depend
strongly on the elastic parameters.[15] Bottom panel: Esti-
mated values for the bilayer Gaussian bending modulus, from
Eq. 5

experimentally are found to undergo the fusion process,
but prohibitively expensive (>30 kT) for those that do
not. Specifically, we see that PIP2 forms stable stalks
in presence of Ca?T and that PS and DOPE/PS mix-
tures have a thermally accessible path to fusion. Taken
together we have shown that stalk formation by Ca?*
ions can be successfully explained through its impact on
curvature, and by extension provide a way to decode how
fusion is triggered.

However, stalk formation is only an early stage in the
full fusion process: The fusion pore will cause a change in
topology, which subsequently makes the Gaussian bend-
ing modulus contribution to the energy relevant. Impor-
tantly, the fusion pore can assume a catenoidal shape,
that reduces the mean curvature to zero. This shape is
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expected, because with the opening of the fusion pore the
bilayer shape of the membrane is restored. For symmetry
reasons the spontaneous curvature of the lipid bilayer is
zero, so that the Gaussian bending modulus becomes a
dominant contribution in the energy density of the mem-
brane.

A positive Gaussian bending modulus predicts stable
phases with negative Gaussian curvature, such as cubic
lipid phases or the stabilization of the opened fusion pore.
The Gaussian bending modulus % for the monolayers is
very sensitive to increase in the lateral pressure m(z) in
the headgroup region (even more than k), as it is defined
by:[14]

h
k= 7/ (z — d)?*n(2)dz. (3)
0

Furthermore, to evaluate &, the position of the mono-
layer neutral plane at d is required. Unfortunately, eq.
3 does not seem to work well when used as a method-
ological basis for the extraction of Gaussian moduli from
simulations. Specifically, the resulting monolayer Gaus-
sian moduli are not in agreement with experiment for any
physical values of d (see [57, 58] and references therein
for in-depth discussion). To estimate the bilayer Gaus-
sian bending modulus k4, we instead begin with the typ-
ical experimental value of & ~ —0.8% for the monolayer
Gaussian bending modulus. The experimental ratio is
conserved across lipids within 15%. For a membrane with
neutral plane at distance d from the bilayer center any
principal curvature of the monolayer c¢,, is related to the
principal curvature of the bilayer ¢; by

o 1+dcb'

Cm (4)
To first order in d[58], the bilayer Gaussian modulus is
then given by

Ry = 2k — 4J,dk. (5)

Therefore, by creating negative spontaneous curvature
the Ca?* ion can also significantly increase the Gaussian
bending modulus. We computed R from Eq. 5, by in-
serting the values we obtained for x,, , d (the position
of the neutral plane according to ReSIS lipid centers[37])
and Js. Alternatively, R, can be directly calculated by
integrating the lateral pressure’s second moment over the
entire bilayer (see SI). Both methods show that the sign
of the Gaussian bending modulus can be inverted by
Ca?* for the PIP2 membranes (see Fig. 4, bottom). The
pressure method also predicts an equivalent sign change
for PS and a positive &, for the DOPE/DOPS system
even without calcium (the latter further increases upon
addition of Ca?T). This underscores the challenges of
computing Gaussian moduli from pressure profiles. Con-
tributions from thickening and stiffening also play a role,
especially since clustering also thickens the membrane.
Our robust conclusion, however, is that the generation of

negative curvature by calcium mediated clustering also
supports fusion by lowering the energetic cost of the topo-
logical change necessary for the formation of the fusion
pore (unambigously turning into stabilization of the pore
in the case of PIP2).

F. Hydration and Electrostatics

So far we have determined the propensity for fusion in
terms of negative curvature induced by clusters. How-
ever, from the perspective of kinetics, connecting two
apposed bilayers through the transfer of a lipid tail into
the adjacent interface is widely accepted as the rate de-
termining step for stalk formation.[8, 59] For this lipid
tail flip-flop to occur it is necessary to expose parts of
the hydrophobic interface. This degradation of the in-
terface is incompatible with the description of Helfrich
theory, which assumes an intact membrane surface (in-
terpretable as a thermodynamic average). The creation
of a hydrophobic interface requires moving aside the far
better solvated head groups. In a tensionless membrane,
the tension in the headgroup region has to be counter-
balanced by the tension of the chains

Yehain = —Yhead- (6)

Disruption of the interface can be accomplished by creat-
ing tension on the membrane or in the headgroup region.
Adsorption of Ca?t also thickens the membrane, due to
the contraction of the headgroups, as expected from the
lateral pressure profile in Fig. 2. If the membrane cannot
respond fully by lateral contraction (for example because
it is a vesicle with internal pressure) a net tension results,
which destabilizes the headgroup-water interface.

When membranes are in close proximity to each other,
the need for a partial desolvation of their interfaces gen-
erates repulsive hydration forces, expected to dominate
at very low intermembrane distances. Solvation of the
interface by water molecules generates an orientational
polarization of these water molecules. Before membranes
can touch, this polarization has to vanish for symmetry
reasons. Following Kandu¢ et. al.[60, 61] we therefore
use the water orientation along the membrane normal as
a proxy for the resulting hydration repulsion. In neutral
bilayers only the water molecules very close to the dipolar
headgroups (up to ca. 0.5 nm from the interface) show
orientation along the membrane normal. The loss of ori-
entation then closely tracks the decay of the hydration
force.

In the top panel of Fig. 5, we show the orientation of
water dipoles along the membrane normal in the DOPS
system. Water responds to the presence of charged lipids
with a net orientation in the bulk water phase. In this
case, water orientation also contains information about
the electrostatic repulsion between membranes. Indeed,
we find that long-range water orientation is entirely due
to surface charge. This is shown by the agreement of the
orientation with the value predicted for a water dipole
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FIG. 5. Top panel: Water orientation along the membrane
normal, and computed dipole orientation generated from a
Boltzmann distribution of the water dipole in the electro-
static potential of the Ca?T-free box. Bottom panel: Total
polarization obtained by integrating over the orientation pro-
file starting from the point where pg,0 = 350 mg/cm?®.

in the local electric field of the simulation box. Surface
charge can be present either in the form of bound ions, or
in the form of charged lipids in the absence of absorbed
counterions. To account for the long-range effect of sur-
face charge, we evaluate the integrated polarization of
water. The result is shown in the bottom panel of Fig. 5.
The effect of the electric field is clearly seen, as neutral-
izing the charged membranes with Ca2?* removes a large
amount of water polarization. As expected, in neutral
membranes, adsorbing Ca?* produces positively charged
interfaces and thereby generates long range polarization.
Negatively charged membranes, on the other hand, can
lose their mutual electrostatic repulsion when calcium is
added. Strikingly, once neutralized by calcium, the fus-
able membranes also have a low water polarization when
compared with regular charge-neutral membranes. We
conclude that the formation of clusters also disrupts the
dipolar solvation of the membranes, which coincides with

the observed increase of membrane interface tension. To-
gether with the tendency of calcium to cross-link across
membrane leaflets this effect is expected to further facili-
tate stalk formation via a decrease in hydration repulsion.
The fact that in presence of Ca’t the negatively charged
membranes become effectively charge neutral also justi-
fies our neglect of electrostatic forces in the continuum
description of membrane fusion.

III. CONCLUSIONS

Using molecular dynamics, we have examined the
mechanism of Ca?t mediated membrane fusion in detail.
We showed that, for certain lipids, Ca?*t selectively co-
agulates the membrane headgroups into long-range clus-
ters in a lipid-specific way. Extending our recently devel-
oped methodology, we then extracted elastic parameters
as well as the local pressure from molecular dynamics
simulations. Thereby, we have been able to show how
lipid-Ca?* clusters generate membrane surface tension
in the headgroup region, which in turn translates to a
negative spontaneous curvature, an increased Gaussian
bending modulus, and a depolarization of the water in-
terface. Using continuum modeling, we then estimated
fusion stalk formation energies and obtained the experi-
mentally observed lipid selectivity. In the absence of net
charge on the membrane interface, the induction of neg-
ative curvature by calcium is coupled to tension in the
headgroup region, an increase in the Gaussian bending
modulus, and reduced hydration. Curvature induction
by adsorbates is therefore an easily available predictor
for fusion and phase stability. The methods employed in
this study are fully local and can easily be extended to
membrane proteins, such as the SNARE complex, their
surrounding lipids and other biophysical systems of rel-
evance. By conducting accurate membrane simulations
of modest size, and extracting continuum properties, we
provide a new mode of access to large-scale deformations,
and to probing the molecular details of membrane remod-
eling processes.

IV. METHODS

All  simulations were performed using the
CHARMMS36[62-64] all atom force field for the
lipids, the TIP3P[65] model for water and semi-isotropic
pressure coupling. We used the Roux calcium ions[66]
with NBFIX corrections[67] as well as the scaled ECCR
calcium[68] ions for comparison. Lateral pressure calcu-
lations use a modified version of the Sega code[40], that
incorporates a Goetz-Lipowsky[69] force decomposition.
Membrane shape optimization used a spline-based finite
element approach. For full details on simulation setups,
ion binding, surface variation, and pressure tensor
evaluation see the Supporting Information.
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