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anTraX: high throughput video tracking of color-tagged insects 

Asaf Gal1*, Jonathan Saragosti1 and Daniel J. C. Kronauer1* 

Recent years have seen a surge in methods to track and analyze animal behavior. 
Nevertheless, tracking individuals in closely interacting, group-living organisms remains a 
challenge. Here we present anTraX, an algorithm and software package for high-throughput 
video tracking of color-tagged insects. anTraX combines neural network classification of 
animals with a novel approach for representing tracking data as a graph, enabling individual 
tracking even in cases where it is difficult to segment animals from one another, or where 
tags are obscured. The use of color tags, a well-established and robust method for marking 
individual insects in groups, relaxes requirements for image size and quality, and makes the 
software broadly applicable. anTraX is readily integrated into existing tools and methods for 
automated image analysis of behavior to further augment its output. anTraX can handle 
large-scale experiments with minimal human involvement, allowing researchers to 
simultaneously monitor many social groups over long time periods.  

Introduction 

Our understanding of behavior, together with the biological, neural and computational principles 
underlying it, has advanced dramatically over recent decades. Consequently, the behavioral and neural 
sciences have moved to study more complex forms of behavior at ever-increasing resolution. This has 
created a growing demand for methods to measure and quantify behavior, which has been met with a 
wide range of tools to measure, track and analyze behavior across a variety of species, conditions, and 
spatiotemporal scales [1–8]. One of the exciting frontiers of the field is the study of collective behavior 
in group-living organisms, and particularly the behavior of groups of insects. Insects provide an attractive 
and powerful model for collective and social behavior, as they exhibit a wide range in social complexity, 
from solitary to eusocial, while allowing for controlled, high throughput experiments in laboratory 
setting [9–12]. However, although complex social behavior has been the focus of extensive research for 
over a century, technological advances are only beginning to enable systematic and simultaneous 
measurements of behavior in large groups of interacting individuals. 
Solutions for automated video tracking of insects in social groups can be roughly divided into two 
categories (for reviews see [5,6]): methods for tracking unmarked individuals [13–21], and methods for 
tracking marked individuals [22,23]. The former category has the obvious advantages of reduced 
interference with natural behavior, less constrained experimental conditions, and an unbounded 
number of tracked individuals. At the same time, these approaches are limited by a more extensive 
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computational burden, higher error rates, and stricter requirements for image quality. The most 
common approach for tracking unmarked individuals is to try and follow the trajectory of an individual 
for the duration of the video. The challenge in this approach is to resolve individuals from each other 
and link their locations in consecutive frames during close range interactions, when they are touching or 
occluding each other. Common solutions to this problem are to employ sophisticated segmentation 
methods [13,14,16], to use predictive modeling of the animal motion [13,20], or to use image 
characteristics to match individuals before and after occlusions [19]. The success of these solutions is 
case-specific and will usually be limited to relatively simple problems, where interactions are brief, 
occlusion is minimal, and image resolution is sufficient to resolve the individuals even during an 
interaction. One important limitation of this approach is that no matter how low the error rate is, it tends 
to increase rapidly with the duration of the experiment. The reason is that once identities are swapped, 
the error is unrecoverable, and will propagate from that moment on. A different algorithmic approach 
for tracking unmarked individuals is to use object recognition techniques to assign separate pieces of 
trajectories to the same individual [14,15]. While this approach is promising and performs well on many 
tracking problems, it requires high image quality to identify unique features for each individual animal. 
It will also generally not perform well on animals with high postural variability and is hard to validate on 
large datasets. 
On the other hand, tagging individuals with unique IDs has the advantage of having a stable reference, 
enabling error recovery. This approach also provides a simpler method for human validation or 
correction and enables following the behavior of individuals even if they leave the tracked region, or 
across experiments when the same animals are tested in different conditions. The use of general-
purpose libraries such as AprilTags [22,24–27] and ArUco [28], or application-specific patterned tags [29–
31], has become the gold standard for this approach in recent years. However, these tags are applicable 
only to species with body sizes sufficiently large to attach them, have adverse effects on the animals’ 
behavior, and are often lost during experiments. They also require relatively high image resolution to 
correctly read the barcode pattern. Taken together, while currently available methods cover a wide 
range of experimental scenarios, the ability to accurately track the behavior of animals in groups remains 
one of the major hurdles in the field. As a result, much of the experimental work still relies on manual 
annotation, or on partially automated analysis pipelines that require considerable manual effort to 
correct computer-generated annotations (see [32–35] for recent examples). 
Here we present anTraX, a new software solution for tracking color tagged insects and other small 
animals. Color tagging is one of the best-established and widely used methods to mark insects, both in 
the field and in the laboratory [34–41], with long-term durability and minimal effects on behavior. anTraX 
works by combining traditional segmentation-based object tracking with image-based classification 
using Convolutional Neural Networks (CNNs). In addition, anTraX introduces a novel approach for 
representing tracking data on a graph, enabling the inference of identity of unidentified objects by 
propagating temporal and spatial information, thereby optimizing the use of partial tag information. 
anTraX is uniquely suited for tracking small social insects that form dense aggregates, in which individuals 
are unidentifiable over large parts of the experiment even for the human observer. It will also be useful 
in tracking and analyzing behavior in heterogenic groups of “solitary” insects, where keeping track of the 
individual identity for long experimental durations is important. Such experiments are of increasing 
interest, as the study of behavior in classical model systems like Drosophila fruit flies is shifting toward 
understanding more complex behavioral phenomena such as social interactions, individuality and inter-
species interactions [12,42–46]. 
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While we tested anTraX and found it useful for behavioral analyses in a range of study systems, it was 
specifically developed for experiments with the clonal raider ant Ooceraea biroi. The clonal raider ant is 
an emerging social insect model system with a range of genomic and functional genetic resources 
[39,47–51]. The unique biological features of the species enable precise control over the size, 
demographics and genetic composition of the colony, parameters that are essential for systematic study 
of collective behavior in ants. Moreover, the species is amenable to genetic manipulations [48], which 
open new possibilities not only for understanding the genetic and neural bases of social and collective 
behaviors, but also for developing and validating theoretical models by manipulating behavioral rules at 
the level of the individual and studying the effects on group behavior. While these ants have great 
promise for the study of collective behavior, they are impossible to track using available approaches, 
due to their small size and tendency to form dense aggregates. anTraX thus constitutes a crucial element 
in the clonal raider ant toolbox, enabling researchers to characterize behavior in unprecedented detail 
both at the individual and collective level. 
anTraX was designed with large-scale behavioral experiments in mind, where hundreds of colonies are 
recorded in parallel for periods of weeks or months, making manual tracking or even error correction 
impractical. Its output data can be directly imported into software packages for higher level analysis of 
behavior (e.g. [52]) or higher resolution postural analysis of individuals in the group [53–56]. This enables 
the utilization of these powerful tools and methods for the study of social insects and collective behavior. 
anTraX is modular and flexible, and its many parameters can be set via a graphical interface. The software 
is open source, and its main algorithmic components can be easily modified. Here we provide a brief 
description of the different steps and principles that constitute the anTraX algorithm, while a full 
description is given in the Appendix and the online documentation. We validate the performance of 
anTraX using a number of benchmark datasets that represent a variety of behavioral settings and 
experimental conditions. 

Methods 

The anTraX algorithm consists of three main steps. First, it segments the frames into background and 
ant-containing blobs and organizes the extracted blobs into trajectory fragments termed tracklets. The 
tracklets are linked together to form a directed tracklet graph. The second step of the algorithm is 
tracklet classification, in which identifiable single-animal tracklets are labeled with a specific ID by a pre-
trained CNN, while other tracklets are marked as either unidentified single-animal tracklets, or as multi-
animal tracklets. Third, we infer the identity of unclassifiable tracklets in the tracklet graph by using 
temporal, spatial and topological propagation rules.  

Object tracking and construction of the tracklet graph 

Each frame is subtracted from the background, and a fixed threshold is applied to segment the frame 
into background regions and animal-containing blobs to be tracked. When two or more ants are close 
together, they will often be merged into a single larger blob (Figure 1A-C). Unlike other tracking 
solutions, we do not attempt to separate these larger blobs into single ant blobs at this stage, because 
those attempts are based on heuristic decisions that do not generalize well across species and 
experimental conditions. Instead, we will infer the composition of these larger blobs from the tracklet 
graph in a later step. Each blob in the currently processed frame is then linked to blobs in the previous 
frame (Figure 1D-E). A link between a blob in frame t and a blob in frame t-1 implies that some or all of 
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the ants that were part of the first blob, are present in the second one. A blob can be linked to one blob 
(the simplest case, where the two blobs have the same ant composition), to a few blobs (where ants 
leave or join the blob), or to none (suggesting the ants in the blob were not detected in the other frame). 
We use Optical Flow to decide which blobs should be linked across frames (Figure 1D). While Optical 
Flow is computationally expensive, we found it to be significantly more accurate than alternatives such 
as simple overlap or linear assignment (based either on simple spatial distance or on distance in some 
feature space). To reduce the computation cost, we run the optical flow in small regions of the image 
that contain more than one linking option (see Appendix section 1.4 for details). 
Blobs are organized into tracklets, defined as a list of linked blobs in consecutive frames that are 
composed of the same group of individuals (Figure 1E-F). Following linkage, tracklets are updated in the 
following way: (i) A blob in the current frame t that is not linked to any blob in the previous frame t-1, 
will 'open' a new tracklet. (ii) A blob in the previous frame that is not linked to any blob in the current 
frame, will 'close' its tracklet. (iii) If a pair of blobs in the previous and current frames are exclusively 
linked, the current blob will be added to the tracklet that contains the previous blob. (iv) Whenever a 
blob in the current or previous frames is connected to more than one blob, the tracklets of the linked 
blobs in the previous frames will 'close', and new tracklets will 'open' with the blobs in the current frame. 
In these latter cases, the linking between the blobs across different tracklets will be registered as an edge 
in the directed tracklet graph from the earlier tracklet to the latter. The tracklet graph is constructed by 
running an iterative loop over all the frames in the experiment. The result of this part of the algorithm, 
after processing all frames in the video, is a directed acyclic graph containing references to all tracklets 
and blobs in the dataset (Figure 1G). 

Tracklet classification 

The next step is tracklet classification, in which we label tracklets containing single ants (Appendix 
section 2.3) that can be reliably identified a specific ID. It is important to note that our approach does 
not rely on the identification of each and every tracklet, but rather on inferring the composition of 
tracklets based on propagation of IDs on top of the tracklet graph. Hence, we apply a conservative 
algorithm that classifies only reliable cases and leaves ambiguous ones as unidentified. Classification is 
done by training and applying a Convolutional Neural Network (CNN) on each blob image in the tracklet. 
The most frequent ID is then applied to the entire tracklet (Figure 2A). In addition to the ID label, we also 
assign a classification confidence score to each classified tracklet, which takes into account the number 
of identified blobs in the tracklet, the confidence of each classification, and the prevalence of 
contradictory classifications across blobs in the tracklet (see Appendix section 2.4). anTraX comes with a 
graphical interface for training, validating, and running the CNN (see Supplementary Material and online 
documentation). 

ID propagation 

The last part of the algorithm is the propagation of ID assignments on the tracklet graph. This is 
implemented using a greedy iterative process. Each node in the graph (corresponding to a tracklet) is 
annotated with a dynamic list of assigned IDs (IDs that are assigned to the tracklet) and a list of possible 
IDs (IDs that might be assigned to the tracklet, i.e. that were not yet excluded). Initially, all nodes are 
marked as ‘possible’ for all IDs, and no IDs are assigned to any nodes. All the classified tracklets from the 
previous step are now ranked by their confidence score. Starting with the highest confidence tracklet, 
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its ID is propagated on the graph as far as possible. Propagation is done vertically on the graph on top of 
edges, both positively (an ID that is assigned to a node must also be assigned to at least one of its 
successors and one of its predecessors) and negatively (an ID cannot be in the possible list of a node, if 
it is not in at least one successor and one predecessor node), horizontally (if an ID is assigned to a node, 
it cannot be assigned to any other time-overlapping node), and using topological constraints (Figure 2B, 
Figure2-Movie1). Only non-ambiguous propagation is performed, and propagation is halted whenever 
an ambiguity or contradiction arises. We iterate the propagation until no more assignments can be 
made. Some of the propagation rules are modified in cases of tracklets that start or end in regions where 
individuals can enter or leave the tracked area (see Appendix section 3). Figure 2C-F visualizes an 
example of tracking an ant throughout a 10-minute segment from an actual experiment and depicts the 
path of the ant through the tracklet graph along with its spatial trajectory.       

Export positional and postural results for analysis 

The tracking results are saved to disk and can be accessed using supplied MATLAB and Python interface 
functions. For each individual ID in the experiment, a table is returned, containing its assigned spatial 
coordinates in each frame of the experiment, and a flag indicating the type of the location estimation 
(e.g., direct single-animal classification, inferred single-animal, multi-animal tracklet). For frames where 
the location is derived from single animal tracklets (i.e., the animal was segmented individually), the 
animal orientation is also returned. Locations estimated from multi-animal tracklets are necessarily less 
accurate than locations from single-animal tracklets, and users should be aware of this when analyzing 
the data. For example, calculating velocities and orientations is only meaningful for single-animal tracklet 
data, while spatial fidelity can be estimated based also on approximate locations. A full description of 
how to import and process the tracking results is provided in Appendix section 3.6 and the online 
documentation. 

User interface and parameter tuning  

anTraX has many parameters, and the optimal value for each depends on the specific nature and settings 
of the processed experiment, from the resolution and quality of the camera, to the details of the 
organisms and number of tags. anTraX comes with a graphical user interface to tune and verify the value 
of these parameters. anTraX also contains a user interface for creating an image database and training 
the CNN for tracklet classification.  

Parallelization and usage on computer clusters 

anTraX was specifically designed to process large-scale behavioral experiments, which can contain 
hundreds of video files and tens of terabytes of data. anTraX includes scripts to process such large 
datasets in batch mode where individual video files are tracked in parallel on multicore computers and 
high-performance computer clusters. Following per-video processing, anTraX will run a routine to ‘stitch’ 
the results of the individual files together (see online documentation). 

Availability and dependencies 

The core tracking steps of anTraX are implemented using MATLAB, while the classification parts are 
implemented using a TensorFlow/Python module. Compiled binaries are available for use with the freely 
available MATLAB Runtime Library and can be run with a command line interface. anTraX can be run on 
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Linux/OSX systems, and large datasets benefit considerably from parallelization on computer clusters. 
anTraX depends on the free FFmpeg library for handling video files. The result files are readable with any 
programming language, and we supply a Python module for easily interfacing with output data.  
anTraX is distributed under the GPLv3 license, and its source code and binaries are freely available [57]. 
anTraX is a work in progress and will be continuously extended with new features and capabilities. Online 
documentation for installing and using the software is available at http://antrax.readthedocs.io. Users 
are welcome to subscribe, report issues, and suggest improvements using the GitHub interface.  

Results 

anTraX tracks individual ants with near-human accuracy over a wide range of conditions 

As any tracking algorithm, the performance of anTraX depends on many external factors, such as the 
image quality, the image framerate, the quality of the color tags (size, color set, number of tags per 
individual), and the behavior of the organisms (e.g., their tendency to aggregate, their activity level, etc.). 
anTraX was benchmarked using a number of datasets spanning a variety of experimental conditions (e.g., 
image quality and resolution, number of tracked individuals, number of tags and colors, size variability 
in the colony) and study organisms, including four different ant species, as well as the fruit fly Drosophila 
melanogaster (Table 1, Figure 3 and its supplements). All benchmark datasets, together with the raw 
videos, full description, configuration files, and trained classifiers are available for download [58].  
The performance of the tracking algorithm can be captured using two separate measures. The first is the 
rate of assignment, defined as the ratio of assigned locations in the experiments to the total possible 
assignments (i.e., the number of IDs times the number of frames). The second measure is the assignment 
error, defined as the ratio of wrong assignments to the total number of assignments made. While the 
assignment rate can be computed directly and precisely from the tracking results, the error rate in 
assigning IDs for a given data set needs to be tested against human annotation of the same dataset. 
Because the recording duration of these datasets is typically long (many hours), it is impractical to 
manually annotate them in full. Instead, a validation procedure was used in which a sequence of 
randomly selected test points was presented to a human observer, where each test point corresponded 
to a location assignment made by the software to a specific ID in a specific frame. The user was then 
asked to classify the assignment as either ‘correct’ or ‘incorrect’. If the user was unsure of the correctness 
of the assignment, they could skip to the next one. The process was repeated until the user had identified 
200 points as either correct or incorrect. The accuracy of the tracking was measured as the ratio of 
correct test points to the sum of correct and incorrect test points, as determined by the human observer. 
Overall, anTraX performed at a level close to the human observer in all benchmark datasets (Table 2). 

Graph inference dramatically improves tracking performance 

The main novelty of anTraX compared to other tracking solutions is the use of a tracklet graph for ID 
inference. This method increases the tracking performance in several ways. First, it allows identification 
of tracklets that are unidentifiable by the classifier, using propagation of IDs from classified tracklets. 
Second, it corrects classification errors by overriding low-reliability assignments made by the classifier 
with IDs propagated from high-reliability tracklets. Third, it assigns IDs to multi-individual blobs and 
tracklets. This provides an approximate location for analysis, even when an animal cannot be individually 
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segmented. Table 2 and Figure 4A-B show the increase in assignment coverage and decrease in 
assignment errors following graph propagation in all benchmark datasets.  
To further demonstrate the utility of graph propagation, we used data from a full, large-scale 
experiment. We tracked the behavior of 10 clonal raider ant colonies, each consisting of 16 ants, for 14 
days. The colonies were filmed at relatively low resolution using simple webcams (Logitech C910, 
960x720 pixels image size, 10 frames per second), similar to that of benchmark dataset J16. This dataset 
represents a relatively challenging classification scenario, because the tags are small, and the colors are 
dull. Figure 4C-D show a comparison of assignment rate and accuracy across the 10 replicates before 
and after graph propagation, with both measures improving greatly. 

The blob classifier generalizes well across experimental replicates 

Collecting examples and training the blob classifier is the most time-consuming step in the tracking 
pipeline. Ideally, a universal blob classifier would be trained to identify the same tag combination across 
experiments, without the need to retrain a classifier for each experiment. In reality, however, this is 
impractical. CNN classifiers do not generalize well outside the image distribution they were trained on, 
so even apparently small changes in experimental conditions (e.g., the type or level of lighting used, or 
the color tuning of the camera) can markedly decrease classification performance. Nevertheless, when 
experiments are conducted using similar conditions (e.g., study organism, marking technique, 
experimental setup, etc.), it is possible to construct a classifier that will generalize across these 
experiments with minimal or no retraining. This enables construction of efficient tracking pipelines for 
high throughput and replicate experiments, without the need for additional manual annotations.  
We assessed the generalizability of blob classifiers with the 10 replicates of the experiment described in 
the previous section. We trained a classifier on examples from one replicate, and then used it to classify 
blobs sampled from the other replicates. We similarly evaluated the performance of classifiers trained 
with examples from two, three, and four replicates, and compared the results to the performance of a 
classifier trained on examples from all replicates. The comparison shows that, despite variability in 
animal shape and behavior, tagging process, cameras, and experimental setups across replicates, the 
classifier performs remarkably well (Figure 4E). Moreover, when a classifier is trained with an example 
set obtained from as few as 2 replicates, it performs similarly well as a classifier trained with examples 
from all replicates. Obviously, the generalizability of this result will depend on how well conditions are 
standardized between replicates or experiments. Nevertheless, it demonstrates that robust behavioral 
tracking pipelines can be constructed with minimal retraining.  

anTraX can be combined with JAABA for efficient behavioral annotation of large datasets 

While direct analysis of the tracking output is a possibility, phenotyping high throughput experiments 
and extracting useful information from large-scale trajectory data beyond very simple measures are 
challenging and impractical. In recent years the field of computational ethology has shifted to the use of 
machine learning, both supervised and unsupervised, for analyzing behavioral data [7,8,59]. One of the 
most useful and mature tools is JAABA, a package for behavioral annotation of large datasets using 
supervised learning [52,60]. In short, JAABA projects trajectory data onto a high dimensional space of 
per-frame features. The user then provides the software with a set of examples for a certain behavior, 
and the software trains a classifier to find all occurrences of that behavior in a new dataset. anTraX 
includes functions to generate the per-frame data in a JAABA-compatible way. In addition to the original 
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list of JAABA features, a set of anTraX-specific features is also generated (see online documentation for 
details). The user can then label examples and train a classifier in the JAABA interface. This classifier can 
then be used to analyze entire experiments using the anTraX interface. 
To demonstrate the power of this approach, we present two examples of using JAABA together with 
anTraX. In the first example, we train a classifier to detect O. biroi ants carrying a larva while walking. O. 
biroi ants carry their larva under their body, in a way not always obvious even to a human observer 
(Figure 5A, Figure5-Movie1). By using subtle changes in the ants’ appearance and kinematics, JAABA is 
able to classify this behavior with >93% accuracy (tested on a set of annotated examples not used for 
training). An example of trajectories from a 30-minute period annotated with JAABA is shown in Figure 
5B. 
In the second example, we used JAABA to classify the behavior of ants during periods when they are not 
moving. We trained a classifier to detect four distinct behaviors (Figure5-Movie2): rest, in which the ant 
is completely immobile; local search, in which the ant does not move but uses its antennae to explore 
the immediate environment; self-grooming, in which the ant stops to groom itself; and object-
interaction, in which the ant interacts with a non-ant object such as a piece of food, a larva or a trash 
item. JAABA was able to identify these behaviors with >92% accuracy. Figure 5C shows the spatial 
distribution of the classified behaviors during all periods where an ant stops walking for more than 2 
seconds in a 60-minute experiment, across all ants in the colony.  

anTraX can be combined with DeepLabCut to augment positional data with pose tracking 

Much attention has recently been given to tracking the relative position of the animal body parts of 
animals, taking advantage of the fast progress in machine learning and computer vision [53,54,56]. This 
allows for the measurement and analysis of aspects of an animal’s behavior beyond what is extractable 
from its trajectory. Although these tools can in principle be directly applied to videos with multiple 
individuals [61,62], they are still not mature enough for large scale use. A more reasonable approach it 
to combine an individual animal pose tracking with together with a track-and-crop step (see discussion 
within [56]). To track body parts of individual animals within a group or a colony, we took advantage of 
the fact that anTraX segments and crops the images of individual animals as part of its workflow, and 
included an option to run pre-trained DeepLabCut models [54] on these images, without the need to 
export the data in a DeepLabCut-readable format (which would have resulted in a heavy computational 
overhead). This way, the position of the tracked body parts relative to the animal’s centroid are returned 
together with the spatial location of the centroid. For training such a model, anTraX enables exporting 
cropped single animal videos that are loadable into the DeepLabCut user interface.  
Of course, the ability to perform accurate and useful pose estimation depends on the resolution at which 
animals appear in the video. To demonstrate the potential of this approach, we trained a simple 
DeepLabCut model to track the main body axis and antennae positions of ants from benchmark dataset 
A36. Figure 5D and Figure6-Movie3 show examples from the segmented and cropped images of the 
individual ants in the videos.  
Ants use different antennation patterns to explore their environment [63], and the ability to track these 
patterns in parallel to their movement in space can contribute to our understanding of their sensory 
processing during free behavior. We used the pose tracking results to visualize the different modes of 
antennae movement used by the ants to explore their environment. Figure panels 5E and 5F show the 
total movement rate and the relative phase of the two antennae along the trajectory of one ant in a one-
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hour segment of the experiment, respectively, demonstrating the variability and richness inherent to 
these patterns. 

Discussion 

anTraX is a novel algorithm and software package that provides a solution for a range of behavioral 
tracking problems not well addressed by available methods. First, by using a deep neural network for 
image classification, it enables the tracking of insects that are individually marked with color tags. While 
color tags have been used successfully for behavioral analysis for decades in a wide range of social 
insects, and in many species they are the only practical type of marker, their use has been severely 
limited by the lack of automation. Second, unlike other existing approaches, it handles cases where 
insects tightly aggregate and are not segmentable, as well as cases where the tags are obscured. This is 
achieved by representing the tracking data as a directed graph, and using graph walks and logical 
operations to propagate information from identified to unidentified nodes. Third, anTraX handles very 
long experiments with many replicate colonies and minimal human oversight, and natively supports 
parallelization on computational clusters for particularly large datasets. Finally, anTraX can easily be 
integrated into the expanding ecosystem of open source software packages for behavioral analysis, 
making a broad range of cutting-edge ethological tools available to the social insect community.  
anTraX is an open source software and conveniently modular, with each step of the algorithm 
(segmentation, linking, classification, and propagation) implemented as a separate module that can be 
easily augmented or replaced to fit experimental designs that are not well handled by the current version 
of the algorithm. For example, the traditional background subtracted segmentation can be replaced with 
a deep learning-based semantic segmentation, i.e. training and using a classifier to distinguish pixels of 
the image as belonging to either background or foreground [64–66]. This can potentially allow analysis 
of field experiments with natural backgrounds, or experiments with non-static backgrounds, such as 
videos taken with a moving camera. Another possible extension is an informed ‘second pass 
segmentation’ step, where multi-animal blobs are further segmented into single-animal blobs, taking 
into account the composition of the blob (number and IDs of animals). Knowing the composition of the 
blob provides a method to algorithmically validate the segmentation, allowing a “riskier” segmentation 
approach. Having a record of the composition of tracklets and blobs also paves the way to performing 
image-based behavioral analysis of interactions [67–69], or constructing specialized image classifiers for 
interaction type (e.g. allogrooming, trophallaxis, aggression etc.). As pose-estimation packages advance, 
this may also allow to track specific body parts inside aggregations.  
In summary, anTraX fills an important gap in the range of available tools for tracking social insects, and 
considerably expands the range of trackable species and experimental conditions. It also interfaces with 
established ethological analysis software, thereby elevating the study of social insects to the level of 
classical, solitary model organisms. anTraX therefore has the potential to greatly accelerate our 
understanding of the mechanisms and principles underlying complex social and collective behavior.  
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dataset species #animals #col
ors 

#tags open1 
ROI 

duration 
(hrs) 

camera FPS image size resolution 
pixels/mm 

J16 Ooceraea biroi 16 4 2 no 24 Logitech C910 10 960x720 10 

A36 Ooceraea biroi 36 6 2 no 24 PointGrey Flea3 12MP 10 3000x3000 25 

C12 Camponotus 
fellah 

12 7 3 no 6 Logitech C910 10 2592x1980 17 

C32 Camponotus. 
sp. 

28 6 3 no 24 PointGrey Flea3 12MP 10 2496x2500 13 

G6X8 Ooceraea biroi 6x82 
 

3 2 no 1.33 Logitech C910 10 2592x1980 17 

V25 Ooceraea biroi 25 5 2 yes 3 Logitech C910 10 2592x1980 17 

T10 Temnothorax 
nylanderi 
 

10 5 4 no 6 Logitech C910 10 2592x1980 17 

D7 Drosophila 
melanogaster 

7 7 1 no 3 PointGrey Flea3 12MP 18 1056x1050 26 

D16 Drosophila 
melanogaster 

16 4 2 no 5 PointGrey Flea3 12MP 18 1200x1200 16 

Table 1: Summary description of the benchmark datasets. All raw videos and parameters of the respective tracking session are available for 
download [58]. ROI: region of interest; FPS: frames per second. 1Whether or not the ants can leave the tracked region. 2Dataset G6X8 is 
derived from six replicate colonies with 8 ants each.  
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 without graph propagation with graph propagation 

dataset assignment rate assignment 
error 

assignment 
error 95% CI 

assignment rate assignment 
error 

 

assignment 
error 95% CI 

J16 0.28 0.015 0.0031 – 0.0432 0.93 0 0 – 0.0183 

A36 0.24 0.015 0.0031 – 0.0432 0.81 0.005 0.0001 – 0.0275 

C12 0.82 0 0 – 0.0183 0.99 0 0 – 0.0183 

C32 0.26 0.045 0.021 – 0.034 0.79 0.015 0.0031 – 0.0432 

G6X8 0.57 0.11 0.070 – 0.162 0.89 0.07 0.035 – 0.109 

V25 0.07* 0.07 0.039 – 0.115 0.48* 0.015 0.0031 – 0.0432 

T10 0.56 0.055 0.023 – 0.096 0.96 0.02 0.005 – 0.5 

D7 0.88 0 0 – 0.0183 0.98 0 0 – 0.0183 

D16 0.89 0.005 0.0001-0.0275 0.997 0 0 – 0.0183 

Table 2: Summary of tracking performance measures for the benchmark datasets using anTraX. Assignment rate is defined as the proportion 
of all data points (the number of individuals times the number of frames) in which a blob assignment was made. In cases of a closed boundary 
regions of interest (ROI; in which the tracked animals cannot leave the tracked region) this measure is in the range of 0-1. In cases of open 
boundary ROIs (marked with asterisks; e.g., dataset V25), the upper boundary is lower, reflecting the proportion of time the ants are present 
in the ROI. The assignment error is an estimation of the proportion of wrong assignments (i.e., an ant ID was assigned to a blob the respective 
ant is not present in). As explained in the text, the estimation is done by sequentially presenting the user with a sequence of randomly 
sampled assignments from the dataset and measuring the proportion of assignments deemed “incorrect” by the observer, relative to the 
sum of all “correct” and “incorrect” assignments. To calculate the error rates reported in the table, the presentation sequence continued 
until exactly 200 assignments were marked as ”correct” or “incorrect”, ignoring cases with the third response ”can’t say”. A 95% confidence 
interval of the error according to the Clopper-Pearson method for binomial proportions is also reported in the table. To quantify the 
contribution of using graph propagation in the tracking algorithm, the analysis was repeated ignoring assignments made with during the 
graph propagation step, and the results are reported here for comparison. A graphical summary of the performance measures is shown in 
Figure 4A-B.  
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Figure 1: Blob tracking and construction of the tracklet graph. (A) An example frame from an experiment with 16 ants marked with two 
color tags each. (B) The segmented frame after background subtraction. Each blob is marked with a unique color. Some blobs contain single 
ants, while others contain multiple ants. (C) A higher-resolution segmentation example. While some ants are not distinguishable from their 
neighbors even for the human eye, others might be segmented by tuning the segmentation parameters, or by using other, more 
sophisticated segmentation algorithms. The anTraX algorithm takes a conservative approach and leaves those cases unsegmented to avoid 
segmentation errors. (D) Optical flow is used to estimate the “flow” of pixels from one frame to the next, giving an approximation of the 
movements of the ants. The cyan silhouettes represent the location of an ant in the first frame, and the red silhouettes represent the location 
in the second frame. The results of the optical flow procedure are shown with blue arrows, depicting the displacement of pixels in the image. 
(E) An example of constructing and linking tracklets. Each layer represents a section of segmented frame. Two ants are approaching each 
other (tracklets marked t1 and t2), until they are segmented together. At that point, the two tracklets end, and a third multi-ant tracklet 
begins (t3). Once the two ants are again segmented individually, the multi-ant tracklet ends, and two new single-ant tracklets begin (t4 and 
t5). (F) The graph representation of the tracklet example in E. (G) A tracklet graph from an experiment with 36 ants, representing 3 minutes 
of tracking data. The nodes are located according to the tracklet start time on the vertical axis, beginning at the bottom. The inset depicts 
a zoomed-in piece of the graph. 
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Figure 2: Tracklet classification and ID propagation on the tracklet graph. (A) Schematic of the tracklet classification procedure. All blobs 
belonging to the tracklet are classified by a pre-trained CNN classifier. The classifier assigns a label to each blob, which can be an individual 
ID (depicted as colored rectangles in the figure), or an ambiguous label (‘unknown’, depicted in grey). The tracklet is then classified as the 
most abundant ID in the label set, along with a confidence score that depends on the combination of blob classifications and their scores 
(see Supplementary Material for details). (B) A simple example of propagating IDs on top of the tracklet graph. The graph represents a 
simple tracking problem with three IDs (represented as red/blue/green) and 8 tracklets, of which some are single-animal (depicted as circles) 
and some are multi-animal (depicted as squares). Three of the single-animal tracklets have classifications, and are depicted as color-filled 
circles. The graph shows how, within 4 propagation rounds, assigned IDs are propagated as far as possible, both negatively (round head 
arcs) and positively (arrow heads), until the ant composition of all nodes is fully resolved. See also Figure2-Movie1 for an expanded animated 
example. (C) An example of a solved tracklet graph from an experiment with 16 ants, representing 10 minutes of tracking. Single ant tracklets 
are depicted as circle nodes and multi ant tracklets are depicted as square nodes. Black circles represent single ant tracklets that were 
assigned an ID by the classifier. A subgraph that corresponds to a single focal ant ID (“GO”: an ant marked with a green thorax tag and an 
orange abdomen tag) is highlighted in color. Green nodes represent single ant tracklets assigned by the classifier. Blue nodes represent 
tracklets assigned by the propagation algorithm. Red nodes are residual ambiguities. (D) Example snapshots of the focal ant GO at various 
points along its trajectory, where it is often unidentifiable. The second image from the bottom shows an image where the ant is identifiable. 
While the third image from the bottom shows an unidentifiable ant, it belongs to a tracklet which was assigned an ID by the classifier based 
on other frames in the tracklet. The first and last images show the focal ant inside aggregations, and were assigned by the propagation 
algorithm. The purple arrows connect each image to its corresponding node in C. (E) The 10 minutes long trajectories corresponding to the 
graph in C. The trajectory of the focal ant GO is plotted in orange, while the trajectories of all other ants are plotted in grey. Purple arrows 
again point from the images in D to their respective location in the trajectory plot. (F) Plot of the x and y coordinates of the focal ant during 
the 10 minutes represented in the graph in C. Gaps in the plot (marked with green asterisks) correspond to ambiguous segments, where the 
algorithm could not safely assign the ant to a tracklet. In most cases, these are short gaps when the ant does not move, and they can be 
safely interpolated to obtain a continuous trajectory.    
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Figure 3: Example of anTraX tracking output, based on the J16 dataset. In this experiment, the ants are freely behaving in a closed arena 
that contains the nest (the densely populated are on the top left) and exploring ants. A short annotated clip from the tracked dataset is 
given as Figure3-Movie1. Tracking outputs and annotated videos of all datasets is also given in the supplementary figures and movies of 
this figure. (A) A labeled frame (background subtracted), showing the location of each ant in the colony, as well as a ‘tail’ of the last 10 
seconds of trajectory. Ants that are individually segmented have precise locations. The ants clustered together have approximate locations. 
Labels indicate the color tag combination of the ant (e.g. ‘BG’ indicates a blue thorax tag and a green abdomen tag; colors are blue (B), 
green (G), orange (O), and pink (P)). (B) Individual trajectories for each ant in the colony, based on one hour of recording. (C) A cropped 
image of each ant from the video  
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Figure 4: Tracking performance. (A) Contribution of graph inference to reduction of assignment error. The graph compares the assignment 
error in the benchmark datasets, estimated as explained in the main text, before the graph propagation step of the algorithm (blue circles, 
‘noprop’ category) and after the graph propagation step (orange circles, ‘final’ category). (B) Contribution of graph inference to increased 
assignment rate in the benchmark datasets. The graph compares the assignment rate, as defined in the main text, before and after the 
graph propagation step (same depiction as in A). The performance measures for all benchmark datasets are reported in Table 2 and Figure 
4-source data 1. (C-D) Same as in A and B, calculated for a large-scale dataset described in the text (10 colonies of 16 ants, recorded over 
14 days). The performance measures for all replicas are reported in Figure 4-source data 2. (E) Generalizability of the blob classifier. Each 
point in categories 1-4 represents the generalization error of one classifier (trained with examples from number of replicas corresponding 
to its category) on data from one replica that was not used for its training. The replicas were recorded under similar conditions, but using 
different ants, different cameras, and different experimental setups. For classifiers trained on more than one replica, the combinations of 
replicas were randomly chosen, while maintaining the constraint that each replica is tested against the same number of classifiers in each 
condition. In the category ‘All’, the points depict the validation error of the full classifier, trained on data from the 10 replicas. All classifiers 
were trained with the same network architecture, started training from a scratch model, and were trained until saturation. The dashed line 
represents the mean validation error for the full classifier). The list of errors for all trained classifiers are given in Figure 4-source data 3.  
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Figure 5: Interfacing anTraX with 3rd party behavioral analysis packages for augmenting tracking data. (A) Ants carrying a larva while they 
move (green/green and yellow/blue) can be difficult to distinguish from ants not carrying larvae (blue/green and yellow/purple), even for a 
human observer. Figure5-Movie1 shows examples for ants walking with and without a larva. (B) However, using labeled examples to train 
a classifier, JAABA can reliably distinguish ants walking while carrying a larva from ants walking without one from anTraX tracking output. 
Shown here is a 30-minute segment from the A36 dataset, where trajectories of ants carrying a larva are plotted in red on the background 
of all other tracks (in grey). (C) Classifying stops using JAABA. The plot shows a 60-minute segment from the A36 experiment, where all stops 
longer than 2 seconds are marked with a colored dot. The stops are classified into four categories: rest (red), local search (green), self-
grooming (blue), and object-interaction (e.g., with a food item; pink). Figure5-Movie2 shows examples of stops from all types. (D) Applying 
a simple DeepLabCut model to track the ants’ antennae and main body axes, shown on segmented ant images from dataset A36. Figure5-
Movie3 shows an animated tracking of all ants in the colony. (E-F) Using the results from DeepLabCut to track the behavior of an ant along 
its trajectory. A one-hour trajectory of one ant from dataset A36 is shown on the background of the tracks of all other ants in the colony in 
that period (in grey). In E, the focal trajectory is colored according to the total rate of antennal movement (measured in angular velocity 
units rad/s). In F, the focal trajectory is colored according to how much the antennae move in-phase or anti-phase (measured in angular 
velocity units rad/s). Together, these panels show the behavioral variability in antennal movement patterns.   
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Figure 3-figure supplement1: Tracking the V25 dataset with 25 O. biroi ants. The figure follows the same format as Figure 3.   
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Figure 3-figure supplement2: Tracking the A36 dataset with 36 O. biroi ants. The figure follows the same format as Figure 3.   
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Figure 3-figure supplement3: Tracking the T10 dataset with 10 T. nylanderi ants. The figure follows the same format as Figure 3.   
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Figure 3-figure supplement4: Tracking the T10 dataset with 12 C. fellah ants. The figure follows the same format as Figure 3.   
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Figure 3-figure supplement5: Tracking the C32 dataset with 28 Camponotus spec. ants, including an unmarked winged queen. The figure 
follows the same format as Figure 3.   
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Figure 3-figure supplement6: Tracking the D7 dataset with 7 D. melanogaster fruit flies. The figure follows the same format as Figure 3.   
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Figure 3-figure supplement7: Tracking the D16 dataset with 16 D. melanogaster fruit flies. The figure follows the same format as Figure 3.   
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Figure 3-figure supplement8: Tracking the G6X16 dataset with 6 colonies of 16 O. biroi ants each recorded and tracked in parallel.  
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Legends for movies and source data files 

Figure 2-Movie1: 
An animated example of the graph propagation algorithm. The graph in the example represents the 
tracking data of 4 animals, and consists of 15 tracklets, of which 4 were labeled by the classifier. 

Figure 3-Movie1:  
An annotated tracking video clip from dataset J16. 

Figure 3-Movie2:  
An annotated tracking video clip from dataset V25. 

Figure 3-Movie3:  
An annotated tracking video clip from dataset A36. 

Figure 3-Movie4:  
An annotated tracking video clip from dataset T10. 

Figure 3-Movie5:  
An annotated tracking video clip from dataset C12. 

Figure 3-Movie6:  
An annotated tracking video clip from dataset C32. 

Figure 3-Movie7:  
An annotated tracking video clip from dataset D7. 

Figure 3-Movie8:  
An annotated tracking video clip from dataset D16. 

Figure 3-Movie9:  
An annotated tracking video clip from dataset G6X16. 

Figure 4-source data 1: 
A table of performance measures, as defined in the main text, for the benchmark datasets. The data in 
this file were used to plot Figure 4A-B, and are referenced in Table 2. 

Figure 4-source data 2: 
A table of performance measures, as defined in the main text, for the 10-replica experiment described in 
the main text. The data in this file were used to plot Figure 4C-D. 

Figure 4-source data 3: 
A table of generalization errors for all classifiers, as described in the caption of Figure 4E. The data in 
this file were used to plot Figure 4E. 
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Figure 5-Movie1:  
Examples of short video clips from dataset A36 in which some ants walk while carrying a larva, while 
other walk without a larva. Clips like these were used to train the JAABA classifier in Figure 5B. 

Figure 5-Movie2:  
Examples of short video clips from dataset A36 showing the four types of stop behavior. Clips like these 
were used to train the JAABA classifier in Figure 5C. 

Figure 5-Movie3:  
Pose-tracking of all ants in dataset A36 using anTraX in combination with DeepLabCut. 
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Appendix: detailed description of the anTraX algorithm 

The anTraX algorithm consists of three main steps (Appendix-figure 1). In the first step, we detect 
the tracked animals in each frame of the video and organize the extracted blobs into trajectory 
pieces we term tracklets. As we will detail below, these tracklets are in turn linked together to 
form an acyclic directed graph we name the tracklet graph. The second step of the algorithm is 
tracklet classification, in which identifiable tracklets are classified based on the color tag 
information present in its blobs. In the third step of the algorithm, we use the topology of the 
tracklet graph to propagate identity information from the classified tracklets to the entire set of 
tracklets.  
In this document, we detail each part of the algorithm and fully describe its various 
computational steps and parameters. A practical tutorial for running the software and use its 
graphical interface can be found in the online documentation. 

1. Creating the tracklet graph 

1.1 Creating a background image 

anTraX uses background subtraction for segmentation. Although using a static background is 
somewhat limiting in designing and performing experiments (requiring a static environment and 
a static camera), and it is possible to segment images for tracking without this step if there is a 
decent contrast between the objects and the background, background subtraction has the 
advantage of giving a stable object segmentation that simplifies later steps.  
For creating a background image, anTraX uses random sampling of frames from the entire 
duration of the experiment, or from a segment defined by the user (Appendix-figure 2A-B). The 

Appendix-figure 1: Flow diagram of the anTraX algorithm. 
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number of frames 𝑛! is configurable, and the background 𝐼!"  is computed by applying either a 
per-pixel median or max operator: 
 
 𝐼!"(𝑖, 𝑗, 𝑐) = 𝑚𝑒𝑑{𝐼#!(𝑖, 𝑗, 𝑐)}$%&

'"  (1A) 

 𝐼!"(𝑖, 𝑗, 𝑐) = 𝑚𝑎𝑥{𝐼#!(𝑖, 𝑗, 𝑐)}$%&
'"  (1B) 

Where 𝑡$ is a randomly drawn timepoint in the experiment,  𝐼#! 	is the corresponding frame, 𝑖 
and 𝑗 are the image coordinates, and 𝑐 is the color channel index.  
Generally, the median operation is useful in cases where animals are active enough to have each 
pixel in the image free of animals for at least half the frames. Otherwise, the max operation gives 
better results. The anTraX GUI enables the user to test and optimize the parameters in the 
background image creation step.  

1.2 Creating an ROI mask  

Typically, tracking should be performed only in part of the image, either because the animals to 
be tracked are confined to a region smaller than the image, or because the user cares about 
behavior in a small region of interest (ROI). The ROI mask 𝐼()* (Appendix-figure 2B) is a binary 
image with the same dimensions as the video frames, which is 1 in regions to be tracked and 0 in 
regions to be ignored.   
The anTraX GUI includes a utility to create the mask by drawing shapes to be included or excluded 
on a frame.  

Appendix-figure 2: (A) An example raw frame. (B) A background frame generated using a median function. Regions outside the 
ROI mask are dimmed. (C) Full segmented frame. 
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1.3 Image segmentation  

The first step in analyzing each frame is segmenting it into blobs (Appendix-figure 2C, Appendix-
figure 3): contiguous regions of the frame that significantly differ from the background and 
correspond to individual animals or tightly clustered groups of animals. Segmentation is done by 
first subtracting the  
image from the background (using the fact that the animals are dark and tracked on a light 
background), then converting the difference to a grayscale image (Appendix-figure3A-B), and 
comparing to a user defined threshold 𝜃+ and the ROI mask to produce a binary image:  
 

 𝐼#&(𝑖, 𝑗, 𝑐) = 𝐼!"(𝑖, 𝑗, 𝑐) − 𝐼#(𝑖, 𝑗, 𝑐) (2) 

 𝐼#,(𝑖, 𝑗) =
1
37𝐼#&

-

(𝑖, 𝑗, 𝑐) (3) 

 𝐼#$.(𝑖, 𝑗) = 81, 𝐼#,(𝑖, 𝑗) ∙ 𝐼()*(𝑖, 𝑗) > 𝜃+		
0, 𝑒𝑙𝑠𝑒

 (4) 

 
The resulting binary image (Appendix-figure 3C) will then undergo optional morphological 
operations (image closing, image opening, hole-filling, convex hull filling) that, depending on the 
specific conditions of the experiment, are useful for noise reduction.  
Blobs (connected components; using the 8-connectivity criterion) are then extracted from the 
final binary image. For each detected blob, we register the coordinates of its centroid, its area, 
its maximal intensity (in the 𝐼#, grayscale image) and the parameters of the best fitted ellipse 
(orientation, eccentricity, and major axis length). Blobs are then optionally filtered by minimal 
area and minimal intensity criteria (Appendix-figure 3D).  
The anTraX GUI allows the user to test and configure all the segmentation parameters. 

1.4 Linking blobs across frames 

After blobs are extracted from a frame, the next step in the algorithm is to link them to the blobs 
in the previous frame (Appendix-figure 4A-E): a link between a blob in frame 𝑡 and a blob in frame 
𝑡 − 1 implies that some or all of the individual animals that belong to the first blob, are present 
in the second one. A blob can be linked to one blob (the simplest case, where the two blobs have 

Appendix-figure 3: Image segmentation. (A) Raw image. (B) Background subtracted grayscale image. (C) Unfiltered binary image. 
(D) Final segmented image after morphological operations and blob filtering. Each separate blob is shown in a different color. 
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the same composition), to a few blobs (where animals leave or join the blob), or to none 
(suggesting the animals in the blob were not detected in the other frame). Relying on the fact 
that videos were recorded in a frame rate high enough so that blobs corresponding to the same 
individuals will overlap in consecutive frames even when the tracked animals are moving at their 
maximum possible speed (for O. biroi ants, for example, 10 frames per second is sufficient), the 
most accurate method to link blobs is Optical Flow, which takes into account the actual pixel 
content of the image. It is, however, a computationally expensive algorithm, and running it on 
full frames is not practical for long, high-resolution videos. On the other hand, simpler and 
commonly used methods, such as the popular Munkres linear assignment algorithm (the 
Hungarian algorithm, [1]) are prone to errors in dense problems such as those we aim to solve, 
and often require considerable amount of manual correction after automatic tracking. In 
sophisticated tracking solutions, the distance-based cost function that underlies the linear 
assignment is corrected with predictive modeling of the animals’ behavior, or with other 
distinguishing features of the animals such as shape, orientation, and appearance. These, 
however, are often problem-specific and do not generalize well across tracking problems. We 
chose to implement a dynamic approach, in which the linking method is chosen based on the 
difficulty of assignment. The linking step begins with dividing the linking problem into a few 
independent subproblems, by using a maximal linking distance (𝑑/0'1), which by default is set to 
twice the maximal velocity 𝑣234 times the inter frame time interval. Practically, this is done by 
creating a binary image, defined as the pixel-wise logical OR of the two segmented binary frames, 
and dilating it using a disk with a radius that equals to 𝑑/0'1 (Appendix-figure 4F). The resulting 
image is then divided into connected components, and all the blobs that overlap with each 
component are treated as an independent subproblem. For each subproblem we choose the 
appropriate linking method: (i) a problem with one or more blobs in one of the frames and no 
blobs in the other results in no links, (ii) a problem with exactly one blob in each of the frames 
will link the blobs with no further processing, (iii) otherwise, a small region containing only the 
blobs in the subproblem will be cropped from each of the frames, and an optical flow assignment 
will be performed (Appendix-figure 4G).  
For solving a subproblem using optical flow, we do the following: We first crop a region from the 
two frames, corresponding to the bounding box of the subproblem’s connected component. This 
region includes all of the blobs that belong to this subproblem, but no others. We then compute 
the optical flow field between the two cropped frames using the Horn-Schunck method [2]. Next, 
we define the Flow Number, 𝑛56(𝑎, 𝑏), for each pair of blobs across the two frames as the 
number of flow field vectors pointing from blob 𝑎 in frame 𝑡 − 1 to blob 𝑏 in frame 𝑡. The flow 
number is an estimate of the number of pixels in the blob 𝑎 that have moved to blob 𝑏 in the 
consecutive frame. For each pair, if the flow number is greater than a threshold number 𝜃56, the 
blobs are linked (Figure 4H). The threshold number defaults to a third of the minimal size of a 
single animal in pixels and can be configured using the anTraX graphical interface. 
Once again, all the parameters of the linking step can be configured and tested in the anTraX GUI. 
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Appendix-figure 4: Detailed linking example. (A-B) Raw images of the first and second frame, respectively. (C) Color blend of the 
frames, showing the displacement of the ants between frames. (D-E) Segmentation of the first and second frame, respectively. (F) 
Segmentation blend. Also shown is the clustering of the blobs into linking problems (gray background). The two upper problems 
are trivial, and no assignment algorithm is required. The problem at the bottom will be solved using optical flow. (G) Optical flow 
for the bottom problem in F. Arrows represent the estimated translation of the pixels. (H) Final linking between the blobs based on 
optical flow.  
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1.5 Updating the tracklet graph 

As defined above, a blob can correspond to an arbitrary number of tracked individuals. Instead 
of trying to break these blobs down into individual animals, our tracking approach relies on 
registering the transition of individuals between blobs that possibly contain multiple animals. For 
this purpose, we define the tracklet as a list of linked blobs in consecutive frames that have the 
same composition of individuals. In other words, no animal has left or entered the group between 
the first and last frame of the tracklet (Figure 1 in the main text). 
After linking the blobs in frame 𝑡 to this in frame 𝑡 − 1, the tracklets are updated in the following 
way:  

I. A blob in the current frame 𝑡 that is not linked to any blob in the previous frame 𝑡 − 1, 
will ’open’ a new tracklet.  

II. A blob in the previous frame that is not linked to any blob in the current frame, will ‘close’ 
its tracklet.  

III. If two blobs in the previous and current frames are exclusively linked, the current blob 
will be added to the tracklet of the previous blob.  

IV. Whenever blobs in the current or previous frame are connected to more than one blob, 
the tracklets of the linked blobs in the previous frames will ’close’, and new tracklets will 
’open’ for the blobs in the current frame. In these cases, the linking between the blobs 
across different tracklets will be registered as a link between the tracklets. In cases where 
a tracklet has its last blob linked to the first blob of a different tracklet, the former is 
defined as the parent tracklet, and the latter as its child tracklet.  

Although the linking and tracklet construction processes are very conservative, errors can still 
occur when the assumptions of the algorithm are violated. For example, in benchmark dataset 
J16, in which the behavior of a 16 ant colony is recorded in an uncovered arena surrounded by 
Fluon-coated walls, ants sometimes climb on the arena’s walls and fall down on top of another 
ant, hence violating the maximal linking distance assumption. In such a case, the tracklet 
corresponding to the climbing ant will end without parenting a child tracklet, while the tracklet 
of the second ant will contain one ant in its first part and two ants in its second part. In the 
analyzed dataset, such linking errors occur very rarely (less than 0.05% of the tracklets), and in 
most cases will not lead to classification errors, due to the robustness of the ID propagation step 
to such errors (section 3).  
Upon closing a tracklet, the blob orientation has a ±π ambiguity, as a result of the definition of 
the orientation as that of the best fit ellipse, which is not consistent along the tracklet (for each 
blob, the orientation is set independently of the other blobs in the tracklet by MATLAB’s blob 
analysis algorithm) . We use a method adapted from [3] to disambiguate the orientation. In short, 
this method uses the fact that whenever the tracked animal is moving fast, we can reliably assign 
the correct orientation in the moving direction and propagate this assignment to the entire 
tracklet by using dynamic programing. In tracklets where the animal is not moving fast enough, 
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the result can be incorrect, but it is at least consistent along the tracklet. Multi-animal tracklets 
generally do not have a meaningful orientation.  
The end result of this part of the algorithm, after processing all frames in the video, is an acyclic 
directed graph containing references to all tracklets and blobs in the experiment.  

2. Classifying tracklets 

2.1 Color correction 

The actual RGB values of the color tags are highly sensitive to changes in illumination and 
variability in camera sensors, both between experiments, and within an experiment as a function 
of time and location. These sources of variability can adversely affect the performance of the 
tracklet classifier. To overcome this problem, at least partially, we include the option of applying 
a color correction step on images before classification (Appendix-figure 5). To do so, we use a 
white reference frame 𝑊, which is an image of a white or gray surface taken using the same 
conditions as the videos. The color corrected frame is then: 
 

 𝐼7(𝑖, 𝑗, 𝑐) =
𝐼(𝑖, 𝑗, 𝑐)
𝑊(𝑖, 𝑗, 𝑐) 

(5) 

 
Pixel values that exceed the pixel value range are truncated.  
In cases where the tracking background approximates a homogenous white surface, as is the case 
with all the benchmark datasets, the white reference can be automatically generated by anTraX 
by filtering the background image with a 2D Weiner filter. In other cases, a white reference image 
can be taken in the experimental setup before or after the experiment. 
  

Appendix-figure 5: Color correction. (A) The original frame. (B) The color corrected frame. Insets show a zoomed in view of a 
focal ant. The color correction removes the green bias in the original frame and enhances the color segmentation. 
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2.2 Training a blob classifier 

Classifying a tracklet begins with classifying the individual blobs it contains. To do so, we train a 
Convolutional Neural Network (CNN) image classifier using TensorFlow [4]. To create a classifier, 
the user has to supply a list of possible labels. Typically, this will be the list of IDs (unique tag 
combinations) for the experiment, plus optional labels for non-animal objects that can be 
detected in the videos (e.g., larvae, food items, etc.). One of the limitations of using CNNs for 
classification is the high rate of false positives, i.e., blobs that are assigned an ID even though 
they are not identifiable. To overcome this, we add a special label for unrecognizable blobs, which 
are treated as a separate class (labeled as ‘Unknown’ or ‘UK’).  
To train the classifier, we collect a set of example images for each classifier label (Appendix-figure 
6). This can be done easily using an anTraX GUI app (see Online Documentation for details). The 
example set will then be augmented using various transformations (flipping, rotations, shearing, 
and brightness and color shifts; Appendix-figure 7).  
As usual with supervised classifiers, there is a tradeoff between the complexity of the classifier 
(the size and architecture of the network), and its performance, training time, and the optimal 
size of the training dataset. anTraX contains a few CNN architectures that we have found to work 
well with our data. However, it can also use an arbitrary, user-defined architecture (see Online 
Documentation for details).  
 

Appendix-figure 6: An example subset from a training set. Shown are examples from 6 ant IDs with a total of 4 tag colors. The 
UK label represents ant images that are not classifiable to the human eye. The NO label represents segmented objects that are 
not ants (food items, larvae, etc.). To allow the classifier to generalize well, it is important that the variability of the training set 
captures the variability in the experiment, and includes images of ants in various poses, lighting conditions, and across 
experimental replicates.  
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2.3 Filtering tracklets for classification 

Once the blob classifier is trained, it can be applied to the tracklets of the experiment. Because 
direct classification is only meaningful for tracklets that represent individual animals, we first 
filter the tracklet list to identify possible single-animal tracklets. To do so, we use the typical size 
range of individual animals (interactively adjustable in the anTraX GUI). A tracklet whose average 
blob area falls within that range is considered a possible single-animal tracklet, and is passed on 
to the classifier. Although this filtering method is not perfect, it rarely leads to false negatives 
(single-animal tracklets with average blob size outside of the specified range). If the rate of false 
positives is high (which is usually the case in problems with high size variability between 
individuals), it is useful to include a separate class for multi-animal blobs. 
For performance reasons, this filtering is done during the blob tracking step, and the images 
constituting possible single-animal tracklets are saved separately to disk, thus avoiding the need 
to extract them again from the videos. It is therefore important to set the single animal size range 
before running the tracking. 
  

Appendix-figure 7: Dataset augmentation using TensorFlow’s intrinsic mechanism for image transformation on a single example 
image to generate a larger training dataset. 
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2.4 Classifying single-animal tracklets 

To classify a possible single-animal tracklet, we perform the following steps: 

I. The blob classifier is applied to each blob in the tracklet. The output of the classifier for 
each tracklet is a matrix of posterior probabilities, 𝑃1/, i.e., the probability of blob 𝑘 
belonging to class 𝑙. We define the most probable label for a blob as: 

 𝑙1∗ = 𝑎𝑟𝑔𝑚𝑎𝑥/(𝑃1/) (6) 

II. If the most probable label for all of the blobs in the tracklet belongs to a non-animal label, 
the tracklet is classified as non-animal, and the most abundant label in the tracklet is 
chosen as the tracklet label. 

III. If any of the blobs in the tracklet is classified as multi-animal, the tracklet will be classified 
as multi-animal. This step will occur only if a multi-animal class has been included in the 
classifier. 

IV. If there is no ID label in the sequence of most probable labels, the tracklet is marked as 
unidentified.  

V. Otherwise (i.e., the tracklet is single-animal and there are at least some blobs classified 
as a specific ID label), we define a score for each possible ID as the sum of the posteriors 
for that ID over all blobs: 

 𝑠/ =7𝑃1/
1

 (7) 

 
The tracklet is labeled with the ID that has the maximal score: 
 

 𝐿 = 𝑎𝑟𝑔𝑚𝑎𝑥/(𝑠/) (8) 
 

In addition, we define and register the classification confidence score as: 
 

 𝑆 =
𝑛 ∙ 𝑠9
∑𝑠/

 (9) 

 
Where n is the number of blobs in the tracklet classified as specific animal IDs. Using this 
definition, the confidence score will increase as evidence for the assignment accumulates 
(so longer tracklets with more identifiable blobs will have a higher score). 
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2.5 Verification and retraining 

Although this is not the final tracklet ID assignment, it is useful to be able to estimate the 
performance of tracklet classification. Especially, it is important to assess the performance of a 
classifier trained on examples from one experiment on tracklets from another. If there is a 
significant drop in performance, examples from the new experiment can be added to the training 
set, and an incremental training can be run. Both validation and adding new examples can be 
done using the anTraX GUI.  

3. Propagating IDs on the tracklet graph 

At this stage, we have the tracklet graph, in which a subset of single-animal tracklets have been 
labeled with a specific ID and a confidence score for that label. The rest of the tracklets in the 
network are either unidentified single-animal tracklets, or multi-animal tracklets. We assume 
that some of these classifications can be incorrect. The next step in the algorithm is to make the 
actual ID assignments for the tracklets, and to propagate these assigned IDs over the tracklet 
graph, trying to identify the composition of all tracklets, including multi-animal tracklets. In the 
process, a large portion of the incorrect classifications will be identified and overridden by the 
algorithm.  

3.1 Initializing the graph 

We start the propagation algorithm by creating a dynamic list of possible IDs (initially 
representing all individuals in the experiment) and a dynamic list of assigned IDs (initially an 
empty list) for each node in the graph. These lists are continuously updated during the 
propagation process. For all nodes (tracklets) that have been assigned a “non-animal” label in the 
classification step, we initialize the possible ID list also as an empty one, effectively removing 
these nodes from the graph. 

3.2 Propagation and assignment rules 

Propagating and assigning IDs are done according to a set of rules executed in a specific order.  
For each node to which we want to assign an ID, we do the following (see Appendix-figure 8, 
Figure 2B, Figure2- Movie1 for illustrated examples): 

I. If the ID we want to assign is not on the list of possible IDs for that node, abort.  

II. If the node represents a single-animal tracklet (i.e., is in the area range of a single animal 
as defined by the user AND was not classified as a multi-animal tracklet by the classifier), 
assign the ID and eliminate all other possible IDs. If it is not a single-animal node, assign 
the ID without eliminating other IDs. 

III. Horizontal propagation (negative): for all other nodes that overlap in time with the 
currently assigned node, eliminate the ID we just assigned. 
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IV. Vertical propagation (positive): for each parent node of the current node, look if the 
currently assigned ID is on the list of possible IDs. If there is only one such parent, and it 
has not already been assigned the ID, assign the ID to that parent. Do the same for child 
nodes.  

V. Topological propagation (positive): a pair of nodes on the graph that constitute a 2-vertex 
cut set (i.e., cutting the graph at both these nodes creates a disconnected subgraph) and 
the corresponding disconnected subgraph does not contain any other 0-indegree or 0-
outdegree nodes (i.e., there are no animals leaving or exiting the subgraph), are defined 
as tween nodes. Such a pair will have exactly the same composition of IDs (this is not true 
in cases where one of the tracklets in the subgraph touches a border of the ROI at a point 
where animals can exit and enter; these cases are flagged during tracking, and no 
assignment is made; the special case of open boundary ROIs is discussed below). For each 
assignment, we also assign the first descendent tween node and the first ancestor tween 
node (if they exist). 

Appendix-figure 8:  Propagation rules. The figure depicts the first three steps in solving an example graph. The graph has 15 
tracklets and 4 IDs. Circular nodes mark single-animal tracklets, while square nodes mark multi-ant tracklets. The colored 
circles inside the nodes mark the current assignments of the node. Empty circles indicate possible assignments, and full circles 
indicate actual assignments. The full solution of the example is given in Figure2-Movie1. (A) Negative horizontal propagation. 
(B) Positive vertical propagation. (C) Positive topological propagation.  
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For each node from which we want to eliminate a possible ID, we do the following: 

I. If the ID is already marked as ‘assigned’ for that node, abort. 

II. Vertical propagation (negative): for each parent node of the current node, if there is no 
other child node for which the ID that we are currently eliminating is possible, eliminate 
the ID for that parent.  For each child of the current node, if there is no other parent for 
which the ID is possible, eliminate the ID for that child. 

III. Topological propagation (negative): eliminate the ID for the first ancestor tween node and 
the first descendent tween node (if they exist). 

3.3 Propagating from classified single-animal tracklets 

Before we start the propagation, we rank all the single-animal tracklets that were labeled with a 
specific ID by the classifier (the ‘source’ tracklets) according to their confidence scores. We start 
by assigning the tracklet with the highest score with its classified ID, and then recursively 
propagate according to the rules above. When no more propagations can be made, we move on 
to the next tracklet on the list. All nodes with assignments inherit their confidence from the 
confidence of the source node.  
Once the last source tracklet has been reached, we conduct another round of propagation, this 
time starting from all nodes with assigned IDs (not only the CNN-classified nodes), again sorting 
them according to their confidence, so that higher confidence propagations will have 
precedence. This process is repeated until no more propagations can be made.  

3.4 Handling open boundary ROIs 

The assumption that underlies the propagation rules as described above is that a tracklet indeed 
represents a given set of tagged animals in each of its frames, and that the tracklet graph correctly 
captures the flow of individual animals between tracklets. This assumption is violated if the ROI 
of the experiment is open (i.e., animals are free to exit and leave the tracked region), because a 
tracklet that touches the open boundary can have a changing set of tracked animals. To handle 
these cases, blobs that overlap with an open boundary are treated differently. In the blob linking 
step, whenever a blob that touches the open boundary is linked to a blob that does not touch 
the open boundary in the previous frame, the tracklet closes (even if it is a 1:1 link as defined in 
section 1.4), and a new tracklet opens and will be linked to the previous with a graph edge. The 
same happens when a blob that does not touch the boundary is linked to a blob that does. This 
way, the blobs touching the boundary (i.e., blobs that can ‘loose’ or ‘gain’ animals) are confined 
to the same tracklet. These special tracklets do not participate in the propagation process (i.e., 
they do not act as sources for IDs and do not accept vertical or topological propagations). Open 
boundaries are marked by the user as part of the ROI mask creation (see online documentation). 
See also benchmark dataset V25 (Figure3- supplement1, Figure3-Movie2) for an example of a 
tracked experiment with an open boundary.  
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3.5 Connected component filtering 

Ideally, at this point, when all possible ID propagation options are exhausted, we have inferred 
the maximum information about the composition of each tracklet. If we look at the subgraph 
corresponding to a specific ID (defined by all the nodes that are possible for that ID, along with 
their connecting edges), we expect to see a single connected component (Appendix-figure 9A). 
This connected component will consist of nodes assigned that ID, which will not have nodes 
parallel to them in the subgraph, as well as nodes without ID assignments, which can in principle 
have ambiguities (parallel nodes that are members of the same subgraph). However, because 
the tracklet classification process will usually result in some errors, the ID subgraph can have 
several disconnected components (Appendix-figure 9B). To filter out connected components that 
correspond to classification errors, we assign a confidence score to each connected component, 
defined as the sum of the confidence scores of all the ID assignments in that component. We 
then go over the list of components sorted by their confidence, and accept them in order. 
Whenever a component contradicts one of the already accepted components (e.g., it overlaps in 
time, or does not contain a possible route on the graph to a previously accepted component), we 
discard it. To eliminate a component, we undo all assignments made of the focal ID to the nodes 

Appendix-figure 9: Connected component filtering. An example from a 10-minute tracklet graph. Green nodes are those assigned 
by the classifier, blue nodes are assigned by the propagation algorithm, and purple nodes are ambiguous (‘possible’ but not 
‘assigned’).  (A) A focal ant subgraph in which graph assignment propagation was consistent and did not result in contradictions. 
(B) A subgraph for a different focal ant in the same graph, for which the classifier made an incorrect assignment. As a consequence, 
the subgraph is fractured into a few connected components. (C) The subgraph of the same focal ant as in B, following the 
connected component filtering step and a second round of assignment propagations. The erroneous component was filtered, and 
the algorithm was able to complete the ID path through the graph.  
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of that component, and all the eliminations that resulted from these assignments. This is done 
separately for each ID subgraph. 
Following the connected component filtering, we again run the ID propagation loop to close the 
gaps between the accepted components (Appendix-figure 9C). This procedure is repeated until 
no more component filtering can be made.  

3.6 Finalizing assignments and exporting data 

At this point, when all inference options are exhausted, each ID is represented in several types 
of nodes/tracklets. In order of decreasing assignment quality, these are: 

I. Single-animal tracklets that were assigned by the classifier and confirmed by the graph 
propagation algorithm (i.e., that were not identified as erroneous and overridden). 

II. Single-animal tracklets for which IDs were inferred by the propagation algorithm. 

III. Multi-animal tracklets for which IDs were inferred by the propagation algorithm. 

IV. Tracklets for which no ID was assigned, but which are the only possible tracklet for a 
particular ID. 

V. Points of ambiguity, where no assignment was made with confidence, and several 
temporally overlapping nodes could possibly contain the focal ID.  

When exporting trajectory data for the experiment, the assignment type for each point in the 
trajectory is also reported. 

3.7 Multi-colony experiments 

anTraX enables tracking multiple colonies/groups within the same video. This feature is useful 
when designing and performing high-throughput experiments, where one camera records 
several colonies. For multi-colony experiments, the software assigns a colony ID to each tracklet 
during the initial tracking step, based on the spatial location of the tracklet. During the graph 
propagation step, the software partitions the tracklets into a number of graphs, one for each 
colony. Propagation is then performed on each colony-graph separately, and the final trajectories 
are saved separately for each colony. Dataset G6X16 (Figure3-supplement8, Figure3-Movie9) 
gives an example of tracking an experiment where 6 colonies of 16 ants each are recorded with 
a single camera.  
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