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ABSTRACT  

Diversity-generating retroelements (DGRs) vary protein sequences to the greatest extent known in 

the natural world. These elements are encoded by constituents of the human microbiome and the 
microbial ‘dark matter’. Variation occurs through adenine-mutagenesis, in which genetic information in 

RNA is reverse transcribed faithfully to cDNA for all template bases but adenine. We investigated the 

determinants of adenine-mutagenesis in the prototypical Bordetella bacteriophage DGR through an in 

vitro system composed of the reverse transcriptase bRT, Avd protein, and a specific RNA. We found 

that the catalytic efficiency for correct incorporation during reverse transcription by the bRT-Avd 

complex was strikingly low for all template bases, with the lowest occurring for adenine. 

Misincorporation across a template adenine was only somewhat lower in efficiency than correct 

incorporation. We found that the C6, but not the N1 or C2, purine substituent was a key determinant 
of adenine-mutagenesis. bRT-Avd was insensitive to the C6 amine of adenine but recognized the C6 

carbonyl of guanine. We also identified two bRT amino acids predicted to nonspecifically contact 

incoming dNTPs, R74 and I181, as promoters of adenine-mutagenesis. Our results suggest that the 

overall low catalytic efficiency of bRT-Avd is intimately tied to its ability to carry out adenine-

mutagenesis.  

INTRODUCTION 

Adaptation by organisms to novel selective pressures requires variation. While this usually occurs 

over multiple generations and lengthy time scales, there are two examples of instantaneous 

adaptation that take place within a single generation. These are the variation of antigen receptors by 

the vertebrate adaptive immune system and of select proteins belonging to diversity-generating 

retroelements (DGRs) (1). DGRs are prevalent in the human virome and microbiome, and the 
microbial ‘dark matter’, which appears to constitute a major fraction of microbial life (2-7). The level of 

DGR variation greatly exceeds the 1014-16 variation of the vertebrate immune system (8). A DGR 

variable protein with 1020 possible sequences has been structurally characterized (9), and one with 

1030 possible sequences has been identified (10). In the adaptive immune system, variation enables 

the recognition of novel targets and consequent adaptation to dynamic environments. A similar benefit 

appears to be provided by DGRs, as documented for the prototypical DGR of Bordetella 

bacteriophage (1). This DGR encodes the bacteriophage’s receptor-binding protein Mtd. Variation in 

Mtd enables the bacteriophage to adapt to the loss of potential surface receptors by its host 
Bordetella, which happens because of environmental changes or immune pressure (11,12). 
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DGRs vary protein sequences through a mechanism that is fundamentally different from that of the 

adaptive immune system and indeed any biological system. Sequence variation by DGRs arises from 

adenine-mutagenesis, in which genetic information is transmitted faithfully for all bases but adenine 

(Fig. 1). This occurs during reverse transcription of an RNA transcript that contains the intergenic 
template region (TR), which is nearly identical in sequence to a variable region (VR) within a DGR 

variable protein gene. Misincorporation at adenines during reverse transcription of TR-RNA results in 

adenine-mutagenized TR-cDNA, which homes to and replaces VR, giving rise to a new protein 

variant. As shown for the Bordetella bacteriophage DGR, misincorporation at TR-RNA adenines 

occurs at an astonishingly high frequency of 50% (1,13,14). 

We recently reconstituted adenine-mutagenesis in vitro (14). This reconstitution showed that a 

complex formed by the Bordetella bacteriophage DGR reverse transcriptase bRT and the associated 

pentameric Accessory Variability Determinant (Avd) protein (15), along with a specific DGR RNA, are 
necessary and sufficient for adenine-mutagenesis (Fig. 1). The DGR RNA contains the 134-

nucleotide (nt) TR flanked by two functional elements, a short 20-nt segment from avd at the 5’ end 

and a longer 140-nt spacer (Sp) region separating TR and brt at the 3’ end (14). This RNA is identical 

to the ‘core’ DGR RNA described previously (14). The mechanistic role of the 5’ avd sequence is 

unknown, but the Sp region has been shown to provide an essential binding site for Avd and to supply 

the site from which reverse transcription is primed, Sp A56 (13,14). A number of pieces of evidence 

indicate that the 2’-OH of Sp 56 provides the priming nucleophile, resulting in a branched, covalently-

linked RNA-cDNA molecule (14) (Fig. 1). An alternative model involving RNA cleavage at Sp 56 to 
expose its 3’-OH for priming has been proposed as well (13). The first nucleotide reverse transcribed 

is TR G117, and cDNAs typically extend from there to TR 22-24 (~90 nt) or just further into avd (~120 

nt); the shorter cDNA includes all of the adenines in TR whose substitution leads to a coding change.  

The bRT-Avd complex is also capable of synthesizing cDNAs from non-DGR RNA templates (14). 

For this, an exogenous primer is required and only short cDNAs (~5-35 nt) are synthesized. These 

results indicate that template-priming and processive polymerization are both specific properties of 

the DGR RNA. Evidence suggests that this is because bRT-Avd and the DGR RNA combine to form a 
structured ribonucleoprotein (RNP) particle that aligns the priming site at Sp 56 with the reverse 

transcription start site at TR 117, and also maintains interaction between bRT-Avd and the RNA that 

is conducive to processive polymerization (14). Avd is still required for cDNA synthesis from non-DGR 

RNA templates, indicating that Avd has a role in catalysis that is independent of its role in binding Sp 

in the DGR RNA. Notably, cDNAs produced from non-DGR RNA templates are adenine-mutagenized, 

indicating that adenine-mutagenesis is an intrinsic property of the bRT-Avd complex and independent 

of the RNA template and the mechanism of priming.  

To understand the determinants of adenine-mutagenesis, we characterized reverse transcription of 
the DGR RNA by bRT-Avd in vitro. We found that the catalytic efficiency (kcat/Km) of bRT-Avd for 

correct incorporation was strikingly low across all template bases, as generally observed for low 

fidelity polymerases (16), with the lowest occurring for adenine. The catalytic efficiency of 

misincorporation across a template adenine was only somewhat lower than correct incorporation. 

Using nucleobase analogs, we identified the C6 position of the purine ring as a key determinant of 
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adenine-mutagenesis. An amine at C6, as in adenine, had no effect on misincorporation, neither 

increasing nor decreasing it. In contrast, a carbonyl at C6, as in guanine, decreased misincorporation. 

bRT-Avd was able to incorporate dNTPs across an abasic template site, albeit with a significant 

incidence of deletions and with only a partial preference for adenine as compared to A-rule 
polymerases (16). We also found that two bRT amino acids, Arg 74 and Ile 181, promoted adenine-

mutagenesis. These amino acids are predicted by an in silico model to have counterparts in HIV 

reverse transcriptase (RT) that nonspecifically stabilize incoming dNTPs. These results provide the 

first detailed characterization of the nucleobase and protein determinants of adenine-mutagenesis in 

DGRs.  

MATERIAL AND METHODS 

Protein and RNA. The bRT-Avd complex was expressed in Escherichia coli and purified, and the 

core DGR RNA (avd 368 – TR 140) was produced through in vitro transcription with T7 polymerase 

and gel purified, both as previously described (14). Mutants of bRT were generated using 

QuickChange mutagenesis (Agilent), and expressed and purified as bRT-Avd complexes. Mutants of 
the DGR RNA were also generated through QuickChange mutagenesis. 

 

RNA with nucleobase analogs. RNA oligonucleotides spanning avd 368 to TR 26 were chemically 

synthesized (Dharmacon), with adenine, guanine, or base analogs at TR 23 and 24 (or just 24), and 

gel purified. RNA spanning TR 27 to Sp 140 was in vitro transcribed, gel purified, and treated with 

alkaline phosphatase (NEB) according to the manufacturer's directions at 37 °C for 2 h to remove the 

triphosphate from the 5’ end. The dephosphorylation reaction was quenched at 80 °C for 5 min to 

inactivate the phosphatase. A phosphate group was added to the 5’ end of the RNA using T4 
polynucleotide kinase and ATP, according to the manufacturer's directions (NEB). The RNA was then 

purified by phenol:chloroform extraction followed by a G-25 desalting column. The chemically 

synthesized RNA oligonucleotide (1.1 μM) and the in vitro transcribed RNA (2.2 μM) were annealed in 

the presence of 1.7 μM splint oligodeoxynucleotide P1 (Table S1), 8% DMSO, and 0.2x T4 RNA 

Ligase 1 (T4Rnl1) buffer in 250 μL. The splint was annealed to the RNA by heating at 95 °C for 3 min 

and cooling at 0.2 °C/min to 20 °C. A 250 μL solution consisting of 0.8x T4Rnl1 buffer, 2 mM ATP, 4% 

DMSO, and 540 units T4Rnl1 (NEB) were mixed with the annealing reaction. The resulting mixture 

was incubated for 8 h at 37 °C. The sample was then extracted with phenol:chloroform and ethanol-
glycogen precipitated. The pellet was resuspended in water and gel purified. 

 

Reverse transcription reactions and next-generation sequencing. Reverse transcription reactions 

were carried out with wild-type or mutant bRT-Avd at 37 °C for 12 h, and resulting cDNA was purified, 

both as previously described (14). The region from TR 21 to TR 98 was PCR amplified using Pfu 

polymerase from purified cDNA using primers P2 and P3, which have partial Illumina adapter 

sequences at their 5’ ends (Table S1). For amplification of the region from TR 114 to TR 117, reverse 
transcription of RNA-cDNA molecules with primer P2 was first carried out, as previously described 

(14), and the resulting cDNA was PCR amplified with Pfu polymerase and primers P2 and P4, which 
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likewise had partial Illumina adapter sequences at their 5’ ends (Table S1). The reverse transcription 

step was necessary as TR 117 is at the 5’ end of the cDNA and attached covalently to the core DGR 

RNA at Sp 56. The amplified PCR product was subjected to short-read next-generation sequencing 

(Amplicon EZ, Genewiz). The quality scores for sequencing reactions were Q30, which is equivalent 
to an error probability of 1 in 1000. Fastq files generated from next-generation sequencing containing 

paired-end reads were aligned with the TR reference sequence using bowtie2, and output files were 

sorted and indexed using samtools (parameters in Supplementary Data) (17-19). (Mis)incorporation 

frequencies in the template region were calculated using IGV (integrative genomics viewer) (20).  

Reverse transcription reactions with Moloney Murine Leukemia Virus (MMLV) RT (BioBharati Life 

Sciences Pvt. Ltd) and HIV RT (Worthington Biochemical) were carried out according to the 

manufacturer's directions using primer P5 (Table S1). PCR amplification of cDNAs was carried out 

with Pfu polymerase and primers P2 and P3 (Table S1). 
 

Quantitative PCR. Quantitative PCR (qPCR) was carried out on cDNA reverse transcribed by bRT-

Avd from the core DGR RNA (25 μL reaction). The cDNA was purified as previously described (14) 

and amplified in the presence of 1x SYBR Green 1 dye (Thermo Fisher) using primers P6 and P7 

(Table S1). The reaction was performed on a Bio-Rad CFX Connect Real Time System apparatus. A 

standard curve was generated using chemically synthesized single stranded DNA (TR 1 to TR 117, 

HPLC purity of 99.9%), with template concentrations in the range of 100 fg – 1 ng. qPCR reactions 

were performed in triplicate, and the cycle threshold (Ct, the cycle number at which the fluorescence 
due to the reaction crosses the fluorescence background threshold) for each reaction was determined 

using CFX Maestro Software. The average of Ct was plotted against the log of the DNA mass, and a 

linear fit from the plot was used to calculate the quantity and concentration of cDNA generated in the 

bRT-Avd reverse transcription reaction.    

 

Single deoxynucleotide primer extension assay. Oligodeoxynucleotide P117 (Table S1) was 5’-

[32P ]-labeled as previously described (14). Wild-type or mutant core DGR RNA (0.5 μM) was mixed 
with primer P117 (0.5 μM), 5’-[32P]-labeled P117 (0.05 μM), varying concentration of dNTPs, and 20 

units RNase inhibitor (NEB) in 75 mM KCl, 3 mM MgCl2, 10 mM DTT, 50 mM HEPES, pH 7.5 and 

10% glycerol in a 20 μL final volume. The mixture was incubated at 37 °C, and then wild-type or 

mutant 1 μM bRT-Avd was added. A 2.5 μL aliquot of the reaction was removed at various time 

points, and quenched by addition to 7.5 μL of an ice-cold solution of proteinase K (1.3 mg/ml) followed 

by incubation at 50 °C for 20 min. The quenched reactions were incubated with 0.5 μL RNase A/T1 

mix (Ambion) at room temperature for 20 min in a final volume of 20 μL. The samples were then 

ethanol-glycogen precipitated overnight at –20 °C. Samples were centrifuged the next day, and 
pellets were air dried and resuspended in 20 μL of RNA loading dye. Five μL of the reaction sample 

was loaded on an 8% denaturing sequencing gel to resolve unreacted and extended primers. The 

radiolabeled products were visualized by autoradiography using a Typhoon Trio (GE Healthcare Life 

Sciences), and band densities were quantified using ImageQuant TL 8.1 (GE Healthcare Life 

Sciences). Background values determined from band densities prior to any reaction were subtracted. 
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The steady-state initial velocity with respect to substrate concentration was fit to the Michaelis-Menten 

equation using nonlinear regression analysis in GraphPad Prism.  

RESULTS 

Adenine-mutagenesis of TR 

To characterize adenine-mutagenesis of TR by bRT-Avd at fine-scale, we pursued next-generation 

sequencing (NGS) of cDNAs. The NGS read count of ~100,000 enabled conclusions to be drawn 

about the distribution of adenine-mutagenesis that were not possible due to the small number of 

sequences previously available from single clones (~30) (1). The template was the ~300-nt core DGR 

RNA (14), consisting of the TR (134 nt) flanked by upstream avd and downstream Sp regions that are 

functionally essential (Fig. 1) (14). As described above, reverse transcription was template-primed by 

the core DGR RNA from Sp A56 and initiated from TR G117 (14). 

To determine the baseline detection level of our methodology, we carried out NGS on cDNA that 
had not been adenine-mutagenized. For this, we used chemically synthesized, purified single-

stranded (ss) DNA that corresponded to TR 1-117. During NGS analysis we set the concentration of 

this ssDNA to be equivalent to that of the cDNA produced by bRT-Avd. The latter was determined 

through quantitative PCR (Fig. S1a), which showed that 1 x 1011 cDNA molecules were synthesized 

from 6 x 1012 DGR RNA molecules. NGS of the non-mutagenized ssDNA yielded an average 0.13% 

misincorporation frequency, with a range of 0.1-0.7% (Fig. S1b). As a further control, we synthesized 

TR-cDNA from the DGR RNA template using an exogenous primer with the high fidelity reverse 

transcriptase MMLV RT, which has a reported error rate of ~10-5 (21). NGS analysis revealed an 
average 0.36% misincorporation frequency, with a range of 0.1-2.6% (Fig. S1c). Interestingly, TR 

adenines had the highest average misincorporation frequency (0.8%). 

We then carried out NGS analysis on cDNAs synthesized by bRT-Avd. We found through three 

independent experiments that the average misincorporation frequency across the 22 adenines in TR 

that lead to coding changes was 51.6 ± 2.3% (Figs. 2a and S2a), similar to the level previously 

observed in vitro and in vivo (1,13,14). The most frequently misincorporated base across a template 

adenine was adenine itself (22.2 ± 0.7%), followed by cytosine (17.8 ± 2.8%) and guanine (11.6 ± 
0.2%) (Fig. S2a). By comparison, the misincorporation frequency across template uracils, cytosines, 

and guanines in TR was at or near baseline detection levels (0.5 ± 0.2%, 0.3 ± 0.2%, and 1.6 ± 1.2%, 

respectively) (Fig. S2b).  

The misincorporation frequency of bRT-Avd varied widely across individual template adenines 

(Figs. 2a and S3). TR A23 and A62 were especially prone to misincorporation, with frequencies of 

72.3 ± 1.9% and 76.3 ± 0.9%, respectively. Notably these adenines are the first bases in AAC codons 

(for Mtd 344 and 357, respectively), indicating an enhanced potential for amino acid substitution at 

these positions (22). In contrast, TR A35 and A98 were especially resistant to misincorporation, with 
frequencies of only 28.0 ± 2.8% and 29.9 ± 5.2%, respectively. Equally notably, these adenines are 

the only ones in their codons (ACG for Mtd 348 and ATC for Mtd 369, respectively), indicating a 

curtailed potential for amino acid substitution at these codons (22). The differences in 

misincorporation frequencies were not attributable to any obvious RNA primary sequence patterns. 
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To determine whether misincorporation also occurred at artificially introduced adenines, we 

substituted adenines at the initial four positions that are reverse transcribed (TR 117-114). These 

positions are normally occupied by G, C, or U. Misincorporation was evident at all four positions when 

substituted by adenine. Positions 117, 116, and 115 were somewhat more resistant to 
misincorporation than the most resistant adenines positions naturally occurring in TR, while 114 was 

within the range observed for naturally occurring adenine positions (Fig. 2b). Thus adenine-

mutagenesis can occur outside naturally occurring positions, and similar to naturally occurring 

positions, the misincorporation frequency is variable.  

Enzymatic Parameters of bRT-Avd 

We next examined the rate of single deoxynucleotide addition by bRT-Avd. As misincorporation 

occurred at a detectable level across TR G117A, we used oligodeoxynucleotide P117 (Table S1) to 

prime synthesis from TR G117A of the core DGR RNA. We have previously shown that P117 primes 

cDNA synthesis from the natural start site of reverse transcription, TR G117, and concurrently inhibits 

template-primed cDNA synthesis (14). The addition of a single deoxynucleotide to the radiolabeled 
P117 primer was unambiguously detectable (Fig. 3a). In the case of extension with dATP, the template 

contained both TR U116G and G117A substitutions, so as to avoid incorporation of a second dATP 

across TR U116. Using this single deoxynucleotide primer extension assay, we determined the 

steady-state enzymatic parameters of bRT-Avd for correct incorporation and misincorporation across 

a template adenine.  

This analysis showed that the kcat varied little (only up to three-fold) between correct incorporation 

of TTP and misincorporation of the other dNTPs across the adenine at TR 117 (Figs. 3b-f and Table 

1). Similarly, the Km for the incoming dNTP varied over a very small range, with the greatest difference 
being ~17-fold between dGTP and TTP (Table 1). The most favorable Km was for dUTP, reflecting the 

previously noted preference in bRT-Avd for dUTP over TTP (14). The catalytic efficiencies (kcat/Km) for 

the misincorporation of dGTP, dCTP, and dATP were on average 23-fold lower than for the correct 

incorporation of TTP. The misincorporation ratios (catalytic efficiency for misincorporation to correct 

incorporation) for dCTP and dATP were 0.05, and 0.02 for dGTP (Table 1). These values 

corresponded closely to the misincorporation frequencies at TR G117A determined by NGS from 

template-primed reverse transcription (Fig. 2b, 7%, 3%, and 2%, respectively). Thus, template- and 

P117-primed synthesis resulted in similar misincorporation frequencies, which indicated that the 
enzymatic parameters determined here for oligodeoxynucleotide-primed synthesis were likely to be 

applicable to template-primed synthesis.  

We then examined the enzymatic parameters for correct dNTP incorporation across the other 

template bases at TR 117. For template guanine, the wild-type DGR RNA template was used, and for 

template cytosine and uracil, mutated DGR RNA templates were used (TR G117C for the former, and 

TR U116C/G117U for the latter to avoid incorporation of a second dATP). The experiment showed 

that the kcat for correct incorporation varied little among template guanine, cytosine, uracil, and 
adenine (Tables 1 and 2, Fig. S4). However, there was a major difference in Km. While the Km was 

similar for template guanine, cytosine, and uracil, this value was on average ~36-fold lower than for a 
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template adenine. Similarly, the catalytic efficiencies were nearly identical for these first three 

template bases but 28-fold greater than for a template adenine.  

Nucleobase Determinants of Adenine-Mutagenesis 

We next asked which features of adenine promoted misincorporation. To address this, we compared 

the nearly isosteric features of infidelity-promoting adenine and fidelity-promoting guanine. The 

differences between A and G primarily occur at the N1, C2, and C6 positions (Fig. 4a). We sought to 

probe these ring positions using base analogs. For this, short RNA oligonucleotides corresponding to 
the 5’ portion of the core DGR RNA were chemically synthesized with nucleobase analogs at TR 23 

and 24, which have misincorporation frequencies of 72.3 ± 1.9% and 39.7 ± 3.3%, respectively. The 

oligonucleotide was ligated to a longer in vitro transcribed RNA corresponding to the rest of the core 

DGR RNA. To validate this method, we first constructed the ligated core DGR RNA using an 

oligonucleotide that had adenines rather than analogs at TR 23 and 24. The cDNAs produced by 

bRT-Avd from the ligated core DGR RNA template had a near identical misincorporation frequency as 

the fully in vitro transcribed core DGR RNA template (Figs. 2a and 4b). As further validation, we used 
the same ligation method to introduce guanines at TR 23 and 24, and found almost exclusive 

incorporation of cytosine by bRT-Avd (Fig. S5), indicating that there is no barrier to correct 

incorporation at these positions.  

N1 and C6. The first nucleobase analog we examined was hypoxanthine, in which the N1 and C6 

groups of adenine (N with a lone electron pair and amine, respectively) are substituted with those of 

guanine (NH and carbonyl, respectively). Hypoxanthine preferentially forms a Watson-Crick base pair 
with cytosine, and a less stable wobble base pair with adenine (23,24). This preference was verified 

through reverse transcription with MMLV RT (Fig. 4c). Cytosine was almost exclusively incorporated 

across template hypoxanthines by MMLV RT. Reverse transcription was then carried out with bRT-

Avd. Significantly, bRT-Avd correctly incorporated cytosine with nearly the same frequency, 96-97% 

(Fig. 4c), as MMLV RT. Adenines constituted the rest. This result showed that an NH at N1 or a 

carbonyl at C6, or both, decrease misincorporation relative to adenine.   

We next asked if the amine at C6 in adenine has an impact on misincorporation. To do so, we 
used purine (i.e., nebularine), which lacks a substituent at C6, as the base analog. Purine 

preferentially base pairs with thymine (25), which we verified with MMLV RT (Fig. 4d). With bRT-Avd, 

template purines led to misincorporation with very similar frequencies as those observed for template 

adenines (Fig. 4d). This result indicated that the C6 amine of adenine was functionally equivalent to 

no substituent at this position. Thus, we concluded that an amine at C6 had no impact on 

misincorporation, neither decreasing nor increasing it.  

To probe the C6 position further, we used N6-methyladenine (m6A). As previously reported, 

reverse transcription of m6A by MMLV results in the incorporation of thymine (Fig. 4e) (26). However, 
for bRT-Avd, m6A resulted in greater misincorporation, most notably at TR 24, where misincorporation 

increased from 40 to 66% (Fig. 4e). Misincorporation also increased at TR 23, although less strikingly, 

from 72 to 82%. Thus, while an amino group at the C6 position did not impact misincorporation, the 

bulkier methylamino group at the same position increased misincorporation. Importantly, these results 
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also suggested that the N1 position had little if any role in modulating misincorporation. This is 

because while adenine and m6A are identical at the N1 position, they differed in misincorporation 

frequency.  

Taken together, these results indicated that the C6 but not the N1 purine position was a major 
determinant of adenine-mutagenesis, and that the C6 carbonyl of guanine decreased 

misincorporation while the C6 amine was equivalent to having no substituent at this position. 

C2. The C2 position was probed using 2,6-diaminopurine (DAP), which is identical to adenine except 

containing an amine at C2 as well (as does guanine). DAP preferentially base pairs with thymine but 

can also form a wobble base pair with cytosine (27,28). In the case of MMLV RT, exclusive 
incorporation of thymine was observed (Fig. 4f). However for bRT-Avd, the major species 

incorporated was cytosine, followed to a lesser extent by thymine and adenine (Fig. 4f). This was the 

case even though the Watson-Crick base pair between DAP and thymine involves three hydrogen 

bonds, while the wobble base pair between DAP and cytosine involves only one.  

A similar trend was seen for 2-amino purine (2AP), which is identical to DAP but lacks an amine at 

C6. 2AP forms a base pair with thymine but can also form a wobble or protonated base pair with 

cytosine (28-30). Both forms involve two hydrogen bonds. MMLV RT preferentially incorporated 

thymine but also a substantial level of cytosine. In the case of bRT-Avd, incorporation of cytosine was 
greatly preferred, followed by thymine and adenine (Fig. 4g), similar to the results with DAP (Fig. 4f). 

The similarity of misincorporation frequencies between DAP and 2-AP (which differ only in an amine 

at C6) confirmed that an amine at C6 was equivalent to having no substituent at this position.  

These results showed that an amine at C2 led to a more homogeneous distribution of incorporated 

deoxynucleotide, but with those forming a wobble base pair being favored over those forming a 

Watson-Crick base pair. The exception to this was when the C6 position was occupied by a carbonyl, 

that is when the template base was a guanine, in which case a Watson-Crick base pair was favored. 

Thus, these results further emphasized the importance of the C6 position to adenine-mutagenesis.  

Abasic Site and the A-rule 

We noticed that adenine was the most frequently misincorporated base across the 22 sites in TR 

(Figs. 2a and S2a). A number of nucleotide polymerases have the tendency to insert an adenine 

across an abasic template site, which is called the A-rule (31). We investigated whether bRT-Avd 

follows the A-rule by constructing a core DGR RNA template with abasic sites at TR 23 and 24. HIV 

RT has been documented to tolerate abasic sites (32), and thus we used HIV RT as a positive 

control. However, tandem abasic sites led to a high incidence of deletions at these and surrounding 

sites with HIV RT, as well as with MMLV RT and bRT-Avd (Fig. S6a). Thus, we limited the abasic site 

to TR 23. HIV RT incorporated adenine almost exclusively (98%) across the abasic site (Fig. 5a), and 

while deletions still occurred, they occurred much less frequently than with tandem abasic sites (Fig. 
S6b). MMLV RT has been reported to be intolerant to abasic sites (32), and indeed the incidence of 

deletion was approximately three-fold higher at abasic TR 23 for MMLV RT than for HIV RT (Fig. 

S6b). Nevertheless, for those cDNAs lacking deletions, MMLV RT incorporated adenine almost 

exclusively (99%) across the abasic site (Fig. 5a). A significant level of deletion at and around the 
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abasic site was also seen with bRT-Avd, with an incidence that resembled that of MMLV RT (Fig. 

S6b). However, the near exclusive preference for incorporating adenine seen for HIV and MMLV RTs 

was not observed for bRT-Avd, and instead at best a strong preference for adenine was evident 

(65%) (Fig. 5a). Guanine was also incorporated at an appreciable frequency by bRT-Avd across the 
abasic site (Fig. 5a). These results indicated that bRT-Avd did not follow the A-rule as strictly as HIV 

RT.  

2’-OH 

We also asked whether adenine-mutagenesis occurred when a deoxynucleotide was reverse 

transcribed. We therefore instituted deoxyadenosine at TR 23 and 24 in the core DGR RNA template. 

As expected, thymine was incorporated exclusively by MMLV RT across TR dA23 and dA24 (Fig. 5b). 

In contrast, misincorporation increased for bRT-Avd. It went from 40 to 65% at TR 24 and from 72 to 

83% at TR 23 (Fig. 5b). To ascertain whether selectivity to adenine was maintained, TR 23 and 24 

were instituted with deoxyguanosine. MMLV RT incorporated cytosine (99%) almost exclusively 

across these sites. Similarly, bRT-Avd incorporated cytosine across deoxyguanosine with nearly the 
same frequency as across guanosine (97 % vs. 98%) (Fig. 5c). These results indicated that the 2’-OH 

of a template adenosine promoted correct incorporation and therefore countered adenine-

mutagenesis.    

bRT Amino Acids that Modulate Adenine-Mutagenesis 

We next sought to identify bRT amino acids that modulated adenine-mutagenesis. We pursued this 

through structure-guided mutagenesis using a high-confidence model of bRT (100% confidence level 

for 95% of the amino acid sequence) that was generated using Phyre2 (33) (Supplementary Data). 

This bRT model was based in part on the structures of group II intron maturases (34,35), including the 

high fidelity GsI-IIc RT (36). This latter structure also contains a bound RNA template-DNA primer 

heteroduplex and an incoming dATP. The in silico bRT model consisted of all the important functional 

elements of RTs — the canonical fingers, palm, and thumb domain (Fig. 6a). In addition to this, we 
relied on the extensive literature on the fidelity of HIV RT, and superposed the structure of HIV RT 

(37) with the in silico model of bRT to guide the choice of substitution sites. 

Based on this superposition, bRT Arg 74 was predicted to form a part of the binding pocket for the 

incoming dNTP (Fig. 6b). Its putative homolog in HIV RT is Arg 72, which when substituted by Ala 

decreases misincorporation (38,39). We found a similar effect for bRT(R74A)-Avd. Substitution of bRT 

Arg 74 with Ala led to a marked decrease in misincorporation frequency across the 22 template 

adenines in TR from 52 to 8%, with some sites reaching as low as 1% misincorporation (Fig. 6c and 
Fig. S7a). Misincorporation at other template bases (0.4%, 0.4%, and 1.7% for uracil, cytosine, and 

guanine, respectively) were at the levels within error seen for wild-type bRT (Fig. S7b). Thus, bRT 

Arg74 is a promoter of adenine-mutagenesis. Single deoxynucleotide primer extension analysis was 

carried out with bRT R74A to determine the basis for the decreased misincorporation. While there 

was almost no change in the Km for the correct incorporation of TTP across a template adenine at TR 

117, a 40% decrease in kcat was observed (Table 3). The catalytic efficiency of bRT(R74A)-Avd for 
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proper incorporation was 68% of that of wild-type bRT. Efforts to quantify misincorporation of dATP, 

the most frequently misincorporated dNTP, by primer extension analysis were unsuccessful, with no 

misincorporation evident for bRT(R74A)-Avd. 

Ile 181 of bRT was also predicted to be proximal to the incoming dNTP, and corresponds to HIV 
RT Gln 151, whose substitution by Asn decreases misincorporation (40-42). Ile 181 is the first amino 

acid of the signature DGR RT motif [I/V/L]GxxxSQ (1). In most retroviral RTs, non-LTR 

retrotransposon RTs, and group II intron maturases, this motif is instead QGxxxSP. We found that 

bRT I181N decreased the average misincorporation frequency across template adenines from 52 to 

24% (Fig. 6c and S7c). The misincorporation frequencies at other template bases were similar within 

error to those of wild-type bRT-Avd (Fig. S7d, 1.2%, 0.5%, and 3% for uracil, cytosine, and guanine 

respectively). These results indicated that, like Arg 74, Ile 181 promoted misincorporation across 

template adenines. Single deoxynucleotide primer extension analysis of bRT(I181N)-Avd for correct 
TTP incorporation across a template adenine at TR 117 showed a large increase in Km as compared 

to wild-type bRT-Avd (Table 3, 27-fold). Notably, the Km for misincorporation of dATP across a 

template adenine by bRT(I181N)-Avd was similar to that of correct incorporation (Table 3). However, 

there was a large difference in kcat. While the kcat’s for correct incorporation by bRT(I181N)-Avd and 

wild-type bRT-Avd were similar, the kcat for misincorporation of dATP by bRT(I181N)-Avd was ~8-fold 

slower (Table 3). The catalytic efficiency for correct incorporation of TTP by bRT(I181N)-Avd was 3% 

of wild-type bRT-Avd, and for misincorporation of dATP 13% of wild-type.  

We also substituted the last amino acid in the signature DGR RT motif [I/V/L]GxxxSQ, bRT Gln 
187, with the proline from the QGxxxSP motif. Proline at this position in HIV RT, P157, contacts a 

base in the template strand (37). bRT(Q187P)-Avd was unaltered in misincorporation frequency 

across template adenines compared to wild-type bRT, although this complex showed an increased 

bias towards misincorporating adenines over other bases (Fig. 6c).  

Substitutions were made in three bRT amino acids with putative equivalents in HIV RT that interact 

with the template or primer strand proximal to the catalytic site (37). These were bRT I176V, L184A, 

and M214V (Figs. 6b, c). The predicted structural equivalents in HIV RT and the misincorporation-
decreasing substitutions are, respectively, Leu 74 substituted with Val (43); Lys 154 substituted with 

Ala (40); and Met 184 substituted with Val (44,45). While none of these substitutions in bRT changed 

the misincorporation frequency, they all curiously changed the misincorporation bias towards cytosine 

and away from adenine (Fig. 6c).  

Lastly, we probed two bRT amino acids predicted to be proximal to the template base: Phe 66 and 

Ala 78 (Fig. 6b). The size and hydrophobicity of these positions were altered through F66V, F66S, 

A78V, and A78R substitutions, as well as F66A/A78V and F66S/A78R double substitutions. None of 

these resulted in a significant decrease in misincorporation frequency, and indeed, the 
misincorporation frequency increased substantially for bRT(A78I)-Avd and somewhat for bRT(A78R)-

Avd (Fig. 6d). 

DISCUSSION 
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DGRs bring about massive protein sequence variation through the unique mechanism of adenine-

mutagenesis. This results in variability being restricted to adenine-encoded amino acids, with non-

adenine-encoded amino acids remaining conserved. As seen in a number of DGR variable proteins 

(9,22,46-48), adenine-encoded amino acids are organized by the C-type lectin-fold of the variable 
protein into a solvent-exposed binding site. Non-adenine-encoded amino acids form the invariable 

structural scaffolding for the variable binding site. AAY (Y = pyrimidine) codons are especially 

prevalent in DGR variable proteins, and as previously noted, adenine-mutagenesis of AAY codons 

captures the gamut of amino acid chemistry but precludes a stop codon (22). Adding a layer of 

complexity to adenine-mutagenesis is the distribution of misincorporation frequencies documented 

here. For example, this makes some amino acid positions more variable (e.g., Mtd 357 with A62 in its 

codon, 76% misincorporation frequency) and some less (e.g., Mtd 369 with A98 in its codon, 30% 

misincorporation frequency), and thereby shapes the repertoire of ligands functionally bound by DGR 
variable proteins. These positional effects on misincorporation frequencies are also seen in cDNAs 

synthesized in vivo (13) and mtd sequences that have undergone variation in the absence of selection 

(49). This is most noticeable for TR A62, which consistently has a high misincorporation frequency 

(~70%). No obvious relationship was evident between positional variation in misincorporation 

frequency and primary sequence. It is possible that the secondary or even tertiary structure of the 

template plays a role in this. 

Extensive work has shown that fidelity in nucleotide polymerases depends both on Watson-Crick 

hydrogen bonding and shape complementarity between base pairs (50-56). Indeed, shape 
complementarity appears to be the dominant discriminator (57), as supported by several lines of 

evidence, including the observation that hydrogen bonding is dispensable for fidelity in DNA 

polymerase I (58). The general consensus is that pairing between the template and incoming base is 

sterically evaluated by polymerases (31,52). If the pairing is correct, polymerases undergo an open to 

closed transition, which places catalytic groups in the right positions for chemistry to proceed. If the 

pairing is incorrect, the open to closed transition fails to occur, providing time enough for the incorrect 

dNTP to dissociate before chemistry can occur.  
High and low fidelity nucleotide polymerases are alike when it comes to misincorporation but differ 

crucially with respect to correct incorporation (16). Both types of polymerases display similarly low 

catalytic efficiencies (kcat/Km) for misincorporation, but high fidelity polymerases have high catalytic 

efficiencies for correct incorporation while low fidelity polymerases remain at low catalytic efficiencies. 

High fidelity polymerases have a ~105-fold difference between catalytic efficiencies of correct 

incorporation versus misincorporation, but low fidelity polymerases have only a ~102-fold difference. 

While low fidelity polymerases are inefficient enzymes, they have evolved to be inefficient for specific 

purposes. For example, members of the Y family of DNA polymerases are low fidelity enzymes that 
are responsible for replicating through DNA lesions (51). Synthesis through a lesion, effectively a non-

standard template site, requires low fidelity. Reminiscent of bRT-Avd, the Y family DNA polymerase 

iota (pol ι) misincorporates dGTP at a frequency of 0.72 across template thymines and has a low 

catalytic efficiency for incorporating correct base pairs, ranging between 10-1 to 10-4 μM-1min-1 (59-61). 

Notably, the 1-40 x 10-4 μM-1min-1 catalytic efficiency of bRT-Avd for correct incorporation falls within 
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this range (Table 1), and is ~104 lower than the efficiency of high fidelity polymerases (16). DNA pol ι 

and other Y family DNA polymerases synthesize only short stretches of DNA to repair lesions (62), 

and indeed DNA pol ι tends to terminate synthesis after incorporating a dGTP across a template 

thymine (60). This is also reminiscent of bRT-Avd, which synthesizes only short cDNAs (5-35 nt) with 
non-DGR RNA templates. However, bRT-Avd becomes processive with the DGR RNA as its template 

and synthesizes extended cDNAs (90- and 120-nt), likely due to the formation of a structured RNP. 

These observations suggest that the low catalytic efficiency of bRT-Avd is intimately tied to its ability 

to carry out adenine-mutagenesis, and while the inherent tendency of bRT-Avd is to synthesize short 

cDNAs, the DGR RNA provides a means to synthesize longer cDNAs. It is possible that a low 

catalytic efficiency is tolerated by DGRs because the target for variation (e.g., the gene encoding the 

variable protein) usually exists in single copy number and thus requires only a single cDNA molecule 

to effect sequence variation. While the efficiency of cDNA synthesis by the Bordetella bacteriophage 
DGR in vivo requires further study, it is worth noting that the overall efficiency of sequence variation in 

vivo by this DGR is quite low (10-6) (15). 

To understand the nucleobase determinants that modulate adenine-mutagenesis, we took 

advantage of the near isosteric features of infidelity-promoting adenine and fidelity-promoting 

guanine. Using nucleobase analogs that have adenine- or guanine-like groups, we found that the 

substituent at the C6 position, but not the N1 or C2 position, had a major effect on misincorporation 

frequency. An amine at the C6 position, which in adenine acts as a hydrogen bond donor in a 

Watson-Crick base pair, was functionally equivalent to having no substituent at this position. In 
contrast, a carbonyl at C6, which in guanine acts as a hydrogen bond acceptor in a Watson-Crick 

base pair, greatly lowered the misincorporation frequency. Thus, it appears that bRT-Avd is sensitive 

to the mispositioning of a C6 carbonyl but not a C6 amine.  

We also explored the possibility that adenine flips out of the catalytic site, leaving it empty. This 

has been suggested for DNA pol ι, in which incorporation is more efficient across an abasic rather 

than a pyrimidine template site (60,61). However, in the case of bRT-Avd an abasic site resulted in a 

substantial level of deletions, and the misincorporation pattern at the abasic site was not the same as 
with adenine. While both abasic and adenine sites led predominantly to adenine misincorporation, an 

abasic site led to preferential misincorporation of guanine over cytosine. In contrast for a template 

adenine the preference was cytosine over guanine. Thus, the adenine-mutagenesis pattern is not 

explained by the flipping out of adenine from the catalytic site. In addition, these results indicated that 

the catalytic site of bRT-Avd is not as predisposed towards an incoming adenine as has been 

suggested for A-rule polymerases (31). 

We sought to identify amino acids in bRT that have a role in modulating adenine-mutagenesis, and 

relied on a three-dimensional in silico model based primarily on group II intron maturases (34-36). We 
probed eight amino acids predicted to be located at or near the catalytic site, and identified two that 

modulated adenine-mutagenesis: R74 and I181. Based on an in silico model of bRT, Arg 74 is 

predicted to correspond to Arg 72 of HIV RT. This HIV RT amino acid contacts the base and 

phosphate of the incoming dNTP (37). Substitution of HIV RT Arg 72 with Ala leads to a significant 

decrease in misincorporation (about three-fold on average but up to 25-fold at specific sites) with a 
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significant decrease in kcat (30- to 100-fold) (38,39). Similarly, we observed that substitution of bRT 

R74 with Ala led to a decrease in misincorporation accompanied by a decrease in kcat. However, the 

effects for bRT-Avd were much more modest (1.8-fold decrease in misincorporation and 1.7-fold 

decrease in kcat). The second amino acid, Ile 181 of bRT, is predicted to correspond to HIV RT Q151. 
This amino acid in HIV RT contacts the ribose of the incoming dNTP (37). Substitution of HIV RT Gln 

151 with Asn decreases misincorporation by 8- to 27-fold (41), and decreases the affinity for the 

correct incoming dNTP by 120-fold and for incorrect ones to levels that are not measurable (42). A 

similar but smaller 1.5-fold decrease in misincorporation across a template was seen for bRT I181N, 

as well as a 27-fold increase in Km for correct incorporation of TTP. However, the decrease in 

misincorporation in bRT(I181N)-Avd was not due to a further increase in Km for the incorrect 

deoxynucleotide but instead a marked decrease in kcat. In HIV RT, Arg 74 and Gln 151 provide 

contacts that stabilize both correct and incorrect incoming dNTPs. In the absence of the nonspecific 
contacts provided by Arg 74 and Gln 151, the contributions of correct hydrogen bonding and shape 

complementarity become more consequential and thereby increase discrimination between pairings, 

leading to a decrease in misincorporation. Similarly, bRT Arg 74 and Ile 181 are likely to provide 

nonspecific stabilization of base pairs and thereby promote adenine-mutagenesis. 

In summary, our results provide evidence that bRT-Avd is a catalytically inefficient enzyme, a 

property that is likely intimately tied to its ability to carry out adenine-mutagenesis. We found that the 

C6, but not the N1 or C2, purine substituent was a key determinant of adenine-mutagenesis, and that 

Arg 74 and Ile 181 have significant roles in promoting adenine-mutagenesis. Our results provide the 
first detailed characterization of the nucleobase and protein determinants of adenine-mutagenesis in 

DGRs.  
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TABLE AND FIGURES LEGENDS 
 
Table 1. Steady-state enzymatic parameters for (mis)incorporation by bRT-Avd at TR G117A. 

Table 2. Steady-state enzymatic parameters for incorporation by bRT-Avd at TR G117, G117C, and 

G117U. 

Table 3. Steady-state enzymatic parameters for incorporation by mutant bRT-Avd. 

Figure 1. Diversity-generating Retroelement. The Bordetella bacteriophage DGR consists of the 

variable protein gene mtd, which contains a variable region (VR); avd (Accessory Variability 

Determinant); an intergenic template region (TR); an intergenic spacer (Sp) region; and a reverse 
transcriptase (brt). An RNA transcript that contains TR and 5’ and 3’ sequences from avd and Sp, 

respectively, is reverse transcribed and adenine-mutagenized by the bRT-Avd complex. Synthesis of 

TR-cDNA is primed by the RNA from Sp A56, either through an internal 2’-OH or a terminal 3’-OH 

following cleavage of the RNA. TR G117 is the first position reverse transcribed, and cDNAs extend to 

TR 22-24 or just into avd. TR-cDNA homes to and replaces VR, involving either the covalently linked 

RNA-cDNA molecule or the cDNA alone.  

Figure 2. Adenine- mutagenesis. 

a. Frequency of deoxynucleotides incorporated (thymine, purple) or misincorporated (adenine, 

orange; cytosine, red; guanine, green) by bRT-Avd across template adenines in TR. Results from one 

of three independent experiments is shown. This color coding is used throughout. 

b. Frequency of deoxynucleotides (mis)incorporated across template adenines individually substituted 

at TR 114-117. 
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Figure 3. Kinetics of single deoxynucleotide (mis)incorporation. 

a. Single deoxynucleotide primer extension by bRT-Avd of [32P]-labeled P117 by TTP (top) or dATP 

(bottom), as templated by the core DGR RNA containing TR G117A. The extended product (P117 +1) 

was resolved from the reactant (P117) with an 8% sequencing gel. 
b-f. Steady-state kinetic characterization of single deoxynucleotide (mis)incorporation of TTP, dGTP, 

dCTP, dATP and dUTP, across the core DGR RNA containing TR G117A (and TR U116G, in the 

case of dATP) by bRT-Avd. The Michaelis-Menten fit is shown, and error bars represent standard 

deviations from three independent measurements. 

Figure 4. Nucleobase determinants of adenine-mutagenesis. 
a. Adenine and guanine differ at N1, C2, and C6 positions (red for A, green for G). 

b. Frequency of deoxynucleotides (mis)incorporated by bRT-Avd at TR 23 and TR 24 using the core 

DGR RNA template that had been ligated from chemically synthesized and in vitro transcribed 

sections. The chemically synthesized section contained adenosines at TR 23 and 24.  

c. Top, structure of hypoxanthine. Bottom, (mis)incorporation frequencies of bRT-Avd (left) and MMLV 

RT (right) with hypoxanthine at TR 23 and 24. 

d. Top, structure of purine. Bottom, (mis)incorporation frequencies of bRT-Avd (left) and MMLV RT 

(right) with purine at TR 23 and 24. 
e. Top, structure of N6-methyladenine (m6A). Bottom, (mis)incorporation frequencies of bRT-Avd (left) 

and MMLV RT (right) with m6A at TR 23 and 24. 

f. Top, structure of DAP. Bottom, (mis)incorporation frequencies of bRT-Avd (left) and MMLV RT 

(right) with DAP at TR 23 and 24. 

g. Top, structure of 2,6-diaminopurine (DAP). Bottom, (mis)incorporation frequencies of bRT-Avd (left) 

and MMLV RT (right) with DAP at TR 23 and 24.  

Figure 5. Abasic and Deoxy Template Sites.  

a. Frequency of deoxynucleotides (mis)incorporated across an abasic site at TR 23 for bRT-Avd, 

MMLV RT, and HIV RT. 

b. Frequency of deoxynucleotides (mis)incorporated by bRT-Avd (left) and MMLV RT (right) with 

deoxyadenosines at TR 23 and 24. 

c. Frequency of deoxynucleotides (mis)incorporated by bRT-Avd (left) and MMLV RT (right) with 

deoxyguanosines at TR 23 and 24.  

Figure 6. bRT amino acids that modulate selective fidelity. 

a. In silico model of bRT in cartoon representation, showing the N-terminal extension (NTE, blue), 

Fingers (magenta), Palm (green), and Thumb (red) subdomains. 

b. Ιn silico model of bRT with amino acids subjected to mutagenesis shown as red bonds. The main 

chain is shown as a coil, colored by subdomains as in panel a. For reference, the RNA template-DNA 
primer heteroduplex (gold) and incoming dATP (cyan) from the structure of the GsI-IIc group II intron 

maturase is shown. The template base (thymine) is purple. 

c. Average frequency of deoxynucleotides (mis)incorporated across the 22 TR adenines for wild-type 

bRT and bRT containing substitutions at amino acids implicated in modulating selective fidelity. 
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d. Average frequency of deoxynucleotides (mis)incorporated across the 22 TR adenines for wild-type 

bRT and bRT containing substitutions at amino acids predicted to be proximal to the templating base. 
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WT Km (μM) kcat (min-1) x10-3 kcat/Km (μM-1 min-1) 
x 10-3

Misincorporation
ratiob

A:Ta 7.97 ± 2.34 11.64 ± 0.71 1.46 -

A:dG 138.03 ± 48.33 3.62 ± 0.32 0.03 0.02 

A:dC 84.35 ± 26.10 6.85 ± 0.56 0.08 0.05 

A:dA 115.25 ± 22.31 9.33 ± 0.46 0.08 0.05 

A:dU 1.73 ± 0.64 11.20 ± 0.96 6.47 4.43

aTemplate base:(mis)incorporated base 
bMisincorporation ratio = [kcat (incorrect)/Km (incorrect)] / [kcat (correct)/Km (correct)]

bRT
mutant

Km (μM) kcat (min-1) x10-3 kcat/Km (μM-1 min-1) x 
10-3

Efficiencyd

R74A, 
A:T

7.09 ± 4.68 7.03 ± 0.78 0.99 0.68

I181N, 
A:T

218.85 ± 55.94 11.13 ± 1.04 0.05 0.03

I181N, 
A:dA

259.10 ± 144.40 1.37 ± 0.17 0.01 0.01

Table 1. Steady-state enzymatic parameters for (mis)incorporation by bRT-Avd at TR G117A.

Table 3. Steady-state enzymatic parameters for incorporation by mutant bRT-Avd

dEfficiency = [kcat (mutant)/Km (mutant)] / [kcat (wt)/Km (wt)]

WT Km (μM) kcat (min-1) x10-3 kcat/Km (μM-1 min-1) x 
10-3

Efficiencyc

G:dC 0.26 ± 0.09 10.41 ± 0.62 40.04 27.42

C:dG 0.17 ± 0.06 6.92 ± 0.41 40.71 27.88

U:dA 0.24 ± 0.09 9.95 ± 0.62 41.46 28.40

cEfficiency = [kcat (correct)/Km (correct)] / [kcat (wt, A:T)/Km (wt, A:T)]

Table 2. Steady-state enzymatic parameters for incorporation by bRT-Avd at TR G117, 
G117C, and G117U.
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