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ABSTRACT 

Most mutations in cancer genomes occur in the non-coding regions with unknown impact 

to tumor development. Although the increase in number of cancer whole-genome 

sequences has revealed numerous putative non-coding cancer drivers, their information is 

dispersed across multiple studies and thus it is difficult to bridge the understanding of non-

coding alterations, the genes they impact and the supporting evidence for their role in 

tumorigenesis across multiple cancer types. To address this gap, we have developed 

CNCDatabase, Cornell Non-Coding Cancer driver Database 

(https://cncdatabase.med.cornell.edu/) that contains detailed information about predicted 

non-coding drivers at gene promoters, 5’ and 3’ UTRs (untranslated regions), enhancers, 

CTCF insulators and non-coding RNAs. CNCDatabase documents 1,111 protein-coding 

genes and 90 non-coding RNAs with reported drivers in their non-coding regions from 32 

cancer types by computational predictions of positive selection in whole-genome 

sequences; differential gene expression in samples with and without mutations; or another 

set of experimental validations including luciferase reporter assays and genome editing. 

The database can be easily modified and scaled as lists of non-coding drivers are revised 

in the community with larger whole-genome sequencing studies, CRISPR screens and 

further experimental validations. Overall, CNCDatabase provides a helpful resource for 

researchers to explore the pathological role of non-coding alterations and their associations 

with gene expression in human cancers. 
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INTRODUCTION 

Mutations in the cancer genome can be divided into drivers and passengers. Driver 

mutations are the ones that confer selective advantage for the cancer cells to grow. Multiple 

databases collecting protein-coding driver mutations in cancers, such as COSMIC, Intogen, 

OncoKB, and CIViC, have helped further follow-up investigations and enabled the utility 

of the driver catalogue in numerous basic and translational research studies (1–4). Recent 

studies have shown that besides mutations in protein-coding regions, mutations in non-

coding regions, such as promoters, enhancers, insulators, and non-coding RNAs can also 

act as cancer drivers (5–12). Although mutations at the TERT promoter are the most 

prominent example of non-coding drivers, evidences supporting the functional role of other 

non-coding mutations as cancer drivers are dispersed in several independent publications. 

Different computational approaches and experimental methods have used different signals 

to identify non-coding cancer drivers and it is hard to assess their consensus in the absence 

of a unified database. The lack of a database dedicated to non-coding cancer drivers hinders 

a comprehensive evaluation of the number of drivers identified for their further 

downstream computational analysis, functional characterization, and their utility for 

translational research. Here, we built CNCDatabase (Cornell Non-coding Cancer driver 

database), a manually curated database that contains detailed information of non-coding 

cancer drivers from published studies. Currently, the CNCDatabase contains 1201 genes 

with significant alterations in the non-coding regions in 31 cancer types from 25 published 

articles.   

 

MATERIALS AND METHODS 

Data model  

The CNCDatabase has been designed as a relational database to store the collected non-

coding cancer drivers from multiple sources. The detailed Entity-Relationship (ER) 

diagram and description of all tables are provided on the “Download” page of the 
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CNCDatabase website. The database schema follows a snowflake structure where the 

multidimensional data is connected to the centralized fact table. The design follows the 

database normalization rules for keeping the data integrity of multiple related entities such 

as: non-coding driver evidence, functional element and gene associations, cancer type and 

reported study (Figure 1A and supplementary figure 1). The data structure employed in the 

CNCDatabase allows it to be extended to accommodate new types of data without major 

changes in the existing model. As a result, the database is highly scalable which is a key 

feature for early-stage projects in data integration. 

 

Data collection and processing 

We comprehensively gathered all studies related to cancer non-coding drivers currently 

available in the PubMed database up to 10th February 2020. We text mined within the title 

or abstract of the articles for the existence of combinations of key words such as noncoding, 

driver, cancer, and search for their alternative terms. example: noncoding[Title/Abstract]) 

OR non-coding[Title/Abstract]) AND driver[Title/Abstract]). After manual review of the 

returned abstracts from PubMed search, we extracted the non-coding driver evidences in 

the text and supplementary files of the 25 selected articles. We focused on the publications 

reporting non-coding alterations in the promoters, 5’ UTRs, 3’ UTRs, enhancers, splice 

sites, non-coding RNAs and CTCF-cohesin insulators.  

 

Because the CNCDatabase aims to catalogue the comprehensive list of human non-coding 

cancer drivers, we include the ones with at least one type of evidence: computational 

prediction, differential gene expression association from RNA-seq and other experimental 

validation. The evidence term “computational prediction” means the non-coding regions 

exhibit statistically significant signals of positive selection from whole genome sequencing 

data. The term “differential gene expression association from RNA-seq” means the 

mutations in the non-coding region are associated with differential gene expression 
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between wild type and mutated samples from RNA-seq data. Finally, “other experimental 

validation” means the mutations in the non-coding region have been validated for 

molecular or cancer-related phenotype by either luciferase assay, CRIPSR-Cas9 or some 

other experimental assays.  

 

Architecture of CNCDatabase 

CNCDatabase consists of a relational database server using PostgreSQL (version 9.6.6). It 

provides an application program interface (API) to access all stored data. The backend 

server is complemented with a frontend web-based user interface (UI) (Figure 1B). We 

uses Node.js (version 10.15.3) and Express.js framework (version 4.16.4) to build the 

backend server. The backend server also provides representational state transfer (REST) 

API so that the data can be accessed programmatically by other external web services. We 

uses React.js (version 16.8.5) and Bootstrap4 (version 4.0.0) as the frontend web 

development framework for responsive user interface, which means the website is suitable 

for both desktop and mobile data viewing. The chart visualizations are implemented by 

using plotly.js (version 1.46.1) package.  

 

The CNCDatabase is freely available (https://cncdatabase.med.cornell.edu/). The content 

in the database is also available to download. We provide the code at GitHub 

(https://github.com/kuranalab/CNCDatabase) for users to make use of all services locally. 

 

DATABASE FEATURES AND USE 

Summary of database content  

A total of 1676 entries in CNCDatabase correspond to 90 non-coding RNAs  and non-

coding regions of 1111 protein-coding genes that are associated with significant alterations 

in the non-coding regions from computational predictions, 18 genes associated with 

differential gene expressions from RNA-seq and 21 genes with other experimental 
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validations in 32 cancer types (Figure 2). Out of the 1201 genes associated with non-coding 

drivers from computational predictions, 355 genes associated with predicted non-coding 

drivers are from individual cancer type analysis and 684 genes associated with predicted 

non-coding drivers are from pan-cancer analysis only where samples from multiple cancer 

types are pooled together for statistical power. The number of genes for individual cancer 

types varies from 270 in melanoma to 1 in RHAB (Figure 2A). The publication from 

Weinhold et al. contributes the largest number of non-coding candidates (453 genes) from 

computational predictions (13). 

 

Web user interface 

CNCDatabase provides intuitive web interface that facilitates browsing and searching 

through four main sections including “Home”, “Search”, “Download”, “Submission” and 

“Documentation” (Figure 3). The landing page (“Home”) provides abstract graphics of the 

current available information. From there a simple button (“Get started”) immediately 

allows to launch user’s custom query. All data in the CNCDatabase can be downloaded 

from the “Download” section as text format files or database contents for further 

downstream analysis.  

 

Searching for non-coding cancer drivers.   In the “Search” section, users can apply the 

fuzzy query to retrieve the non-coding driver entries. The query fields also support the 

auto-complete function so that users can quickly pick a valid gene name and cancer type. 

The database can be searched using multiple query types, including gene name, element 

type (e.g. promoter or enhancer), cancer type, evidence type and publication PMID. If users 

do not select a specific cancer type, the system will return results in all cancer types by 

default. After clicking “Submit” button, the query results are displayed in a report 

organized into several components. The “Summary” section provides pie chart 

representations to display the numbers in each category including cancer type, element type, 
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evidence type and evidence method. The “Results” section displays the retrieved entries in 

tabular format including publication id (PMID), cancer type, gene name, Cancer Gene 

Census (CGC) from the catalogue of somatic mutations in cancer (COSMIC), non-coding 

element type, cohort size, mutated sample size, evidence type, and evidence method. Users 

can also further refine the search results by entering the targeted value in the search field 

of the returned result table (Figure 3). The search results can also be downloaded in the 

CSV format.  

 

Data submission and curation. Through the “Submission” page of the web interface, users 

can submit new non-coding cancer driver evidences to the CNCDatabase. A valid data 

submission will need the user to prepare the content following the pre-defined text format 

that describes the publication id, cancer type, gene name, non-coding element type, cohort 

size, mutated sample size, evidence type, and evidence method. Then, users will receive 

separate email notifications to track the progress and correctness of their data submission. 

Thus, the CNCDatabase can serve as a central hub of non-coding cancer drivers’ exchange 

for the cancer research community regardless of users’ bioinformatics expertise level. 

 

Overview of data in CNCDatabase 

One of the many uses of CNCDatabase is that it will help researchers to prioritize the non-

coding candidates for functional validation follow-up and to look up which non-coding 

mutations have already had functional validation evidence.  

 

Analysis of data in CNCDatabase reveals that the promoters of TERT, WDR74, PLEKHS1 

and CCDC107 have support as non-coding drivers by computational predictions from more 

than four publications (Figure 4A). TERT, WDR74 and PLEKHS1 promoter mutations also 

have supporting evidence by gene expression in RNA-seq or by other experimental assays. 

It will be interesting to interrogate the function of CCDC107 promoter mutations in breast, 
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lung and rectal cancers in future studies (Figure 4B). In the 3’UTR regions, only NOTCH1 

in CLL has functional assay evidence (Figure 5A). API5, DRD5, FAM230A and PCMTD1 

could be good candidates for follow-up functional validations at 3’UTR regions. While 

many studies have identified candidate drivers at enhancers, TP53TG1 is the only gene that 

has support from multiple publications. In the enhancer regions, the validation results are 

dispersed in separate publications (Figure 5B). For lncRNAs, MALAT1 and NEAT1 are the 

genes with support both from computational predictions and from functional assays (Figure 

5C). Although mutations in the 5’UTRs and splice sites do not have any support as cancer 

drivers from functional assays in any published study yet, there are multiple genes 

(WDR74, C16orf59, MED31, MTG2, PTDSS1, TBC1D12, and UMPS) with support from 

computational predictions from multiple publications (Figure 5D). The splice site 

mutations of TP53 and STK11 are the most promising candidates to conduct follow-up 

validations (Figure 5E).               

 

 

DISCUSSION AND FUTURE PERSPECTIVES 

We report the CNCDatabase that integrates the functional evidence reported for non-

coding cancer drivers in many independent publications. To create this comprehensive 

catalogue, we used combinations of keywords to select relevant articles from PubMed and 

manually extracted the evidences hidden in the supplementary data of each article. At the 

time of writing this publication, we document 1300 non-coding cancer drivers with support 

from either computational prediction, gene expression association or other experimental 

validation. Our database aims to advance the understanding of non-coding alterations in 

cancer for both basic and translational scientists and users with all levels of bioinformatics 

skills. Novice users can use interactive queries to browse the evidences supporting non-

coding cancer drivers and export the search results for further custom analysis. Users with 
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advanced programming skills can use the RESTful APIs of the CNCDatabase in 

conjunction with their current analysis pipelines.   

 

We will update our data collection periodically to incorporate the rapidly accumulating 

large-scale genomics studies of non-coding cancer drivers. With the advances in CRISPR 

screening technology, we expect more functionally validated non-coding cancer drivers 

will be reported in the future. In fact, CNCDatabase can help scientists pick the relevant 

lists of non-coding alterations for CRISPR validations whose results can be then added to 

the database to augment the functional evidence supporting or rejecting those drivers. In 

conclusion, CNCDatabase will serve as a valuable resource to complement the studies of 

oncogenic mechanisms currently centered on protein-coding mutations by the majority of 

cancer community. 
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FIGURE LEGENDS 

 
Figure 1. Data model and architecture of CNCDatabase. (A) Simplified database entity-

relationship diagram (ERD).  (B) The schematic data flow in the CNCDatabase between 

web interface in the frontend and PostgreSQL database in the backend. Manually curated 

cancer driver lists from PubMed or from users can be loaded into the database.      

 

 

Figure 2. Summary of number of non-coding drivers. (A) Number of non-coding drivers 

in each cancer type by computational prediction. Cancer types include pan-cancer 

(PanCancer), skin cutaneous melanoma (SKCM), liver hepatocellular carcinoma (LIHC), 
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breast invasive carcinoma (BRCA), esophageal carcinoma (ESAD), lung adenocarcinoma 

(LUAD), uterine corpus endometrial carcinoma (UCEC), bladder urothelial carcinoma 

(BLCA), pancreatic ductal adenocarcinoma  (PACA), lung squamous cell carcinoma 

(LUSC), ovarian serous cystadenocarcinoma  (OV), head and neck squamous cell 

carcinoma (HNSC), kidney renal papillary cell carcinoma (RECA), prostate 

adenocarcinoma (PRAD), colon adenocarcinoma (COAD), lymphoid neoplasm diffuse 

large B-cell lymphoma (DLBC), low grade glioma (LGG), stomach adenocarcinoma  

(STAD), chronic lymphoctytic leukemia (CLL), kidney renal clear cell carcinoma (KIRC), 

(THCA), glioblastoma multiforme  (GBM), medullablastoma (MB), kidney chromophobe 

(KICH), (Lymph-BNHL), malignant lymphoma (MALY), B-cell acute lymphoblastic 

leukemia (B-ALL), embryonal tumor with multilayered rosettes  (ETMR), high-grade 

glioma (HGG), (LAML), pilocytic astrocytoma (PA), rhabdoid tumor (RHAB). (B) 

Number of non-coding drivers in each cancer type that show differential gene expression 

in samples with mutations vs. without using RNA-seq data. (C) Number of non-coding 

drivers in each cancer type with support from other functional validation, such as 

CRISPR/Cas9 or luciferase reporter assay .  

 

 

Figure 3. Web use interface and supported functionality in the CNCDatabase. User can 

use the combination of gene name, element type, cancer type, evidence type or publication 

id (PMID) to query the non-coding cancer driver list from the backend database. The 

returned result shows graphical summary and list in the table format.  

 

 

Figure 4. Non-coding cancer driver candidates at promoter regions. (A) computational 

predictions (B) gene expression association and other experimental validations. In the 

results from computational predictions, for cancer driver candidates reported in only one 

publication, we only show candidates with support from experimental validation or those 

associated with cancer genes in COSMIC census list. The cancer genes are highlighted in 

bold. 

 

Figure 5. Non-coding cancer driver candidates from computational predictions and 

candidates with functional validations. (A) 3’ UTR, (B) enhancer, (C) lncRNA, (D) 5’UTR 

and (E) splice site. In the results from computational predictions, for cancer driver 

candidates reported in only one publication, we only show candidates with support from 

experimental validation or those associated with cancer genes in COSMIC census list. The 

cancer genes are highlighted in bold. 

 

Supplementary figure 1. Detailed database entity-relationship diagram (ERD) in 

CNCDatabase.   
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