
1 

Intrinsically disordered protein mutations 

can drive cancer and their targeted 

interference extends therapeutic options 
 

 

Bálint Mészáros1, Borbála Hajdu-Soltész1, András Zeke2, and Zsuzsanna Dosztányi1,* 
1MTA-ELTE Momentum Bioinformatics Research Group, Department of Biochemistry, Eötvös 

Loránd University, Pázmány Péter stny 1/c, Budapest, H-1117 Hungary 
2Protein Research Group, Institute of Enzymology, RCNS, HAS, Budapest PO Box 7, H-1518, 

Hungary 
*Corresponding author: dosztanyi@caesar.elte.hu 

Abstract 

Intrinsically disordered regions (IDRs) are important functional modules of several proteins, 

providing extra layers of regulation as switchable structural elements. Protein disorder has been 

associated with cancer, but it is unknown whether IDR mutations represent a distinct class of 

driver events associated with specific molecular mechanisms and system level properties, which 

would require dedicated targeting strategies. Based on an integrative computational approach, 

we identified 47 IDRs whose genetic mutations can be directly linked to cancer development. 

While not as common as alterations of globular domains, IDR mutations contribute to the 

emergence of the same cancer hallmarks through the modulation of distinct molecular 

mechanisms, increased interaction potential and specific functional repertoire. We demonstrate 

that in specific cancer subtypes, IDR mutations represent the key events driving tumorigenesis. 

However, treatment options for such patients are currently severely limited. We suggest targeting 

strategies that could enable successful therapeutic intervention for this subclass of cancer drivers, 

extending our options for personalized therapies.  
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Introduction 

Tumorigenic variations at the genome level manifest in changes in protein structure, availability, 

localization, turnover, or stability. The structural and functional properties of the affected proteins 

determine their oncogenic or tumor suppressor roles, which, in the case of context-dependent 

genes, can also depend on tissue type or the stage of tumor progression. Understanding how 

these tumorigenic roles emerge from specific mutations is essential for subsequent drug 

development efforts. Genetic variations have been collected for tens of thousands of human 

cancer incidences and can be accessed via public repositories, such as TCGA 

(https://cancergenome.nih.gov/), or the COSMIC database, incorporating data from targeted 

studies as well(Tate et al., 2019). These data revealed that cancer samples are extremely 

heterogeneous both in terms of the number and type of genetic alterations. However, various 

patterns start to emerge when these samples are analyzed in combination(Cancer Genome Atlas 

Research Network et al., 2013), enabling the identification of cancer driving genes that are 

frequently mutated in specific types of cancer(Lawrence et al., 2014, 2013), highlighting biological 

processes/pathways that are commonly altered in tumor development(Ali and Sjöblom, 2009; 

Copeland and Jenkins, 2009) and traits that govern tumorigenic transformation of cells(Hanahan 

and Weinberg, 2011). Recent analyses estimated the number of driver genes to be in the low to 

mid-hundreds(Bailey et al., 2018), but this number could increase with growing number of 

sequenced cancer genomes(Lawrence et al., 2014). 

Recent computational methods can not only identify cancer genes, but also highlight specific 

functional modules that are critical for tumorigenesis(Buljan et al., 2018; Mészáros et al., 2016; 

Porta-Pardo and Godzik, 2014; Tamborero et al., 2013), identifying oncogenes that are altered 

via activating mutations, but also the majority of tumor suppressors that are typically deactivated 

by truncating mutations(Buljan et al., 2018; Mészáros et al., 2016). The positional accumulation 

of mutations within specific protein regions has been analyzed for structures, domains, or 

interactions surfaces(Engin et al., 2016; Kamburov et al., 2015; Porta-Pardo et al., 2015; Tokheim 

et al., 2016; Yang et al., 2015). However, a sizeable portion of human proteins corresponds to 

protein regions that function without inherent structure(Dyson and Wright, 2005; van der Lee et 

al., 2014). These intrinsically disordered proteins/regions (IDPs/IDRs) are predicted to represent 

around 30% of all residues of human proteins(Ward et al., 2004) and are also important for the 

interpretation of the effect of various disease mutations(Vacic et al., 2012). 

The lack of an inherent structure has a profound effect on the way IDPs carry out their 

functions(Tompa, 2002; van der Lee et al., 2014). IDPs can act as flexible linkers or entropic 

chains, directly exploiting their conformational heterogeneity. IDPs also often interact with other 

biomolecules with interaction sites that are usually short and linear. These regions serve as 

recognition sites for specific protein domains(Davey et al., 2012) or nucleic acids(Staby et al., 

2017), be sites of post-translational modifications(Darling and Uversky, 2018), can harbour 

localization signals(Eisenhaber and Eisenhaber, 2007), or mediate oligomerization modulating 

protein stability and functionality(Faust et al., 2014). Other types of functional IDRs cover domain 

sized regions, serving as assembly sites for larger complexes(Cortese et al., 2008). In general, 

IDPs are core components of interaction networks and fulfill critical roles in regulation and 

signaling(Wright and Dyson, 2015). In accord with their crucial functions, IDPs are often 
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associated with various diseases(Babu et al., 2011), in particular with cancer. IDRs can be integral 

parts of both oncogenes – such as β-catenin(Morin et al., 2016) – and tumor suppressors – such 

as p53(Olivier et al., 2010). The prevalence of protein disorder among cancer-associated proteins 

was also observed at a more general level(Iakoucheva et al., 2002). A direct link between protein 

disorder and cancer was suggested in the case of two common forms of generic alterations; 

chromosomal rearrangements(Hegyi et al., 2009) and copy number variations(Vavouri et al., 

2009). In contrast, a recent analysis found that cancer-associated missense mutations had a 

preference for ordered regions, and suggested that the association between protein disorder and 

cancer could be indirect(Pajkos et al., 2012). Nevertheless, a direct link between disordered 

regions and mutations were also suggested either through the abolishment(Uyar et al., 2014) or 

the creation(Meyer et al., 2018) of IDR-mediated interactions, but only in a few cases. In general, 

the extent to and the mechanisms through which disordered protein regions directly drive cancer 

are still largely unexplored. 

The identification of functional modules that are directly altered in cancer driver genes can serve 

with potential targets for pharmaceutical intervention. Most current anticancer drugs are inhibitors 

designed against enzyme activity (using either competitive or noncompetitive inhibition)(Griffith et 

al., 2010; Pathania et al., 2018; Scatena et al., 2008). In general, currently successful drug 

development efforts mainly focus on ordered protein domains, in the framework of structure-

based rational drug design(Lounnas et al., 2013). However, IDPs can potentially offer new 

directions for cancer therapeutics(Kulkarni, 2016). Currently tested approaches include the direct 

targeting of IDPs by specific small compounds, or blocking the globular interaction partner of 

IDPs(Metallo, 2010; Neira et al., 2017). However, the direct targeting of IDPs requires radically 

different molecular strategies, and such approaches have yet to reach maturity. 

In this work we analyzed cancer mutations from genome wide screens and targeted 

studies(Forbes et al., 2016) to identify significantly mutated protein regions(Mészáros et al., 

2016), and classify them into ordered and disordered regions integrating experimental structural 

knowledge and prediction. Automated and high-quality manually curated information was 

gathered for the collected examples to gain better insights into their functional and network 

properties, and their roles in tumorigenic processes. We aimed to answer the following questions: 

What are the characteristic molecular mechanisms, biological processes, and protein-protein 

interaction network roles associated with proteins mutated at IDRs? And at a more generic level: 

how fundamental is the contribution of IDPs to tumorigenesis? Are IDP mutations just accessory 

events, or can they be the main, or even the sole molecular background to the emergence of 

cancer? How much can we gain by their systematic targeting efforts, which are the cancer types 

in which IDR mutations should be considered for large therapeutic gain, and finally, how should 

we select our targeting approaches for specific IDPs? 
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Results 

1. Disordered protein modules are targets for tumorigenic 

mutations 

Protein disorder is an integral part of many cancer driver proteins and is 

preferentially mutated in context-dependent genes 

Here we used an integrated approach to define ordered and disordered functional modules in all 

human proteins, merging experimental annotations and structural predictions (see Data and 

methods). The majority of human proteins (Supplementary Figure S1) are modular with almost 

70% of all proteins incorporating at least one disordered module. Module numbers were assessed 

separately for the census of cancer driver genes collected from the COSMIC database(Sondka 

et al., 2018) and the literature(Vogelstein et al., 2013). All census drivers were manually 

characterized as tumor suppressors, oncogenes and context-dependent cancer genes based on 

the literature (Supplementary Table S1). Census drivers have a higher average modularity, and 

contain a higher average number of disordered modules compared to all human proteins (Figure 

1A, Supplementary Figure S2), and this modularity is even higher for context-dependent genes. 

The reported values are likely to be still conservative estimates of the true number of modules in 

proteins, as individual regions could contain yet uncharacterized tandem modules, especially in 

the case of disordered regions. 

The abundance of IDRs in cancer drivers hint at the importance of disorder for the normal function 

of these proteins, but is not necessarily reflected in the distribution of cancer mutations. To 

analyze this, we collected exomic cancer mutations with a clearly localized effect from the 

COSMIC database (see Data and methods). Figure 1B shows that exomic mutations 

preferentially target ordered sequence regions in drivers, in line with earlier observations(Pajkos 

et al., 2012). This preference is most pronounced for oncogenes, for which only less than 10% of 

known mutations fall into IDRs. In contrast, the fraction of mutations within IDRs shows a three-

fold increase in tumor suppressor genes (17%) and reaches 47% in the case of context-

dependent genes. The trends remain the same using whole exome sequencing data from TCGA 

(Supplementary Figure S3, Data and methods). 

Several cancer drivers are modulated through disordered regions 

In order to explore the possible causal relationship between tumorigenesis and structural 

properties, we used iSiMPRe(Mészáros et al., 2016) on the pre-filtered mutation data from 

COSMIC to identify specific regions in proteins that are directly involved in cancer development 

(see Data and methods). By restricting our analysis to high-confidence cases, we identified 178 

ordered and 47 disordered driver regions in 145 proteins from the human proteome 

(Supplementary Table S2, Figure 1C). The structural status of these regions were confirmed by 

manual curation. The identified driver regions typically represent compact modules, usually not 
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covering more than 10% or 20% of the sequences in the case of oncogenes and tumor 

suppressors, respectively (Supplementary Figure S4). While oncogenes and tumor suppressors 

both incorporate disordered driver regions, these regions are most common in  context-dependent 

drivers  (Figure 1C). 

According to the 20/20 rule, true oncogenes are recognizable from mutation patterns, having a 

higher than 20% fraction of missense point mutations in recurring positions (termed the oncogene 

score(Vogelstein et al., 2013)). In contrast, tumor suppressors have lower oncogene scores, and 

predominantly contain truncating mutations. Figure 1D shows that the 20/20 rule holds true for 

the vast majority of the identified region-harboring oncogenes and context-dependent genes. 

Figure 1D also shows the oncogene scores calculated from the identified regions alone. Despite 

their short relative lengths (Supplementary Figure S4), the driver regions are the main source of 

the oncogenic effect in almost all cases. While most drivers contain both ordered and disordered 

modules, oncogenesis is typically mediated through either ordered or disordered mutated regions. 

This effectively partitions cancer drivers into ‘ordered drivers’ and ‘disordered drivers’, regardless 

of the exact structural composition of the full protein. Thus, IDRs are not only essential 

components of drivers, but the direct modulation of these regions is heavily utilized in the 

emergence of cancer. 
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Figure 1. Occurrence of protein disorder at the level of protein classes, modules and in terms of 

mutated sites. A: The distribution of all census cancer drivers with regard to the structural states of 

constituent functional modules. B: The distribution of residues and local exomic mutations 

(missense/inframe indel mutations) from COSMIC in the human proteome and various cancer driver 

classes. The vertical line marks the ratio of ordered and disordered residues in the human proteome, 

corresponding to the expected ratio of randomly occurring mutations. C: The distribution of ordered and 

disordered driver protein regions. D: Oncogene scores of full genes and oncogene scores explained by the 

identified regions in oncogenes and context-dependent driver genes. ‘Unaccounted’ corresponds to the 

fraction of mutations not in the identified, high significance regions. 
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2. Disordered drivers function via distinct molecular mechanisms    

Disordered drivers employ distinctive molecular mechanisms of action 

Nearly all these proteins have already been identified as potential cancer drivers in the literature, 

and available structural and functional information can highlight the possible mechanisms of 

action altered in cancer (Figure 2, Supplementary Table S3), even though the information is  often 

incomplete. 

Several of the identified highly mutated disordered regions correspond to linear motifs, including 

sites for protein-protein interactions (e.g. hUBPy [corresponding gene: USP8], forkhead box 

protein O1 [FOXO1] and ER-α [ESR1]), degron motifs that regulate the degradation of the protein 

(e.g β-catenin [CTNNB1], cyclin-D3 [CCND3] and CSF-1R [CSF1R]) and localization signals (e.g. 

p14ARF [CDKN2A] and BAF47 [SMARCB1]). However, other types of disordered functional 

modules can also be targeted by cancer mutations. IDRs with autoinhibitory roles (e.g. 

modulating the function of adjacent folded domains) are represented by EZH2 [EZH2], a 

component of the polycomb repressive complex 2. While the primary mutation site in this case is 

located in the folded SET domain, cancer mutations are also enriched within the disordered C-

terminus that normally regulates the substrate binding site on the catalytic domain. Another 

category corresponds to regions involved in DNA and RNA binding. The highly flexible C-

terminal segment of the winged helix domain is altered in the case of HNF-3-α [FOXA1], 

interfering with the high affinity DNA binding. For the splicing factor hSNF5 [SRSF2], mutations 

affect the RNA binding region (Figure 2). 

Larger functional disordered modules, often referred to as intrinsically disordered domains 

(IDDs), can also be the primary sites of cancer mutations. Mutated IDDs exhibit varied structural 

and sequence features. In pVHL [VHL], the commonly mutated central region adopts a molten 

globule state in isolation(Sutovsky and Gazit, 2004). The mutated region of APC [APC] 

incorporates several repeats containing multiple linear motif sites, which are likely to function 

collectively as part of the β-catenin destruction complex(Aoki and Taketo, 2007). In calreticulin 

[CALR], cancer mutations alter the C-terminal domain-sized low complexity region, altering Ca2+ 

binding and protein localization(Elf et al., 2016). 

Linker IDRs, not diredtly involved in molecular interactions, are also frequent targets of cancer 

mutations. The juxtamembrane region located between the transmembrane segment and the 

kinase domain of Kit [KIT] and related kinases, are the main representatives of this category. 

Similarly, the regulatory linker region connecting the substrate- and the E2 binding domains is 

one of the dominant sites of mutations in the case of the E3 ubiquitin ligase c-Cbl [CBL]. 

One of the recurring themes among cancer-related IDP regions is the formation of molecular 

switches (Supplementary Table S3). The most commonly occurring switching mechanism 

involves various post-translational modifications (PTMs), including serine or threonine 

phosphorylation (e.g. cyclin-D3 [CCND3], c-Myc [MYC] and APC [APC]), tyrosine phosphorylation 

(e.g. c-Cbl [CBL], CD79b [CD79B], and CSF-1R [CSF1R]), methylation (e.g. histone H3s 

[H3F3A/H3F3B/HIST1H3B]) or acetylation (e.g. ER-α [ESR1]). An additional way of forming 
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molecular switches involves overlapping functional modules (Figure 2). In the case of BAF47 

[SMARCB1], the mutated inhibitory sequence is likely to normally mask a nuclear export signal in 

the autoinhibited state (Craig et al., 2002). In the case of Pax-5 [PAX5], the mutated flexible linker 

region is also involved in the high affinity binding of the specific DNA binding site(Garvie et al., 

2001). Cancer mutations of the bZip domain of C/EBP α [CEBPA] disrupt not only the DNA binding 

function, but the dimerization domain as well(Paz-Priel and Friedman, 2011). In addition to their 

linker function, the juxtamembrane regions of kinases are also involved in autoinhibition and trans-

phosphorylation, regulating degradation and downstream signaling events(Hubbard, 2004; Li and 

Hristova, 2010). 

Different types of disordered drivers are mutated with specific mutational 

mechanisms 

Mutational patterns are strongly associated with the role of the perturbed functional modules (see 

Figure 2 and online visualization links in Supplementary Table S3). Short linear motifs are typically 

mutated in a few key positions, often only affecting a single PTM site that plays a key role in 

regulating the interaction. IDDs generally show more distributed mutational patterns, in accord 

with their larger sizes. These regions can also be targeted by truncating mutations, which affect 

only the specific region, such as in the case of calreticulin [CALR] and APC [APC]. The most 

common mutation type for linker regions involves in-frame insertions and deletions, which alter 

the length of the region. These types of mutations are also common for multifunctional modules 

that have autoinhibitory functions and serve as linkers as well. 

The collected examples of disordered regions mutated in cancer cover both oncogenes and tumor 

suppressors, as well as context-dependent genes. There is a slight tendency for tumor 

suppressors to be altered via longer functional modules, such as IDDs. Nevertheless, with the 

exception of linkers in tumor suppressors and IDDs in context-dependent genes, every other 

combination occurs even within our limited set. 
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Figure 2. IDP regions mutated in cancer. The classification of identified disordered cancer drivers. Protein 

names in gray indicate known switching mechanisms either via PTMs or overlapping functions. In protein 

architecture schematics, blue ovals represent folded domains, blue lines disordered regions and red 

rectangles represent disordered driver modules. Mutation patterns show the typical distribution of missense 

mutations (black bars) an indels (red boxes). For detailed mutation profiles for each gene, see  online 

visualization links in Supplementary Table S3. 

 

3. Disordered mutations give rise to cancer hallmarks by targeting 

central elements of biological networks 

Disordered drivers integrate biological processes through their increased 

interaction capacities 

Almost all of the analyzed IDRs are involved in binding to a molecular partner, even some of the 

linkers owing to their multifunctionality. Therefore, we analyzed known protein-protein interactions 

of ordered and disordered cancer drivers in more detail (see Data and methods). Our results 

indicate that both sets of drivers are involved in a large number of interactions, and show 

increased betweenness values compared to average values of the human proteome, and even 

compared to the direct interaction partners of cancer drivers (Figure 3A). However, this trend is 

even more pronounced for disordered drivers. The elevated interaction capacity could also be 

detected at the level of molecular function annotations using Gene Ontology (see Supplementary 
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table S4 and Data and methods). Figure 3B shows the average number of types of molecular 

interaction partners for both disordered and ordered drivers, contrasted to the average of the 

human proteome. The main interaction partners are similar for both types of drivers, often binding 

to nucleic acids, homodimerizing, or binding to receptors. However, disordered drivers are able 

to physically interact with a wider range of molecular partners, and are also able to more efficiently 

interact with RNA and the effector enzymes of the post-translational modification machinery. This, 

in particular, can offer a way to more easily integrate and propagate signals through the cell, 

relying on the spatio-temporal regulation of interactions via previously demonstrated switching 

mechanisms (Supplementary Table S3). 

The high interaction capacity and central position of disordered drivers allows them to participate 

in several biological processes. The association between any two processes can be assessed by 

quantifying the overlap between their respective protein sets (see Data and methods). We 

analyzed the average overlap between various processes using a set of non-redundant human-

related terms of the Gene Ontology (Supplementary Table S5). The average overlap of proteins 

for two randomly chosen processes is 0.15%, showing that as expected, in general, biological 

processes utilize characteristically different gene/protein sets. Restricting proteins to the identified 

drivers, and only considering processes connected to at least one of them, the average overlap 

between processes is increased to 3.00% for ordered drivers and 5.80% for disordered drivers 

(Figure 3C). This shows that the integration of various biological processes is a distinguishing 

feature of cancer genes in general, and for disordered drivers in particular; and that IDPs targeted 

in cancer are efficient integrators of a wide range of processes. 

Disordered drivers employ characteristic molecular toolkits 

Disordered and ordered drivers can employ different molecular mechanisms in order to fulfill their 

associated biological processes. To quantify these differences, we assembled a set of molecular 

toolkits integrating Gene Ontology terms (see Data and methods and Supplementary Table S6). 

Based on this, we calculated the enrichment of each molecular toolkit for both disordered and 

ordered drivers, in comparison with the full human proteome, highlighting enriched and possibly 

driver class-specific toolkits (Figure 3D). Receptor activity is the most enriched function for both 

types of drivers, owing at least partially to the fact that receptor tyrosine kinases can often be 

modulated via both ordered domains and IDRs (Figure 1 and Figure 2). In contrast, the next three 

toolkits enriched for disordered drivers are highly characteristic of them. These are gene 

expression regulation, the modulation of DNA structural organization, and the degradation of 

proteins, mainly through the ubiquitin-proteasome system. In addition, RNA processing, 

translation and folding is also highly characteristic of disordered drivers; and while this toolkit is 

not highly enriched compared to the human proteome in general, ordered drivers are almost 

completely devoid of this toolkit. 

Modulation of disordered proteins presents an independent tumorigenic 

mechanism for all hallmarks of cancer 

There are ubiquitously displayed features of cancer cells, often described as the ten hallmarks of 
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cancer(Hanahan and Weinberg, 2011). In order to quantify the contribution of drivers to each 

hallmark, we manually curated sets of biological process terms from the Gene Ontology that 

represent separate hallmarks (see Data and methods and Supplementary Table S7). Enrichment 

analysis of these terms shows that all hallmarks are significantly over-represented in census 

cancer drivers compared to the human proteome (Supplementary Figure S5A), serving as a proof-

of-concept for the used hallmark quantification scheme. Furthermore, comparing drivers with 

identified regions to all census cancer drivers shows a further enrichment (Supplementary Figure 

S5B), indicating that the applied region identification protocol of iSiMPRe is able to pick up on the 

main tumorigenic signal by pinpointing strong driver genes. Separate enrichment calculations for 

ordered and disordered drivers show that despite subtle differences in enrichments, in general, 

all ten hallmarks are over-represented in both driver groups (Figure 3E). This indicates that while 

the exact molecular mechanisms through which ordered domain and IDR mutations contribute to 

cancer are highly variable, both types of genetic modulation can give rise to all necessary cellular 

features of tumorigenic transformation. Hence, IDR mutations provide a mechanism that is 

sufficient on its own for cancer formation. 

Protein, network, and cellular level attributes provide complementary 

information on disordered drivers        

In the previous sections we elucidated the characteristic features of disordered drivers at various 

levels. These include five major features: the molecular mechanisms (1) at the protein level 

(Figure 2); the number and type of interaction partners (2), and the molecular toolkits (3) at the 

network/pathway level (Figure 3);  the associated hallmarks (4) (Figure 3), and the tumorigenic 

character of the protein at the cellular level (5) (Figure 2 and Supplementary Table S3). These 

features provide information on the drivers at very different levels, but in theory, they might be 

associated in non-trivial ways. Such associations could be used to establish disease subtypes, or 

might direct targeting efforts. For example, a hypothetical association between SLiM mutations 

and the ‘Inducing angiogenesis’ hallmark would mean, that counteracting SLiM mutations would 

be a generic approach to solid tumor treatments. However, no strong association was found when 

calculating the common information content encoded in the five main features (see Data and 

methods, Supplementary Table S8 and Supplementary Table S9). This indicates that these five 

aspects of disordered drivers are highly complementary, and potentially all of them need to be 

considered for determining efficient targeting sites. 
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Figure 3. Characteristics of cancer drivers at the network/pathway-, and cellular levels. A: Average 

degree (top) and betweenness (bottom) of all human proteins, the direct interaction partners of drivers, 

ordered drivers, and disordered drivers. B: the average occurrence of various types of interaction partners 

for the whole human proteome (grey circle), ordered drivers (blue circle) and disordered drivers (red circle). 

Values in circles show the average number of types of interactions together with standard deviations. The 

most common interaction types are shown in grey boxes with connecting lines showing the fraction of 

proteins involved in that binding mode. Only interaction types present for at least 1/8th of proteins are 

shown. C right: average values of overlap between protein sets of various biological processes, considering 

the full human proteome (grey), ordered drivers (blue) and disordered drivers (red). Left: an example subset 

of disordered drivers with associated biological processes marked with arrows (dashed and solid arrows 

marking processes involving only one, or several disordered drivers). Process names in grey represent 

processes that involve at least two disordered drivers, names in white boxes mark other processes attached 

to disordered drivers. D: Overrepresentation of molecular toolkits defined based on GO terms for ordered 

(blue) and disordered (red) drivers, compared to the average of the whole human proteome. E: 

Overrepresentation of hallmarks of cancer for ordered (blue) and disordered (red) drivers compared to all 

census drivers. 
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4. Disordered drivers are important players in cancer at the 

patient sample level 

Cancer incidences can arise through disordered drivers 

Using whole-genome sequencing data from TCGA we assessed the role of the identified drivers 

at the patient level. 10,197 tumor samples, containing over three and a half million genetic 

variations were considered, to delineate the importance of disordered drivers at the sample level 

across the 33 cancer types covered in TCGA. In driver region identification we only considered 

mutations with a local effect (missense mutations and in frame indels), which naturally yielded 

only a restricted subset of all true drivers. However, in patient level analyses, we also considered 

other types of genetic alterations of the same gene, in order to get a more complete assessment 

of the alteration of identified driver regions per cancer type (see Data and methods). 

In spite of the incompleteness of the identified set of driver genes, we still found that on average 

about 80% of samples contains genetic alterations that affect at least one identified ordered or 

disordered driver region. Thus, the identified regions are able to describe the main players of 

tumorigenesis at the molecular level (Figure 4A). While at the protein level typically either ordered 

or disordered regions are modulated (Figure 1E), at the patient level most samples show a mixed 

structural background, most notably in colorectal cancers (COAD and READ). Some cancer 

types, however, show distinct preferences for the modulation of a single type of structural element: 

for thyroid carcinoma (THCA) or thymoma (THYM) the molecular basis is almost always the 

exclusive mutation of ordered protein regions. At the other extreme, the modulation of disordered 

regions is enough for tumor formation in a considerable fraction of cases of liver hepatocellular, 

adrenocortical, and renal cell carcinomas, together with diffuse large B-cell lymphoma (LIHC, 

ACC, KIRC and DLBC). These results, in line with the previous hallmark analyses, show that IDR 

mutations can constitute a complete set of tumorigenic alterations. Hence, there are specific 

subsets of patients that carry predominantly, or exclusively disordered driver mutations in their 

exome. 

Disordered drivers display characteristic cancer-type specificity 

Whole genome sequencing data was also used to assess the cancer type specificity of disordered 

drivers (Figure 4B). Nearly all studied cancer types have at least one disordered driver that is 

mutated in at least 1% of cases, with the exception of thyroid carcinoma (THCA). As such, 

disordered mutations play important roles in almost all cancer types, but in a highly 

heterogeneous way. There are only four disordered drivers that can be considered as generic 

drivers, being mutated in a high number of cancer types. p53 presents a special case in this 

regard, as it is the main tumor suppressor gene in humans, and thus is most often affected by 

gene loss or truncations affecting a large part of the protein. These alterations abolish the function 

of both the ordered and disordered driver regions at the same time (the DNA-binding domain and 
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the tetramerization region). In contrast, the other three generic disordered drivers are 

predominantly altered via localized mutations in their disordered regions: the degrons of β-catenin 

and NRF2, and the central region of APC, and hence these are true disordered drivers. While the 

four generic drivers are commonly mutated in several cancer types, these cases are the 

exception. The majority of disordered drivers show a high degree of selectivity for tumor types, 

being mutated only in very specific cancers. This specificity is strongly connected to the 

tumorigenic roles of disordered drivers (Figure 4C). Considering 1% of patient samples as the 

cutoff, tumor suppressors are typically implicated in a broad range of cancer types, while 

oncogenes on average show a high cancer type specificity. Context-dependent disordered drivers 

are often mutated in only a very restricted set of cancers. 

Mutation data collected in TCGA corresponds to relatively broad classes of tumor types, but does 

not include results of targeted studies corresponding to several rarer cancers or more specific 

cancer subtypes. However, for several tumor subclasses, including both malignant and benign 

cases, mutations in a specific disordered driver is the main, or one of the main driver events 

(Table 1). In the case of these tumor types, targeting disordered regions can have a potentially 

huge treatment advantage, and in many cases, the counteraction of these IDR mutations may be 

the only viable therapeutic strategy. 

Cancer incidences arising through disordered drivers lack effective drugs 

Next, we addressed how well disordered drivers are targetable by current FDA approved drugs, 

as collected by the OncoKB database(Chakravarty et al., 2017). This database currently contains 

83 FDA-approved anticancer drugs, either as part of standard care or efficient off-label use (see 

Data and methods). These drugs have defined exome mutations that serve as indications for their 

use. The majority of these drugs target ordered domains, mostly inhibiting kinases. Currently only 

7 drugs are attached to disordered region mutations, which correspond to only four sites in FGFR 

and c-Met. These drugs act indirectly, targeting ordered kinase domains, to counteract the effect 

of the listed activating disordered mutations. 

This represents a clear significant negative treatment option bias against patients whose tumor 

genomes contain disordered drivers. Considering all mutations in patient samples gathered in 

TCGA, the fraction of disordered driver mutations actually serves as an indicator of whether there 

are suitable drugs available. Patients with mostly ordered driver mutations have a roughly 50% 

chance that an FDA-approved drug can be administered with expected therapeutic effect. This 

chance drops to 10% for patients with predominantly disordered mutations (Figure 4D). Thus, 

incidences of cancer arising through disordered driver mutations are currently heavily under-

targeted, highlighting the need for efficient targeting strategies for IDP driven cancers. 
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Figure 4: Therapeutic options for targeting disordered drivers. A: Fraction of samples that contain 

altered driver genes per cancer types. Samples can contain mutations affecting only ordered drivers (blue), 

only disordered drivers (red) or both (mixed - gray). B: Percentage of cancer samples, grouped by cancer 

types, containing genetic alterations that target the identified disordered driver regions. C: The distribution 

of disordered drivers from the three classes of cancer genes categorized into specific, narrow and broad 

range, based on the frequency of samples they are mutated in (see Data and methods). D: The probability 

of having an available FDA approved drug for at least one mutation-affected gene for patients, as a function 

of the ratio of affected disordered genes compared to all mutated genes in the sample. The horizontal black 

line represents the total fraction of targetable samples (0.49) from 8,444 samples. 
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Tumor type (name) 
Gene 

implicated 
Malignancy Incidence Reference 

Diffuse large B-cell 
lymphoma (ABC subtype) 

CARD11 malignant 9.6-10.8% (7/73, 
4/37) 

(Compagno et al., 2009; 
Lenz et al., 2008) 

Burkitt lymphoma CCND3 malignant 14.6% (6/41) (Schmitz et al., 2012) 

Diffuse large B-cell 
lymphoma (ABC subtype) 

CCND3 malignant 10.7% (3/28) 
(Schmitz et al., 2012) 

Diffuse large B-cell 
lymphoma (PCNS subtype) 

CD79B malignant 31.6% (6/19) 
(Zheng et al., 2017) 

Acute myeloid leukaemia CEBPA malignant 15% (16/104) (Lin et al., 2005) 

Myelodysplasia and acute 
myeloblastic leukemia 

CSF1R malignant 12.7% (14/110) 
(Ridge et al., 1990) 

Endometrioid endometrial 
carcinoma (low-grade) 

CTNNB1 malignant 87.0% (47/54) 
(Liu et al., 2014) 

Ovarian endometrioid 
carcinomas (low-grade) 

CTNNB1 malignant 53.3% (16/30) 
(McConechy et al., 2014) 

Hepatocellular carcinoma 
(HBV/HCV related) 

CTNNB1 malignant 26% (32/122) 
(Pezzuto et al., 2016) 

Desmoid tumor CTNNB1 benign 73% (106/145) (Mullen et al., 2013) 

Juvenile nasopharyngeal 
angiofibroma 

CTNNB1 benign 75% (12/16) (Mishra et al., 2016) 

Paraganglioma EPAS1 
possibly 

malignant 
17% (7/41) 

(Comino-Méndez et al., 
2013) 

Adult granulosa cell tumors of 
the ovary 

FOXL2 malignant 93-97% (52/56, 
86/89) 

(Jamieson et al., 2010; Shah 
et al., 2009) 

Pediatric anaplastic 
astrocytoma / glioblastoma 

H3F3A malignant 17.9-27.1% (5/28, 
35/129) 

(Gielen et al., 2013) 

Giant cell tumor of bone 
(stromal cell) 

H3F3A benign 92% (49/53) (Behjati et al., 2013) 

Chondroblastoma (stromal 
cell) 

H3F3B benign 95% (73/77) (Behjati et al., 2013) 

GIST KIT malignant 47% (57/121) (Xu et al., 2014) 

Extrauterine leiomyoma and 
leiomyosarcoma 

MED12 (possibly) 
malignant 

19% (6/32) 
(Ravegnini et al., 2013) 

Phyllodes tumor of breast MED12 possibly 
malignant 

49% (41/83) 
(Laé et al., 2016) 

Uterine leiomyoma MED12 benign 70% (159/225) (Mäkinen et al., 2011) 

Rhabdomyosarcoma MYOD1 malignant 20% (10/49) (Rekhi et al., 2016) 

Esophageal squamous cell 
carcinoma 

NFE2L2 malignant 9.6% (47/490) 

(Du et al., 2017) 

B-cell progenitor acute 
lymphoblastic leukemia 

PAX5 malignant 34-39% (40/117, 
94/242) 

(Familiades et al., 2009; 
Mullighan et al., 2007) 

Chronic myelomonocytic 
leukemia 

SETBP1 malignant 25% (14/56) 
(Ouyang et al., 2017) 
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Atypical Chronic Myeloid 
Leukemia 

SETBP1 malignant 24.3% (17/70) 
(Piazza et al., 2013) 

Chronic myelomonocytic 
leukaemia 

SRSF2 malignant 47% (129/275) 
(Meggendorfer et al., 2012) 

Pituitary adenoma USP8 
possibly 

malignant 
14% (6/42) (Ballmann et al., 2018) 

 

Table 1: Cancer types with mutation incidence rates around or above 10% in the disordered driver gene of 

interest per total patients studied. 

5. Targeting strategies can be developed for disordered drivers by 

considering protein features 

Disordered drivers can be targeted by indirect strategies 

To date, the most viable targeting approaches are enzyme inhibition(Griffith et al., 2010; Pathania 

et al., 2018; Scatena et al., 2008), which yielded several FDA-approved anti-cancer drugs, and 

protein-protein interaction (PPI) disruption, which yielded several compounds with great 

therapeutic promise(Ivanov et al., 2013). However, drugs directly targeting disordered regions are 

still lacking. Here we examined the strategy of indirect targeting, ie. compensating for disordered 

driver mutations with small molecule/peptide based inhibitors against ordered domains, 

developed based on existing strategies. Through a few selected examples, we analyzed how the 

discussed features of driver proteins can help to establish successful target selection (Figure 5), 

while the cancer type distribution analyses of chapter 4 provide cancer subtypes, where these 

targeting options provide a significant therapeutic gain. 

As a general rule, the targeted protein domain should be as close to the mutated IDR as possible. 

Therefore, the first consideration should be the modular architecture of disordered drivers, and 

the identification of ordered domains for inhibition in the same protein. This approach works for 

drivers with an oncogenic effect (excluding tumor suppressors), harboring an activating 

disordered mutation. It also assumes an appropriate molecular mechanism (mostly excluding 

disordered domains), and finally the presence of an ordered module. For these cases, the next 

decisive information is whether the ordered module has an enzymatic activity. For enzymes, the 

relevant targeting approach is likely the use of enzyme inhibitors, such as in the case of Kit. 

Targeting the Kit kinase domain yielded several FDA approved drugs against GIST, melanoma 

and thymic tumors(Abbaspour Babaei et al., 2016), one of which has proven to be effective for 

the studied IDR mutations in a clinical setup as well(Groisberg and Subbiah, 2017). For domains 

without catalytic activity, PPI inhibition can be used to block the upregulated interactions that are 

responsible for the oncogenic activity, such as in the case of β-catenin. This approach produced 

several compounds that have shown promise in vitro and in mouse xenograft models of colorectal 

cancer(Shin et al., 2017). 

While this selection approach can yield viable targets in a nearly automated fashion, the use of 

extra information about the driver proteins can offer better solutions. For example, mutations in 
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CSF-1R upregulate receptor activity, therefore, kinase inhibitors against CSF-1R could counteract 

over-activation, similarly to Kit inhibitors. However, the overactivity of CSF-1R still depends on the 

binding of CSF-1, and - uncharacteristically for RTKs - does not bypass upstream regulation. As 

a result, aberrant signaling can be shut down with more easily accessible extracellular anti-CSF-

1 antibodies. Similarly, blocking the cyclin D3:Cdk4/6 interaction would counteract cyclin D3 

upregulation arising from degron mutations. However, taking into account that the direct 

interaction partner Cdk4/6 has enzymatic activity, enzyme inhibitors against Cdk can be more 

efficient. This substitute inhibitor approach yielded ribociclib, an FDA approved drug for breast 

cancer incidences with functional Rb checkpoint(Barroso-Sousa et al., 2016). 

When there is no immediate target for enzyme/PPI inhibition, suitable target domains can be 

located more distantly by analyzing the molecular toolkits the driver is involved in. In this case, 

the primary requisites of efficient targeting (oncogenic role, the presence of an ordered module, 

and the preference for enzymes) can be applied to proteins in the same toolkit. For example, 

histone H3.3 mutations - abolishing recognition by EZH2 methyltransferase - cannot be targeted 

by same-protein domains, as ordered histone dimers have no suppressible activity, and histone 

SLiM mutations do not have an activation effect. However, targeting the UTX [KDM6A] histone 

demethylase, which is also involved in the DNA structural modification toolkit, provides an option 

to counteract the effects of impaired histone methylation. As histone H3.3 G34 mutations disrupt 

EZH2 methyltransferase activity, resulting in aberrantly low histone methylation, UTX is also a 

candidate target to counteract disordered mutations resulting in EZH2 repression. This approach 

has shown promise both in vitro and in vivo against AML(Li et al., 2018). 

In all cases, the corresponding hallmarks of cancer can give an indication of the achievable 

cellular effect of the applied inhibition (Supplementary Table S3). Both Kit and CSF-1R inhibition 

is expected to shut down proliferative signaling and to be effective against metastasis, which is a 

usual scenario for GIST, melanoma and breast cancer. Counteracting β-catenin mutations is 

expected to be effective against replicative immortality and angiogenesis, which is crucial for solid 

tumors, such as colorectal cancers. The main expected effect of Cdk inhibition is shutting down 

proliferative signaling, which is essential for breast cancer. Histone mutations are mainly 

connected to enabling replicative immortality, and targeting that hallmark (as opposed to 

angiogenesis) can be effective even in the case of non-solid tumors, like AML. All five presented 

target proteins in Figure 5 offer points of targeting for hallmarks that are essential for the 

associated cancer (sub)types, where their targeting can potentially have a huge advantage in a 

high fraction of know cases (with incidence rates in the 10.7-97% range, see Table 1). 
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Figure 5: Potential points for therapeutic intervention for IDP mutations. Green boxes mark protein 

features that are compatible with enzyme inhibition approaches. Fulfilling the first three criteria, and failing 

the fourth one (enzymatic activity) marks PPI inhibition as the most likely approach. In the targeting 

schematics, mutation hotspots are marked by red text and red asterisks. Potential therapeutic intervention 

points using inhibitors against ordered domains are labelled by green crosses. Current therapeutic options 

are classified according to their usability in clinical settings. **** - FDA approved drug, proven effective for 

IDP mutations. *** - FDA approved drug, proven effective for other, related ordered domain mutations. ** - 

candidate drug in clinical trial, * - candidate efficient drug in animal model.  
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Discussion 

The identification of cancer driver genes and the elucidation of their mechanisms of action is the 

first step in developing efficient therapeutics. Successful identification of drivers is possible using 

highly customized bioinformatics pipelines that analyze genetic alterations distilled from genomic 

screening of tumor samples. A combined large-scale method using TCGA full exome sequencing 

data recently provided a catalogue of hundreds of driver genes(Bailey et al., 2018). While the 

method covers several main players behind common cancers, it misses many driver genes that 

were identified mainly in targeted efforts in cancer subtypes, which are not covered by large scale 

screens, mainly due to lower incidence numbers. In addition, several of the applied methods are 

focused on structural description of tumorigenesis at the protein level, biasing the results to 

preferentially cover functional protein driver regions that have well defined structures. 

To get an unbiased assessment of the role of protein disorder in cancer, we used a single, 

structurally unbiased method on mutation data from both full exome and targeted sequencing 

efforts, and annotated the resulting driver set with high-quality, manual structure assignations. 

This resulted in a fully annotated catalogue of disordered drivers, containing 42 driver proteins 

containing 47 disordered driver regions. We only considered high-confidence regions to reduce 

noise, and to gain a largely method-independent set of drivers. Results of prediction methods in 

general depend on the architecture of the predictor; however, in the high-confidence regime 

iSiMPRe gives balanced results, largely in agreement with concurrent benchmarked 

methods(Porta-Pardo et al., 2017). While several of the identified driver IDRs are novel, in 

general, disordered driver regions have been present across several releases of the COSMIC 

datasets (Figure 6), starting with a few well-characterized examples, such as β-catenin and RTKs. 

The steady increase of the number of these examples with the continuing growth of cancer 

mutations, forecasts the emergence of further disorder-driven genes among strong drivers in the 

future. Furthermore, these examples can be complemented by additional disordered regions that 

are altered by more complex genetic mechanisms in cancer, such as specific frameshift mutations 

in NOTCH1(Wang et al., 2011), chromosomal translocations in BCR(Ballerini et al., 2012), or 

copy number variations in p14ARF (Lesueur et al., 2008). While our current collection is incomplete, 

roughly 30% of the contained proteins are not covered by recent pan-cancer identification 

efforts(Bailey et al., 2018), representing a major extension of drivers (Supplementary Table S3). 

In addition, even this limited set allowed us to understand some of the basic properties and 

common themes of how IDPs contribute to cancer development through their distinct structural 

and functional properties. 

The collected disordered drivers, in agreement with the known versatility of IDRs, can function in 

multiple ways (Figure 2). They can form short linear motifs that mediate interactions with specific 

globular protein partners, but can also act as auto-regulatory regions, RNA/DNA binding regions, 

disordered domains, and flexible linkers(Piovesan et al., 2017; van der Lee et al., 2014). As 

common to many IDPs, they can form complex molecular switches and increase the interaction 

capacity of proteins(Dosztányi et al., 2006; Van Roey et al., 2012), which provides means for their 

mutations to have a wide modulatory effect. While these typical IDP functions cover most known 

cases, a small subset of disordered drivers have currently unknown perturbed molecular 

functions, due to the lack of available structural data. However, as each molecular function is 
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reflected in charactersitic distribution of mutations, the analysis of mutation patterns provide a 

way of assessing the underlying mechanistic features. For example the extremely localized patch 

of dominantly missense mutations in MLH1 is characteristic of linear motifs, while the dominance 

of inframe indels in MED12 probably indicate a linker/autoinhibitory function, or a short binding 

region, possibly mediating interaction with cyclin C(Turunen et al., 2014). 

While disordered drivers function through distinct molecular mechanisms compared to ordered 

drivers, these differences diminish at the level of protein function. Most biological processes that 

give rise to the hallmarks of cancer can be altered both via ordered or disordered regions. 

Nevertheless, four key process groups, including the alteration of gene expression regulation, 

DNA organization, protein degradation, and RNA processing, translation and folding, are more 

likely to be modulated through disordered mutations (Figure 3). Yet, despite these preferences, 

all ten hallmarks of cancer can arise through both ordered and disordered mutations alone, 

highlighting that IDP mutations are a sufficient means for tumorigenesis. This is in line with our 

current results, showing that disordered protein region mutations are in fact sufficient for 

tumorigenesis. For several cancer types, a subset of patients carry only disordered driver 

mutations in their exome (Figure 4), which shows that – at least in these cases – there is not only 

a correlation between the presence of protein disorder and cancer, but there is a causal 

relationship. 

While disordered mutations are the sole genetic events behind many disease instances, currently 

available cancer drugs are heavily biased against treatment for these cases. As a result, patients 

with mostly disordered mutations have considerably worse chances of having effective treatment 

options. IDRs would be especially important candidates for therapeutic interventions for several 

cancer types, such as liver, adrenocortical, and kidney cancers, together with diffuse large B-cell 

lymphoma. For some rarer cancer subtypes, and several benign but locally invasive neoplasms, 

counteracting IDP mutations seem to be the most efficient targeting option, and may be the only 

viable option for several subclasses of cancers (Table 1). 

The successful identification of disordered drivers and corresponding tumor types provides the 

first step in successful targeting. In general, the direct targeting of IDPs requires fundamentally 

different approaches, and the development of such methods is being viewed as a new direction 

for cancer therapeutics(Kulkarni, 2016). Considering that most identified disordered drivers 

mediate an unusually high number of molecular interactions, the therapeutic modulation of these 

interactions can have therapeutic benefits. Compounds, such as nutlins, that block interactions 

between IDPs and their ordered domain partners have been extensively studied(Tisato et al., 

2017). Other direct IDP targeting approaches under development focus on the inherent structural 

properties of disordered functional regions(Neira et al., 2017). While these approaches hold great 

promise, they are yet to reach clinical relevance(Metallo, 2010), and current drugs almost 

exclusively act on globular domains, leaving a sizeable portion of cancer patients without 

treatment options. In such cases, currently the only viable strategy is indirect targeting, using 

inhibitors against the catalytic activity or the interactions of an ordered domain, which can 

compensate for the alteration of the disordered region. The detailed understanding of the 

molecular architecture of the disordered driver, and the network it is embedded into, can offer 

ways for successful target selection in such cases. 
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The molecular, the network/pathway, and the cellular level information pertaining to the effect of 

disordered driver mutations provide complementary information for building generic target 

selection strategies (Figure 5). The described examples show that these strategies can be built 

using a decision tree-like approach for the identification of a suitable ordered protein module either 

inside the driver protein, or in the same pathway. The targeting options of Kit serve as proof-of-

principle for our target selection approach. Imatinib is an FDA-approved kinase inhibitor designed 

against the ordered kinase domain of Kit mutated in GIST. Lately, Imatinib has been shown to be 

also effective against disordered exon 11 deletions and insertions, corresponding to a more 

aggressive subtype of GIST(Groisberg and Subbiah, 2017). In treatment regimens spanning three 

years, Imatinib was able to yield similar survival rates for GIST cases with both ordered and 

disordered Kit mutations. In this case, a drug developed based on classical structural 

considerations was proven to be highly effective against specific IDR mutations. Such a 

relationship can be accurately identified by our proposed indirect target selection protocol. 

In general, the systematic analysis of disordered regions mutated in cancer can open up new, 

major treatment options – even solely with new approaches to target selection but without 

necessitating radically new drug development methods. This could be especially important in 

already somewhat targetable tumors, and can provide targets in rarer cancers that were 

previously deemed untargetable (e.g. glioblastoma, endometrioid carcinoma, or chronic 

myelomonocytic leukaemia), or in the case of less invasive or benign tumors that pose surgical 

difficulties (e.g. uterine leiomyomas in fertile women or hypophyseal adenomas) (Table 1). As a 

next step, combination therapy targeting several disordered drivers - such as c-Myc/ID-

3/Forkhead box protein O1 and cyclin D3, which are all heavily mutated in Burkitt 

lymphoma(Schmitz et al., 2012) - may be the rational option instead of the currently available 

aggressive chemotherapy. Disordered drivers typically show high cancer type specificity, and their 

mutations often correspond to specific cancer subtypes (see Figure 4 and Table 1). Furthermore, 

most cancer types can have heterogeneous mutation patterns at the patient level (Figure 4). Thus, 

in the context of personalized medicine, targeted IDR sequencing can provide the necessary 

information for indirect target selection, which in turn can provide the means for new therapeutic 

interventions. 
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Figure 6: Growth of the list of disordered cancer drivers across various versions of the COSMIC 

database. 
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Data and methods 

Definition of modules in human proteins 

Protein regions corresponding to Pfam entities(Finn et al., 2016), binding regions in DIBS(Schad 

et al., 2018) and MFIB(Fichó et al., 2017), regions in DisProt(Piovesan et al., 2017) and 

IDEAL(Fukuchi et al., 2014), and regions with structures in the PDB(Berman et al., 2000), were 

considered to be separate functional modules. Pfam entities were classified structurally based on 

instances overlapping with either DIBS, MFIB, DisProt or IDEAL entries (annotated as 

disordered), or with monomeric single domain protein chains in the PDB (annotated as ordered). 

Pfam entities with no instances overlapping with any protein regions with a clear structural 

designation, were annotated using predictions, together with protein residues not covered by 

known structural modules. Such protein regions were defined as ordered or disordered using 

predictions from IUPred(Dosztányi et al., 2005; Mészáros et al., 2018) and ANCHOR(Dosztanyi 

et al., 2009; Mészáros et al., 2009). Residues predicted to be disordered or to be part of a 

disordered binding region, together with their 10 residue flanking regions were considered to form 

disordered modules. Regions shorter than 10 residues were discarded. 

Census cancer driver genes 

Known cancer driver genes were collected from the 16/01/2018 version of COSMIC census 

database(Futreal et al., 2004), complemented with examples from the literature(Vogelstein et al., 

2013). Genes were categorized as oncogenes, tumor suppressor genes, or context-dependent 

genes according to annotations in the COSMIC census, in dedicated databases(Zhao et al., 2016) 

or the literature. The full list of census drivers is given in Supplementary Table S1. 

Mutation data from COSMIC and TCGA 

Cancer mutations were retrieved from the v83 version of COSMIC(Forbes et al., 2016) and the 

v6.0 version of TCGA. Mutations used from both databases include missense mutations, and in-

frame insertions and deletions. Mutations were filtered similarly to the procedure described 

in(Mészáros et al., 2016). Mutations from samples with over 100 mutations were discarded to 

avoid the inclusion of hypermutated samples. Samples including a large number of mutations in 

pseudogenes or mutations indicated as possible sequencing/assembly errors in(Buljan et al., 

2018) were also discarded. Samples were compared to each other in a pairwise fashion and 

samples sharing a large fraction of mutations were clustered together. In all analyses, only 

mutations from the sample with the highest number of mutations were kept. Mutations falling into 

positions of known common polymorphisms(Smigielski et al., 2000) were filtered. The final set of 

COSMIC mutations used as an input to region identification consists of 599,137 missense 

mutations, 4,189 insertions and 12,670 deletions from 253,568 samples. The final set of TCGA 

mutations used as an input to region identification consists of 274,109 missense mutations, 2,775 

insertions and 2,900 deletions from 7,058 samples. 
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Genetic alterations considered in TCGA whole sample analysis 

For sample/patient level analyses (Figure 4), somatic mutations, copy number alterations and 

expression levels were downloaded for all 33 TCGA cancer types via the GDC Transfer Tool. 

Fusion data were downloaded from the Tumor Fusion Gene Data Portal. In total, we used 10,921 

TCGA samples for which at least one indication was found among the four types of data. A driver 

region was considered to be affected in a cancer sample when there were either (i) missense 

point mutations and/or in-frame indels within the region, (ii) nonsense or frameshift mutations 

anywhere in that gene, (iii) when the gene was over- or under-expressed in the sample, or (iv) 

when the gene was involved in a fusion event. We tagged the gene as overexpressed, if the 

elevated expression level was accompanied by an increase in the copy number. Similarly, we 

required copy number reduction, along with decreased expression, level for considering 

underexpression. We found (i) missense mutations and/or in-frame indels falling in any region in 

6,427 samples, (ii) driver genes with truncating mutations in 4,263 samples, (iii) over- and under-

expressed driver genes in 1,304 and 317 samples, respectively, and (iv) driver genes involved in 

fusion events in 778 samples. Taken together, there were 8,444 samples (77.3%) with driver 

genes affected by at least one alteration. 

Identification and categorization of driver regions in cancer-

associated proteins 

Driver regions were identified using iSiMPRe(Mészáros et al., 2016) with the filtered mutations 

from COSMIC and TCGA, separately. Then, regions obtained from COSMIC and TCGA 

mutations were merged, and p-values for significance were kept from the dataset with the higher 

significance. Only regions with p-values lower than 10-6 were kept. Regions were initially assigned 

ordered or disordered status based on the structural annotation of the corresponding functional 

unit, incorporating experimental data as well as predictions. (see Definition of modules in human 

proteins). The final ordered/disordered status of the identified regions was based on manual 

assertion taking into account information from the literature, if available (Supplementary Table 

S2). For the disordered regions, the level of supporting information for the disordered region is 

also included (Supplementary Table S3). 

Protein-protein interaction network analysis 

Binary protein-protein interactions for the human proteome were downloaded from the IntAct 

database(Orchard et al., 2014) on 06/05/2018. Data were filtered for human-human interactions 

only, where interaction partners were identified by UniProt accessions. Interactions from spoke 

expansions were excluded. Interactions were kept in an undirected way. (Values for disordered 

drivers are quoted in Supplementary Table S3). 
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Gene Ontology annotations 

Gene Ontology terms (GO(Ashburner et al., 2000; The Gene Ontology Consortium, 2017)) were 

used to quantify interaction capabilities, involvement in various biological processes, molecular 

toolkits, and hallmarks of cancer. In each case a separate collection of GO terms (termed GO 

Slim) was compiled. Each GO Slim features a manual selection of GO terms that are independent 

from each other, meaning that they are neither child or parent terms of each other. Terms were 

assigned a level showing the fewest number of successive parent terms that include the root term 

of the ontology namespace (considered to be level 0). 

GO term enrichments in a set of proteins were calculated by first obtaining expected values. 

Expected mean occurrence values for GO terms together with standard deviations were 

calculated by assessing randomly selected protein sets from the background (the full human 

proteome) 1,000 times. The enrichment in the studied set is expressed as the difference from the 

expected mean in standard deviation units. 

GO Slim for assessing interaction capacity: terms from levels 1-4 from the molecular_function 

namespace were filtered for ancestry and only the more specific terms were kept. I.e. terms from 

levels 1-3 were only included if they have no child terms. Only terms describing interactions 

containing the keyword ‘binding’ were kept. Individual terms are shown in Supplementary Table 

S4. 

GO for the assessment of process overlaps: terms from levels 1-4 from the biological_process 

namespace were filtered for ancestry and only the most specific terms were kept. Only those 

terms were considered that were attached to at least one protein from the set studied (full human 

proteome, ordered drivers, or disordered drivers). Individual terms are shown in Supplementary 

Table S5. 

GO for molecular toolkits: biological_process terms attached to proteins with identified regions 

were filtered for ancestry. The resulting set was manually filtered, yielding 93 terms, which were 

manually grouped into 16 toolkits. Enrichments for toolkits were calculated as the ratio of the sum 

of expected and observed values for individual terms. Individual terms and enrichments for each 

toolkit are shown in Supplementary Table S6. 

GO for hallmarks of cancer: Terms were chosen from the biological_process namespace via 

manual curation using the GO annotations of known cancer genes as a starting point. Terms were 

only kept if they showed a significant (p<0.01) enrichment on proteins in the full census cancer 

driver set compared to randomly selected human proteins. Individual terms and enrichments for 

each hallmark are shown in Supplementary Table S7. 

Current anticancer drugs from OncoKB 

The list of anticancer drugs and their targets were downloaded from OncoKB(Chakravarty et al., 

2017). This list contains 247 indications, which consist of 83 drugs targeting 45 genes with varied 

alterations at different levels. We filtered for levels 1, 2 and 3 only (FDA-approved, Standard care, 
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and Clinical evidence, respectively). From the different alterations we selected point mutations, 

indels, truncating mutations, fusions and amplifications, irrespective of the listed cancer types. 

There were 28 targetable positions in 10 genes with 24 associated drugs. There were only 4 

disordered positions targeted by 7 drugs (AZD-4575, BGJ-398, JNJ-42756493 and Debio1347 

targeting FGFR residues 370, 371 and 373; and Cabozantinib, Capmatinib and Crizotinib 

targeting MET in position 1010). Notably, 5 of the 28 positions (EGFR-747, KIT-654, KIT-670, 

MET-1010 and MTOR-2014) were not mutated in TCGA. Targetable insertion and deletion events 

were only assigned to EGFR exon 19. Only PITCH1 had targetable truncating mutations. There 

were 13 actionable fusion events. For most cases only one fusion partner was defined, and there 

were only two cases for which both fusion partners were stated (BCR-ABL1, PCM1-JAK2). 

Comparison between protein features 

The shared information content/association between various protein features were assessed 

using Jaccard indices. All of the following considered features were converted into binary 

descriptor vectors (see Supplementary Table S3): molecular functions (protein level - 6 

descriptors), number of PPI partners (3 descriptors - network level), involvement in molecular 

toolkits (16 descriptors - network level), involvement in hallmarks of cancer (10 descriptors - cell 

level), and tumorigenic character (2 descriptors - cell level). The Jaccard indices calculated 

between all possible pairs of descriptors are given in Supplementary Table S8, and the average 

Jaccard indices between all possible pairs of features are given in Supplementary Table S9. 

Data availability 

The authors declare that the data supporting the findings of this study are available within the 

paper and its supplementary information files. 
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Supplementary material 

Supplementary table legends 

Table S1. List of cancer driver genes. Genes were taken from the COSMIC census list as of 

21/03/2018, and were complemented with known cancer genes from the literature. 

Table S2. List of regions identified using iSiMPRe, based on both COSMIC and TCGA mutations. 

Table S3. Identified disordered driver genes with all annotations. 

Table S4. Gene Ontology terms used in the quantification of interaction capabilities. 

Table S5. Gene Ontology terms used in the quantification of biological process overlaps. 

Table S6. Gene Ontology terms used in the quantification of molecular toolkits used by cancer 
driver genes. 

Table S7. Gene Ontology terms used in the quantification of hallmarks of cancer. 

Table S8. Jaccard indices of the similarity between all studies protein features. 

Table S9. Averaged Jaccard indices of the similarity between various merged features. 

Supplementary figures 

 

Figure S1. The distribution of all human proteins with regard to the structural states of constituent functional 
modules. 
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Figure S2. The ratio of disordered modules in all human proteins and the three major groups of cancer 
drivers. 

 

Figure S3. The distribution of residues and TCGA cancer driver mutations in the human proteome and 
various cancer driver classes. The vertical line marks the ratio of ordered and disordered residues in the 
human proteome (73.6%), corresponding to the expected ratio of randomly occurring mutations. 
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Figure S4. Identified regions are compact functional units. The fraction of mutations residing in the identified 
regions vs the fraction of residues in the regions for oncogenes, tumor suppressor genes and context-
dependent genes. Regions in oncogenes encompass less than 10% of the sequence. Tumor suppressor 
genes (TSGs) are most often modulated via non-localized truncating mutations, affecting larger regions or 
the whole of the protein. However, the clustering of localized point mutations covering an extended region 
of the protein is a frequent hallmark of TSGs as well, making them largely identifiable using point mutations 
alone. In accord, several TSGs also harbor identified driver regions. While these regions are larger in size 
compared to that of oncogenes, they still cover only less than 20% of the sequence in most cases. In 
accordance with their dual nature, regions found inside context-dependent proteins lie between regions in 
oncogenes and TSGs in terms of length. 

 

 

Figure S5. A. Overrepresentation of hallmarks of cancer for all driver genes compared to the human 
proteome. B. Overrepresentation of hallmarks of cancer for driver genes with identified regions compared 
to all driver genes. 
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