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Abstract: 26 

How Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infections engage 27 

cellular host pathways and innate immunity in infected cells remain largely elusive. We 28 

performed an integrative proteo-transcriptomics analysis in SARS-CoV-2 infected HuH7 cells to 29 

map the cellular response to the invading virus over time. We identified four pathways, ErbB, 30 

HIF-1, mTOR and TNF signaling, among others that were markedly modulated during the course 31 

of the SARS-CoV-2 infection in vitro. Western blot validation of the downstream effector 32 

molecules of these pathways revealed a significant reduction in activated S6K1 and 4E-BP1 at 72 33 

hours post infection. Unlike other human respiratory viruses, we found a significant inhibition of 34 

HIF-1α through the entire time course of the infection, suggesting a crosstalk between the SARS-35 

CoV-2 and the mTOR/HIF-1 signaling. Further investigations are required to better understand 36 

the molecular sequelae in order to guide potential therapy in the management of severe COVID-37 

19 patients. 38 

  39 

Introduction: 40 

The recent emergence of the coronavirus disease (COVID-19) pandemic caused by Severe Acute 41 

Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has created a public health emergency 42 

across the globe 1-3. SARS-CoV-2, a single-stranded positive-sense RNA virus, is the seventh 43 

coronavirus that infects humans and belongs to the β-coronavirus family. Due to limited 44 

knowledge on molecular mechanisms of infection and pathogenesis there is currently no 45 

available vaccine or specific therapeutics to treat or prevent SARS-CoV-2 infection. 46 

Understanding the viral dynamics and host responses to the virus are necessary to design better 47 

therapeutic strategies for COVID-19 patients. Within the short period of the pandemic, there are 48 

few reports (pre-prints) on different levels of omics data (transcriptomics, proteomics, and 49 

metabolomics) from cell culture infected with SARS-CoV-2 as well as patient material that 50 

aimed to elucidate potential mechanisms of the host immune response and disease pathogenesis 51 

of SARS-CoV-2. However, the steady state measurements fail to reveal the dynamic changes of 52 

the host and viral proteins during the course of the infection. Thus, the temporal changes in gene 53 

expression and protein synthesis in different phase of the infection has not yet been reported.  54 
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To provide a comprehensive assessment of the cellular response to SARS-CoV-2, we performed 55 

a time series integrative proteo-transcriptomics analysis in infected HuH7 cells ranging from the 56 

early phase of infection until the virus reached the ability to initiate cytopathic effect at ~72 hours 57 

post infection (hpi).  58 

Results: 59 

Dynamics of the SARS-CoV-2 infection in HuH7 cell lines: HuH7 cells were infected with 60 

SARS-CoV-2 at MOI 1.0 4. Cells were collected at 24hpi, 48hpi and 72hpi and subjected to viral 61 

RNA quantification by quantitative PCR, transcriptomics by Illumina NextSeq550 and 62 

proteomics by tandem tag labeled mass spectrometry (TMT-MS). Transcriptomics, proteomics 63 

and proteo-transcriptomics data were further analyzed using in-depth bioinformatics (Fig 1a).  64 

qPCR targeting the E (envelope) gene of the SARS-CoV-2 identified a gradual increase in 65 

cellular viral RNA over time (p<0.05, repeated measure ANOVA) (Fig 1b). RNAseq analysis 66 

detected viral RNA at all the time points; 24hpi, 48hpi and 72hpi (Fig 1c). The TMT-based 67 

quantitative proteomics also identified statistically significant increase (p<0.05, repeated measure 68 

ANOVA) in SARS-CoV-2 proteins nucleocapsid (N), Membrane (M) and Spike (S) over time 69 

(Fig 1d). Thus, SARS-CoV-2 exposure of HuH7 cells results in effective infections that over time 70 

lead to enhanced viral RNA and viral protein production, required to assemble viral progeny.   71 

Host cellular response against SARS-CoV2 in vitro. After having established effective SARS-72 

CoV-2 infections, we assessed the cellular host response to the virus infection. We found that 73 

2622 genes and 1819 proteins were increased whereas 2856 genes and 1743 proteins were 74 

decreased significantly (false discovery rate <0.05) over the time despite distinct coverage (19997 75 

protein-coding genes vs 7757 proteins quantified).  We next performed gene set enrichment 76 

analyses using the differentially expressed genes/proteins that are related to viral response, 77 

process and diseases (targeted analysis) obtained from Gene Ontology (GO), REACTOME and 78 

“Rare_Diseases_AutoRIF_Gene_Lists” library and mapped to KEGG (Human_2019) terms. 79 

Figure 1e shows a heatmap of significantly enriched KEGG terms that are dysregulated in both 80 

our proteomics and transcriptomics analysis using for pairwise and time series analysis in 81 

uninfected and SARS-CoV-2 infected HuH7 cells. Of note, the downregulated genes did not 82 

identify any KEGG term with adjusted p value <0.05. Among the most significantly upregulated 83 

pathways, mining both proteomics and transcriptomics data, were pathways associated with cell 84 
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proliferation and apoptosis, such as ErbB, PI3K-Akt, HIF-1, and mTOR signaling, and pathways 85 

that are related to innate immune responses such as TNF, NOD-like receptor (NLR) and RIG-I 86 

signaling (Fig. 1e). In addition, we observed upregulated platelet activation, complement 87 

cascades, FOXO signaling, and glycolysis (Fig. 1e), indicating that the SARS-CoV-2 infection 88 

induce pathways linked to thrombosis and metabolism. 89 

To further capture the patterns of expression changes in response to the SARS-CoV-2 infection, 90 

we performed a weighted co-expression network analysis on both transcriptomic and proteomic 91 

datasets using all genes and proteins detected, their functional assignments, and the top genes 92 

(Fig. 1f) and proteins (Fig. 1g) in key network elements. For transcriptomic and proteomic 93 

networks (adjusted p value <0.01, Spearman ρ > 0.83), we identified a set of five transcriptomics 94 

and four proteomics communities of strongly interconnected genes and proteins (Fig. 1h). These 95 

communities were also validated against random networks. Characterization of these 96 

communities again highlighted several pathways of interest including HIF-1, mTOR, and TNF 97 

signaling previously observed in our pairwise comparisons and time series analyses (Fig 1e). 98 

Ranking of all communities based on their centrality further identified those that display a higher 99 

number of central genes/proteins, i.e. communities that exhibit a larger number of associated 100 

genes/proteins and thus capture most coordinated expression changes and hence are predicted to 101 

robustly influence network behavior. The two most central communities (Fig. 1f and 1g) entail 102 

several genes associated with AKT1, SLC2A1 (HIF-1 signaling), RAF1 (MAPK signaling), 103 

SEC13 (mTOR signaling) and Caspase 8 (CASP8; TNF signaling). Functional enrichment 104 

analysis indicated that these two communities were associated (adjusted p< 0.05) with mTOR 105 

and MAPK signaling, Lysosomal and Proteasome-related processes, and cell cycle control. 106 

Importantly, we found that MAPK, AKT1, and mTOR showed cumulative expression changes 107 

through time (Fig. S1a and S2a); moreover, they were co-expressed (adjusted p<0.05) with 108 

several other genes/proteins, including those most central in each community (Fig. S1b,c and 109 

S2b,c), further highlighting the importance of these genes/proteins in coordinating the global 110 

response to infection. Finally, we found significant (adjusted p<0.05) functional overlap between 111 

three transcriptomic and three proteomic communities (communities 2, 3, 4; and communities A, 112 

B, D; Fig. 1h), thus pointing to common biological responses at the proteo-transcriptomic levels. 113 

These intersections included mTOR signaling (community 3 vs B), oxidative phosphorylation 114 

(communities 2,4 vs B) and thermogenesis (community 2,3,4 vs B), which are simultaneously 115 
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found among similar communities in transcriptomic and proteomic networks. Our functional and 116 

network community analyses identify common host cell genes (AKT1, MAPK) and biological 117 

pathways (mTOR, MAPK and HIF-1 signaling) that are upregulated in SARS-CoV-2 infected 118 

HuH7 cells.  119 

Dysregulated proteins and effector molecules in mTOR/HIF-1 signaling. The top four 120 

identified pathways, ErbB, PI3K-Akt, HIF-1, and mTOR signaling showed overlap of several 121 

proteins like AKT1, mTOR, MAPK, 4E-BP1, and S6K as represented in Sankey plot (Fig 2a). 122 

Since all the top identified pathways converge at mTOR signaling, we wanted to investigate 123 

whether SARS-CoV-2 infections indeed change expression of critical effector molecules of the 124 

mTOR/HIF-1 signaling pathway, namely 4E-BP1, S6K1 and HIF-1α. The mTOR pathway is 125 

involved in various biological functions and several viruses hijack this pathway to promote their 126 

own replication in different ways 5. To this end the phosphorylation status of the effector 127 

molecules of the mTOR signaling was assessed during SARS-CoV-2 infection. The infection 128 

dynamics measured by SARS-CoV-2 RNA in the cell culture supernatant and in the cell is shown 129 

in Fig 2b. Western blot results showed that the phosphorylation states of 4E-BP1 and S6K1 130 

markedly changed during the course of the infection as compared to the mock infected control 131 

cells, showing a significant dip at 72 hpi (Fig 2c and 2d). Furthermore, HIF-1α protein levels 132 

were rapidly reduced following SARS-CoV-2 infections (Fig 2c and 2d).  133 

Drug repurpose and viral host protein interactions of the dysregulated proteins.  To 134 

repurpose antiviral drugs targeting host-viral interactions is an attractive strategy to find drugs 135 

that might work against COVID-19. Therefore, we assessed protein-protein interactions including 136 

both host protein and SARS-CoV-2 protein associations obtained from the Human Protein Atlas 137 

(https://www.proteinatlas.org/humanproteome/sars-cov-2).6 Proteins that were significantly 138 

increased between 24h and 48h after SARS-CoV-2 infection (Fig 2e) were arbitrarily assigned to 139 

early responses. A total of 108 host-viral protein interactions were observed. The majority of the 140 

interactions was observed with the viral protein M (13 interactions), followed by orf8 (12 141 

interactions), orf9c (11 interactions), nsp7, nsp8 (9 interactions) and nsp12 (8 interactions). 142 

Interestingly, while mapping these proteins with the pathway we observed that three HIF-1 143 

pathway-associated proteins were markedly altered in the infected cells: Heme Oxygenase 1 144 

(HMOX1), which interacts with orf3a, decreased over time, whereas Cullin 2 (CUL2) and Ring-145 

Box 1 (RBX1), both of which interact with orf10, increased over time. In addition, we found that 146 
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the two Ras-associated proteins RAB8A and RAB2A interact with nsp7. Furthermore, we found 147 

that Receptor-interacting serine/threonine-protein kinase 1 (RIPK1), involved in NF-κB, NLR, 148 

RIG-I-like receptor and TNF signaling,7 interacted with nsp12 and was significantly enriched 149 

over time (Fig 2e). Our data indicate a role of mTOR/HIF-1 in the cellular response to the SARS-150 

CoV-2 infection, suggesting that drugs blocking this pathway could be possibly repurposed for 151 

COVID-19 patients (Fig 2f). 152 

 153 

Discussion: 154 

In this study using the integrated proteo-transcriptomics studies we identified four pathways, 155 

ErbB, HIF-1, mTOR and TNF signaling, among others that were markedly modulated during the 156 

course of the SARS-CoV-2 infection in vitro. Western blot validation of the downstream effector 157 

molecules of these pathways revealed a significant reduction in activated S6K1 and 4E-BP1 at 72 158 

hours post infection. The data therefore points towards dysregulation of mTOR/HIF-1 signaling 159 

cascades, which could be potential target for COVID-19 therapeutic interventions.  160 

 161 

The mTOR signaling pathways are known to regulate apoptosis, cell survival, and host 162 

transcription and translation and can be hijacked by several RNA viruses like influenza virus and 163 

coronaviruses.8-11 PI3K activation results in AKT phosphorylation and subsequent activation of 164 

mTOR. Through a cascade of events, mTORC1 and AKT activates 4E-BP1 and eIF4 complex 165 

followed by translation of effector protein HIF-1α that initiates host transcription and translation 166 

of specific genes. Another pathway that changed over time was the TNF signaling pathway. TNF 167 

signaling is also interlinked with HIF-1 signaling and can induce HIF-1α through AKT and 168 

MAPK activation.12 Of note, specific proteins dysregulated in the TNF signaling pathway were 169 

caspase 8, caspase 10,13 and CCAAT/enhancer-binding protein beta (CEBPB),14 which are linked 170 

to interferon (IFN) signaling and NF-κB signaling pathways . Previous studies on coronaviruses 171 

suggest a critical role of the IFN response, in particular IFN-β.15,16 This is also reflected in our 172 

findings that SARS-CoV-2 infections result in significantly dysregulated RIG-I, NLR and NF-κB 173 

pathways, which needs further evaluation. All these pathways have been linked to the IFN 174 

response.  175 

It has been shown that absence of HIF-1α can promote replication of influenza A virus and severe 176 

inflammation mediated via promotion of autophagy.17 There could be several mechanisms that 177 
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result in decreased phosphorylation of mTOR effectors such as the host response affecting the 178 

translation machinery in response to stress or viral proteins at the late stage of infection that 179 

promote the translation of viral mRNAs by shutting down host mRNA translation. Nonetheless, 180 

similar to other viruses that hijacking the AKT/mTOR pathway such as the highly pathogenic 181 

1918 influenza virus8 and the Middle East respiratory syndrome coronavirus (MERS-CoV),11 182 

deregulation of the mTOR pathway might enable SARS-CoV-2 to enhance its pathogenicity 183 

A recent drug target network analysis based on potential human coronavirus and host interactions 184 

predicted that sirolimus (also known as rapamycin), which targets mTOR, could be repurposed.18 185 

Sirolimus was shown to inhibit MERS-CoV infection by 60% in mice.11 Some studies have 186 

shown that everolimus, another mTOR inhibitor, and sirolimus are weakly active against 187 

influenza A virus.19,20 Everolimus delayed death but was not able to reduce mortality in lethal 188 

mouse infection model of influenza A (H1N1 and H5N1).19 Sirolimus was even shown to 189 

negatively affect the lung pathology probably due to its immunosuppressive effect.20 It has also 190 

been reported to block viral protein expression and virion release, improving the prognosis in 191 

patients with severe H1N1 pneumonia and acute respiratory failure.21 On the other hand, 192 

rapamycin treatment was shown to degrade antiviral barriers and could thus be potentially 193 

harmful in pathogenic viral infections.22 In COVID-19 patients the severity of the disease is 194 

associated with a cytokine storm with markedly increased expression of interleukin 6 (IL-6) in 195 

the serum of severe cases.23 Interestingly, IL-6 can activate mTOR in a STAT3 dependent or 196 

independent manner.24 Whether our proposed drugs can be indeed repurposed for COVID-19 197 

therapies now needs to be carefully tested in in vitro SARS-CoV-2 infection models and in in 198 

vivo COVID-19 disease models.  199 

There are some limitations of our study. First, we only used the HuH7 cell line but the SARS-200 

CoV-2 can be also cultured in Vero E6, Vero CCL81, or HEK-293T cells. Whereas SARS-CoV-201 

2 exerts rapid cytopathic effects in Vero E6 cells (within 24hpi), viral replication is slower in 202 

HuH7 and HEK293T cells, allowing to study host-cellular responses for 3 days after viral 203 

challenge 25. Moreover, an earlier study used HuH7 cells to identify the transcriptomics signature 204 

of early cellular responses to SARS-CoV and HCoV-229E infections 26. However, the observed 205 

effects could be cell type-specific and thus, we are currently assessing the effect of SARS-CoV-2 206 

infection in other cells lines. Moreover, SARS-CoV-2 has a propensity to mutate and our 207 
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experiments were performed with only one virus strain isolated from a Swedish patient. Of note, 208 

our virus isolate has close sequence similarity to the initial strains circulating in Wuhan, China. 209 

In conclusions, we observed marked alterations of mTOR/HIF-1 signaling at the proteo-210 

transcriptomic levels in response to SARS-CoV-2 infections, though the exact mechanistic role of 211 

these changes remains to be elucidated. Targeting mTOR/HIF-1 signaling could be an attractive 212 

candidate as a potential therapy, alone or preferably combined with antivirals, for the 213 

management of COVID-19 patients. Moreover, mTOR inhibition could be used to reduce the 214 

cytokine storm syndrome in severe cases of COVID-19. 215 

 216 

Methods 217 

Cells and viruses. The SARS-CoV-2 virus was isolated from a nasopharyngeal sample of a 218 

patient in Sweden and the isolated virus was confirmed as SARS-CoV-2 by sequencing (Genbank 219 

accession number MT093571). The hepatocyte derived cellular carcinoma cell line Huh7 was 220 

used. The cells were obtained from Marburg Virology Lab, Philipps-221 

Universität Marburg , Marburg , Germany fully matching the STR reference profile of HuH-7. 27 222 

SARS-CoV-2 infection of Huh7 cells. Huh7 cells were plated in 6 well plates (2,5x105 cells/well) 223 

in DMEM (Thermo Fisher Scientific, US) supplemented with 10% heat-inactivated FBS (Thermo 224 

Fisher, US). At 90-95% cell confluence the medium was removed, cells washed carefully with 225 

PBS and thereafter either cultured in medium only (uninfected control) or infected with SARS-226 

CoV-2 at a multiplicity of infection (MOI) of 1 added in a total volume of 0.5 mL. After 1 hr of 227 

incubation (37°C, 5%CO2) the inoculum was removed, cells washed with PBS and 2 mL DMEM 228 

supplemented with 5% heat-inactivated FBS was added to each well. Samples were collected at 229 

three different time points, 24, 48 and 72 hrs post-infection (hpi). Samples were collected for 230 

proteomics and western blot, and RNAseq.  231 

Total RNA extraction and Quantification of viral RNA. The cells (uninfected, 24hpi, 48hpi and 232 

72hpi) were collected by adding Trizol™ (Thermo Fisher Scientific, US) directly to the wells.  233 

RNA from SARS-CoV-2 infected and uninfected Huh7 cells and supernatent was extracted using 234 

the Direct-zol RNA Miniprep (Zymo Research, US) and quantitative real-time polymerase chain 235 

reaction (qRT-PCR) was conducted using TaqMan Fast Virus 1-Step Master Mix (Thermofisher 236 

Scientific, US) with primers and probe specific for the SARS-CoV-2 E gene following guidelines 237 
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by the World Health Organization (https://www.who.int/docs/default-source/coronaviruse/wuhan-238 

virus-assayv1991527e5122341d99287a1b17c111902.pdf) as described previously 4.  239 

Transcriptomics analysis (Illumina RNAseq). The samples were sequenced using Illumina 240 

NextSeq550 in single-end mode with read length of 75 bases. The raw sequence data were first 241 

subjected to quality check using FastQC tool kit version 0.11.8. Illumina adapter sequences and 242 

low-quality bases were removed from the raw reads using the tool Trim Galore version 0.6.1. 243 

Phred score of 30 was used as cut-off to remove low quality bases. Quality of the data was again 244 

checked after pre-processing to assure high quality data for further analysis. The pre-processed 245 

reads were then aligned against human reference genome version 38 Ensembl release 96. Short 246 

read aligner STAR version 2.7.3a was used for the alignment. STAR was executed by setting the 247 

parameter soloStrand to Reverse to perform strand specific alignment and rest of the required 248 

parameters were set to default. The alignment result was written in sorted by co-ordinate bam 249 

format. After the alignment gene level read count data was generated for each sample using the 250 

module featureCounts from the software subread version 2.0.0. Read counting was performed by 251 

setting attribute type in the annotation to gene_id and strand specificity to reverse. Human 252 

reference gene annotation version 38 Ensembl release 96 in gtf format was used for the read 253 

counting. Normalization factors were calculated using the R package edgeR 28 from read counts 254 

matrix to scale the raw library sizes. Low expression genes with maximum counts per million 255 

(CPM) values under 1 per sample were removed from the sample. As recommended in RNAseq, 256 

data were transformed to CPM and variance weight was calculated using voom function. Square 257 

root of residual standard deviation against log2 CPMs was plotted to verify transformation 258 

quality.  259 

Protein extraction and in-solution digestion.  The cells (uninfected, 24hpi, 48hpi and 72hpi) 260 

were lyzed in lysis buffer (5% glycerol, 10 mM Tris, 150 mM NaCl, 10% SDS and protease 261 

inhibitor), NuPAGE™ LDS sample buffer (ThermoFisher Scientific,US) was added and the 262 

samples was boiled at 99°C for 10 min. Aliquots of cell lysates (150 µL) were transferred to 263 

sample tubes and incubated at 37°C for 5 min at 550 rpm on a block heater and sonicated in 264 

water batch for 5 min. Each sample was reduced by adding 7 µL of 0.5M dithiothreitol (DTT) at 265 

37°C for 30 min and alkylated with 14 µL of 0.5M iodoacetamide for 30 min at room 266 

temperature (RT) in the dark.  Following addition of 2 µL of concentrated phosphoric acid and 267 

1211 µL of binding buffer, protein capturing was performed according to the manufacturer’s 268 
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protocol using S-Trap™ Micro spin columns (Protifi, Huntington, NY). After washing with 150 269 

µL of binding buffer four times the samples were subjected to proteolytic digestion using 1.2 µg 270 

trypsin (sequencing grade, Promega) for 2h at 47°C. Then 40 µL of 50 mM TEAB was added 271 

following acidification with 40 µL of 0.2% formic acid (FA) and elution with 40 µL of 50% 272 

acetonitrile (AcN)/0.2% FA and the eluents were dried using a Vacufuge vacuum concentrator 273 

(Eppendorf, US). The resulted peptides were cleaned up in a HyperSep filter plate with bed 274 

volume of 40 µL (Thermo Fisher Scientific, Rockford, IL). Briefly, the plate was washed with 275 

80% AcN/0.1% FA and equilibrated with 0.1% FA. Samples were filtered in the plate and 276 

washed with 0.1% FA. Peptides were eluted with 30% AcN/0.1% FA and 80% AcN/0.1% FA 277 

and dried in a vacuum concentrator prior to tandem mass tag (TMT) labeling. 278 

TMT-Pro labeling. Dry samples were dissolved in 30 µL of 100 mM triethylammonium-279 

bicarbonate (TEAB), pH 8, and 100 µg of TMT-Pro reagents (Thermo Scientific,US) in 15 µL of 280 

dry acetonitrile (AcN) were added. Samples were scrambled and incubated at RT at 550 rpm for 281 

2 h. The labeling reaction was stopped by adding 5 µL of 5% hydroxylamine and incubated at RT 282 

with 550 rpm for 15 min. Individual samples were combined to one analytical sample and dried 283 

in vacuum concentrator.  284 

High pH reversed phase LC fractionation and RPLC-MS/MS analysis: The TMTPro-labeled 285 

tryptic peptides were dissolved in 90 µL of 20 mM ammonium hydroxide and were separated on 286 

an XBridge Peptide BEH C18 column (2.1�mm inner diameter × 250�mm, 3.5�μm particle 287 

size, 300 Å pore size, Waters, Ireland) previously equilibrated with buffer A (20 mM NH4OH) 288 

using a linear gradient of 1–23.5% buffer B (20�mM NH4OH in AcN, pH 10.0) in 42 min, 289 

23.5%-54% B in 4 min and 54-63% B in 2�min at a flow rate of 200�µL/min. The 290 

chromatographic performance was monitored by sampling eluate with a UV detector (Ultimate 291 

3000 UPLC, Thermo Scientific, US) monitoring at 214�nm. Fractions were collected at 30 s 292 

intervals into a 96-well plate and combined into 12 samples concatenating eight fractions 293 

representing the peak peptide elution. Each combined fraction sample (800 µL) was dried in a 294 

vacuum concentrator and the peptides was resuspended in 2% AcN/0.1% FA prior to LC-MS/MS 295 

analysis. 296 

Approximately, 2µg samples were injected in an Ultimate 3000 nano LC on-line coupled to an 297 

Orbitrap Fusion Lumos mass spectrometer (Thermo Scientific, San José, CA). The 298 
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chromatographic separation of the peptides was achieved using a 50 cm long C18 Easy spray 299 

column (Thermo Scientific,US) at 55°C, with the following gradient: 4-26% of solvent B (2% 300 

AcN/0.1% FA) in 120 min, 26-95% in 5 min, and 95% of solvent B for 5 min at a flow rate of 301 

300 nL/min. The MS acquisition method was comprised of one survey full mass spectrum 302 

ranging from m/z 350 to 1700, acquired with a resolution of R=120,000 (at m/z 200) targeting 303 

4x105 ions and 50 ms maximum injection time (max IT), followed by data-dependent HCD 304 

fragmentations of precursor ions with a charge state 2+ to 7+ for 2 s, using 60 s dynamic 305 

exclusion. The tandem mass spectra were acquired with a resolution of R=50,000, targeting 306 

5x104 ions and 86 ms max IT, setting isolation width to m/z 1.4 and normalized collision energy 307 

to 35% setting first mass at m/z 100.  308 

Peptide identification and preprocessing. The raw files were imported to Proteome Discoverer 309 

v2.4 (Thermo Scientific) and searched against the Homo sapiens SwissProt (2020_01 release 310 

with 20,595 entries) and the pre-leased SARS-CoV-2 UniProt (completed with 14 SARS-CoV2 311 

sequences of COVID-19 UniProtKB release 2020_04_06) protein databases with Mascot v 2.5.1 312 

search engine (MatrixScience Ltd., UK). Parameters were chosen to allow two missed cleavage 313 

sites for trypsin while the mass tolerance of precursor and HCD fragment ions was 10 ppm and 314 

0.05 Da, respectively. Carbamidomethylation of cysteine (+57.021 Da) was specified as a fixed 315 

modification, whereas TMTPro at peptide N-terminus and lysine, oxidation of methionine 316 

(+15.995 Da), deamidation of asparagine and glutamine were defined as variable modifications. 317 

For quantification both unique and razor peptides were requested. Protein raw data abundance 318 

was first filtered for empty rows with in house script and quantile-normalize using R package 319 

NormalyzerDE 29. Principal component analysis (PCA) was applied to explore sample-to- sample 320 

relationships. One proteomics samples from the uninfected control was excluded as it turned out 321 

to be outlier. 322 

Statistical analysis. Proteomics and transformed transcriptomics data were tested for normality 323 

using histograms with normal distribution superimposed. Differential expression through linear 324 

model was performed using R package LIMMA 30. LIMMA supports multifactor designed 325 

experiments in microarray, transcriptomics and proteomics. Its features are designed to support 326 

small number of arrays.  The three infected replicates at 24hpi, 48hpi and 72hpi hours 327 

respectively were selected in order to perform an equi-spaced univariate time series analysis. In 328 

limma design matrix, separated coefficients were associated with time and replicates in order to 329 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 1, 2020. ; https://doi.org/10.1101/2020.04.30.070383doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.30.070383
http://creativecommons.org/licenses/by-nc-nd/4.0/


extract the difference as a contrast. Moderated paired-t-test using limma with adjustment for 330 

replicates was applied. For pairwise comparisons, single factorial design was implemented to fit 331 

model with a coefficient for each of our four factors: uninfected, 24hpi, 48hpi and 72hpi. 332 

Comparisons were extracted as contrasts. In both analysis, significant differential genes and 333 

proteins were selected based on p values after Benjamini-Hochberg (BH) adjustment. Genes with 334 

alpha value inferior to 0.05 were considered significant. 335 

Bioinformatics Analysis: The transcriptomics and proteomics analysis were performed using all 336 

the protein coding genes and proteins and a gene set of viral processes, response and diseases 337 

respectively. The viral response gene set is a catalogue of genes which are known to have involve 338 

in viral processes, response and diseases. The catalogue was enriched by mining biological 339 

process category of gene-ontology terms, Reactome pathways and gene sets associated with 340 

various viral diseases. Gene Ontology terms were selected by keeping, “response to virus 341 

(GO:0009615)” as parent term. All child terms of GO:0009615 were selected based on ontology 342 

term relationship “is a” and “regulates”. The pathway “Antiviral mechanism by IFN-stimulated 343 

genes” and two other events it participates were selected from Reactome database. Gene sets 344 

related to 42 virus associated diseases and six virus related diseases were selected 345 

from “Rare_Diseases_AutoRIF_Gene_Lists” library provided by gene set enrichment 346 

tool Enrichr 31. The viral response gene set contains total of 1517 protein coding genes. After 347 

filtering antiviral genes, up and downregulated proteins and transcripts were submitted separately 348 

to gene set enrichment analysis (GSEA) using gseapy v0.9.17. 349 

R package gplots v3.03 was used to generate heatmaps to display terms associated adjusted p 350 

values contrasts over conditions.  351 

Network and community analyses. Association analyses were performed by computing 352 

pairwise Spearman rank correlations for all features after removing null variant or genes with 353 

very low expression (RPKM < 1). Correlations were considered statistically significant at FDR < 354 

0.01. Positive correlations were selected and used to build a weighted graph where Spearman ρ 355 

was used as weights. All network analyses were performed in igraph 32. For all networks, 356 

diameter, average path lengths, clustering coefficients, and degree distributions were compared 357 

with those attained for similarly-sized random networks (Erdős-Rényi models, 33). Degree 358 

centrality was computed for all networks and normalized for network size. Communities were 359 
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identified by modularity maximization through the Leiden algorithm 34. Community centrality 360 

was computed by averaging node centrality and used to identify the most central communities in 361 

each network by degree comparison. Gene set enrichment analysis was performed on each 362 

community (n > 30) through Enrichr for KEGG Human 2019 where backgrounds were selected 363 

based on the node number of each network. Community similarity was computed through 364 

hypergeometric testing of overlap between statistically significant KEGG terms for each 365 

transcriptomic vs proteomic pair of communities. Throughout, all statistical tests were considered 366 

at an FDR < 0.05 unless otherwise stated. All analyses were performed in Python 3.7. 367 

Protein-protein interactions among human proteins were derived from Human Reference 368 

Interactome (HuRI). Interactions between human proteins and SARS-Cov2 viral proteins were 369 

obtained from Human Protein Atlas (HPA). Protein interaction network is created using 370 

Cytoscape version 3.6.1 35. Edge weighted spring embedded layout was used for the network. R 371 

package gplots 3.03 was used to generate heatmaps to display terms associated p values contrasts 372 

over conditions. Sankey Plot illustrates most important contribution genes to flow pathways. It 373 

was plotted using R package ggalluvial version 0.11.1 36. Scatter plots produced using ggplot2 374 

represent the bivariate relationship between proteins and time. 375 

Western Blot. Evaluation of protein expression was performed by running 20 μg of total protein 376 

lysate on NuPage Bis Tris 4-12%, gels or NuPage Tris-Acetate 3-8% gels (Invitrogen, Carlsbad, 377 

CA, USA).  Proteins were transferred using iBlot dry transfer system (Invitrogen, Carlsbad, CA, 378 

USA) and blocked for 1h using 5% milk or bovine serum albumin (BSA) in 0.1% PBSt (0.1% 379 

Tween-20). Subsequent antibody detection was performed at 4°C over-night or 2h at room 380 

temperature for β-Actin. Membranes were washed using 0.1% PBSt and secondary antibody 381 

incubated 1h at room-temperature using Dako Polyconal Goat Anti-Rabbit or Anti-Mouse 382 

Immunoglobulins/HRP (Aglient Technologies, Santa Clara, CA, USA) washed using 0.1% PBSt 383 

and visualized using ECL or ECL Select (GE Healthcare, Chicago, IL, USA) on ChemiDoc 384 

XRS+ System (Bio-Rad Laboratories, Hercules, CA, USA). The western blot analysis was 385 

performed on duplicates (p-mTOR, S6K and p-S6K) or triplicate (4E-BP1, p-4E-BP1and HIF-386 

1α) of the samples in two different timepoints. Viral RNA was quantifed from cells as well as 387 

supernatent in all the time points as a confirmation of the infection.  The uncropped western blots 388 

are given as resource data file 1.    389 
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Data and Code Availability. The raw RNAseq data can be obtainred from the SRA using the 390 

project id. PRJNA627100. Proteomics data can be obtained from 391 

https://zenodo.org/record/3754719#.XqgnSy2B3OQ. All the codes are available at github: 392 

https://github.com/neogilab/COVID19 393 
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Figure 1. (a) Brief methodology. (b) Viral RNA quantification using qPCR targeting the E gene 513 

of SARS-CoV-2. (c) Detected viral genes and open reading frame in the RNAseq experiment. (d) 514 

Temporal dynamics of detected proteins in the HuH7 cells by TMT-MS. (e) Gene set enrichment 515 

analysis using the genes related to viral response, process and diseases in single omics level by 516 

pairwise comparative analysis and time series analysis at individual omics level. Significant 517 

(adjusted p values) KEGG terms enriched for upregulated genes were represented as heatmap. 518 

The lower adjusted p values are shown in dark red color and higher ones with light red color, 519 

non-significant pathways are represented in grey color. (f-g) Network analysis using genes and 520 

proteins. Analysis of the most central communities in each network highlights key KEGG terms 521 

(right) among the top 10% associated genes and proteins. The top 10% correlations (Spearman 522 

rho > 0.95, FDR < 0.05) were selected in the most central community in transcriptomic (f) and 523 

proteomic (g) networks (inset) based on mean normalized degree. The top KEGG terms 524 

associated with each of the two communities (FDR < 0.05) are highlighted, as well as genes that 525 

had been previously found in Fig 1e. (h). A proteo-transcriptomic network analysis highlights 526 

coordinated expression and functional changes in response to viral infection. Communities 527 

(circles) in transcriptomic and proteomic networks, where node size is proportion to the number 528 

of elements (728 - 2519). Edges indicate association (Q<0.05) with KEGG terms (dashed), 529 

network edges (solid red and blue), or community similarity (solid gray). 530 

Figure 2. (a) Top four pathways, ErbB signaling, HIF-1 signaling, mTOR signaling and TNF 531 

signaling were selected and, together with proteins that are altered in the infection course, 532 

represented as Sankey Plot in order to illustrate the most important contribution to the flow of 533 

each pathway. (b) HuH7 cells were infected with SARS-CoV-2 at MOI of 1 and cells were 534 

harvested at 24hpi, 48hpi and 72hpi. The viral RNA quantification using qPCR targeting the E 535 

gene of SARS-CoV-2 targeting the supernatant. The relative fold change with respect to the 536 

uninfected controls is shown. (c) The representative western blots of indicated antibodies with (d) 537 

densitometric quantification are shown. (e) Network visualizing protein interactions among 538 

significantly changing proteins between samples at 24hpi and 48hpi, and SARS-CoV-2 viral 539 

proteins. Green color nodes represent decreased proteins at 48hpi and red colored proteins 540 

represent increased proteins at 48hpi. Size of the nodes are relative to their log2 fold change. 541 

Hexagonal shaped nodes denote SARS-CoV-2 viral proteins. The edges are derived from Human 542 

Reference Interactom (HuRI) and SARS-CoV-2 entry in Human Protein Atlas. (f) Approved 543 
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drugs targeting AKT/mTOR/HIF-1 signaling pathway. Only key proteins of the pathway are 544 

shown. The inhibitors are shown in red and activators in green.  545 

 546 

Supplementary Materials: 547 

Figure S1 – Gene expression (A) and co-expression (B – C) among key genes and top correlated 548 

and central genes in each community identified based on a transcriptomic network (communities 549 

1-5). For each community we identified selected the top 10 genes (gray labels), ranked by their 550 

median centrality (median ranked degree, betweenness, closeness and eccentricity centralities), 551 

among the top 10% correlated gene in each community. Key proteins, previously associated with 552 

HIF-1a, mTOR, MAPK signaling and other top pathways, are highlighted in black (Fig. 1e). 553 

Spearman rank correlations were computed for all genes (B) and excluded if not statistically 554 

significant (C, FDR < 0.01). S6K-A3, S6K-B2, and 4E-BP1 respectively indicate genes 555 

RPS6KA3, RPS6KB2, and EIF4EBP1. 556 

 557 

Figure S2 – Protein abundance (A) and correlations (B – C) among key proteins and top 558 

correlated and central proteins in each community identified based on a proteomic network 559 

(communities A-D). For each community we identified selected the top 10 proteins (gray labels), 560 

ranked by their median centrality (median ranked degree, betweenness, closeness and eccentricity 561 

centralities), among the top 10% correlated proteins in each community. Key proteins, previously 562 

associated with HIF-1a, mTOR, MAPK signaling and other top pathways, are highlighted in 563 

black (Fig. 1e). Spearman rank correlations were computed for all proteins (B) and excluded if 564 

not statistically significant (C, FDR < 0.01). S6K-A3, S6K-B2, and 4E-BP1 respectively indicate 565 

genes RPS6KA3, RPS6KB2, and EIF4EBP1. Note that 4E-BP1 is among the top 10% most 566 

correlated genes in community B. 567 

 568 

Supplementary Source Data 1. Original western blot. 569 

 570 

 571 
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