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Abstract 
The Rotating Snakes illusion is a motion illusion based on repeating, asymmetric luminance 
patterns. Recently, we found certain grey-value conditions where a weak, illusory motion occurs in 
the opposite direction. Of the four models for explaining the illusion, one (Backus and Oruç, 2005) 
also explains the unexpected perceived opposite direction. We here present a simple new model, 
without free parameters, based on an array of standard correlation-type motion detectors with a 
subsequent non-linearity (e.g., saturation) before summing the detector outputs. The model predicts 
(1) the pattern-appearance motion illusion for steady fixation, (2) an illusion under the real-world 
situation of saccades across or near the pattern (pattern shift), (3) a relative maximum of illusory 
motion for the same grey values where it is found psychophysically, and (4) the inverse illusion for 
certain luminance values. We submit that the model’s sparseness of assumptions justifies adding a 
fifth model to explain this illusion. 

Keywords: illusion, rotating snakes, computational model 

 

Introduction 
Certain spatial patterns can evoke illusory movement, especially under dynamic viewing. An early 
example was the Peripheral Drift Illusion (Fraser & Wilcox, 1979). A. Kitaoka optimized its 
patterns and colors, leading to the strong, beautiful and widely known “Rotating Snakes Illusion” 
(Kitaoka (2003; Kitaoka & Ashida, 2003, Fig. 5). While usually rendered in color, it is nearly just 
as strong in grey (Conway et al., 2005). The Rotating Snakes Illusion with its many variations 
continues to fascinate beyond the vision research community. It basically needs four luminance 
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levels in an asymmetric spatial arrangement, e.g. black/light-grey/dark-grey/white (Murakami et al., 
2006). When we assessed the optimal luminance conditions for the intermediate grey levels, we 
found an as yet unknown “parameter island of weak opposite rotation” when mapped into the plane 
of light-grey vs. dark grey values for the middle two patches (Atala-Gérard & Bach, 2017).  

To date, there are four models explaining the illusory motion in the Rotating Snakes Illusion 
(Backus & Oruç, 2005; Conway et al., 2005; Fermüller et al., 2010; Murakami et al., 2006). As we 
have discussed previously, only the Backus and Oruç (2005) model is able to predict the “island of 
opposite rotation” (Atala-Gérard & Bach, 2017). However, for this to work it requires a specific 
contrast transfer function (Atala-Gérard, 2018) which differs from the one used by Backus and Oruç 
(2005). Furthermore, in the natural viewing situation, the Snake pattern does not suddenly appear 
from neutral background, as assumed in this model, and for seeing the illusion, saccades are 
necessary (small or large (Otero-Millan et al., 2012)). 

We here present a fifth, simpler and parameter-free model, based on nothing but an array of 
standard Reichard correlation detectors [which are equivalent to the motion energy model (Adelson 
& Bergen, 1985), but see (Borst, 2007)] with a subsequent non-linear (e.g. saturating) transfer 
function before summing their outputs. This, together with saccades while viewing, or the 
appearance of the pattern out of a grey background, predicts the standard Rotating Snakes Illusion, 
including a parameter region leading to the opposite direction of rotation. 

These findings suggest that the Rotating Snakes Illusion can be regarded as a necessary side effect 
when arrays of motion detectors are combined in a non-linear fashion. 

A new, simple computational model 
We will present the model in two steps, beginning with a simpler situation, namely that of pattern- 
appearance of the stimulus from a grey background. We will then move on to treat natural viewing 
conditions, namely that the observer performs saccades across the stimulus picture. The model only 
assumes the presence of arrays (Snippe & Koenderink, 1994) of standard Reichardt-Hassenstein 
correlation detectors (Borst & Egelhaaf, 1989; Hassenstein & Reichardt, 1956, Fig. 4e; Reichardt, 
1986). As these are mathematically equivalent with the motion energy model (Adelson & Bergen, 
1985), all our findings will hold for the energy model as well. In the model presented here, it proved 
necessary to add a sign-conserving non-linearity (of nearly any shape, see below) at the output of 
individual motion detectors, before averaging across the detector array. Saturating non-linearities 
are frequently observed in neural systems (Peirce, 2007) and, specifically, in the motion system 
(Derrington & Goddard, 1989) and were suggested by (Adelson & Bergen, 1985): “A compressive 
nonlinearity (such as a square root) may follow…”. We tested various sigmoid functions that all 
share the property of being rotationally symmetric around zero, including the arc tangent, 
hyperbolic tangent, logistic function. 
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Fig. 1– A. Standard correlation-type motion detector (Borst & Egelhaaf, 1989; Reichardt, 1987). The 
stimulus (circle at top) moves from receptor R1 to R2 in time Δt, which is identical to the delay stages’ time 
constant t for a maximal response of the detector. After multiplication of the delayed with the non-delayed 
receptor output at “×”, the signals from the two paths are subtracted, resulting in a bipolar output on 
left/rightward motion, and a suppressed flicker response. 
B. Two sample cycles of a Snakes sequence (Murakami et al., 2006) supplied as an input to an array of 
motion detectors, each detector spatially tuned to the distance of a Snakes-sequence cell. The output of 
each individual motion detector passes a non-linear transfer function, before being summed across the 
array of motion detectors, yielding a net motion output. 

First approximation: pattern appearance 

This first approximation to a working model is based on the observation that the appearance of a 
Snake Pattern from a grey background (pattern appearance) evokes a strong apparent motion even 
with steady fixation. This is demonstrated on the website https://michaelbach.de/ot/mot-snakesLum/  
(Bach, 2020a) if “Modulate contrast” is selected there. To make the geometry more tractable, we 
uncoiled the original Rotating Snake Illusion with its several “Snake wheels”, and investigated a 
pattern consisting of repeated “Snake cycles”, each cycle containing four grey values (Fig. 1B).  

Basic motion detectors (Fig. 1A, based on Reichardt (1987, his Fig. 4c) include a delay τ, which we 
account for by simply comparing the time points before and after appearance (t₀, t₁, respectively) 
thus leaving the exact delay time undetermined (which may be 50–100 ms). The spatial span of 
each detector R equals the width of one stripe of the Snake pattern, and there is no space between 
adjacent detectors. The sensitivity of the detectors is spatially constant and normalized to 1 so that 
the output of the detectors is simply ∫ 𝐿 (𝑥)𝑑𝑥, with L(x) being the luminance and the limits of the 
integral the spatial span of the respective detector. We use the sign convention that a dark structure 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 11, 2020. ; https://doi.org/10.1101/2020.04.30.070623doi: bioRxiv preprint 

https://doi.org/10.1101/2020.04.30.070623
http://creativecommons.org/licenses/by-nc/4.0/


on light background yields a positive output when moving to the right. Given 
𝑔!: grey value at t₁	at the right input, 
𝑔!": previous (t₀) grey value at the right input, 
𝑔#: grey value at t₁	at the left input, 
𝑔#": previous (t₀) grey value at the left input, 
and assuming some function f (which could be the identity),  
the output d of the Reichard detector can be calculated by 
𝑑 = 𝑓-𝑔!"𝑔# − 𝑔#"𝑔!/ (Eq. 1) 

Main assumption: The sum (or the average, these differ here only by a scaling factor) of an array of 
such motion detectors, stimulated by the appearance of a Snake cycle, subserves the apparent 
motion (Fig. 1B). Thus, given 
𝑔": the previous (at t₀) background grey value at all inputs, 
𝑔$ and 𝑔% for the black and white value, respectively,  
the sum d∑ of four detectors, stimulated by a full Snake cycle, will be given by  
𝑑& = 𝑓-𝑔"𝑔$ − 𝑔"𝑔!/ + 𝑓-𝑔"𝑔! − 𝑔"𝑔%/ + 𝑓-𝑔"𝑔% − 𝑔"𝑔#/ + 𝑓-𝑔"𝑔# − 𝑔"𝑔$/  (Eq. 2) 

Note that d∑ will collapse to zero if f is the identity function. For our purposes we will only require f 
to be a mapping from [-1, 1] to [-1, 1], point-symmetrical around zero, with 𝑓(0) = 0 , 𝑓(1) = 1 
and 𝑓(−1) = −1. In this generality, we could not solve the problem analytically, so implemented it 
as a computational model in the R language (R Core Team, 2020), a free open-source programming 
and statistical environment, and graphs were produced using the package ggplot2. [Full source code 
in the repository (Bach, 2020b)]. 
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Fig. 2 – Model, first approximation. A. On top, a sequence of grey squares turns into the Snake sequence 
below. That sequence is the input to an array of motion detectors (cf. Fig. 1), whose output is calculated for 
two example combinations of (g₁, g₂). The positions of these (g₁, g₂) are indicated on a psychophysical data 
map (bottom left) which we reported previously (Atala-Gérard & Bach, 2017), showing two parameter 
regions which result in opposite illusory motion direction. The first (g₁, g₂) pair is from the region of strongest 
observed illusion, and indeed the average of the four outputs yields a non-negative value. The second (g₁, 
g₂) pair (25%, 75%) is from the “valley” between the two regions (the diagonal), and for symmetry reasons 
yields a zero net motion output. B. Net motion output example for all (g₁, g₂) pairs. It bears a qualitative 
similarity to the psychophysical findings (shown in figure part A, bottom left): There is a motion maximum 
near the expected region (≈5%, 50%) and, indeed, the model predicts an inverse direction near the region 
where this was experimentally observed (top right). 

Fig. 2A shows the motion detector array along a Snake cycle with two examples of grey-value pairs 
(bottom left), and corresponding summed outputs ∑. To give but two examples, for the combination 
(g₁, g₂) = (0.25, 0.75), the net output was zero; for the combination (g₁, g₂) = (0.05, 0.5), a non-zero 
output resulted. Non-zero net outputs only occurred with the insertion of the aforementioned non-
linearity. 

Fig. 2B shows the net motion for the full parameter space of the possible grey values (g₁, g₂). We 
observed a maximum velocity around the region where that was expected (g₁≈5%, g₂≈50%) and, 
indeed, found opposite motion direction where the psychophysical data predict opposite direction of 
illusory motion. 

The various shapes of the non-linearity affected the magnitude of the net motion output, but the 
distribution in (g₁, g₂) space remained the same (for all the tested non-linearities). Non-linearities 
within the receptors themselves were tested as well, but had no qualitative effect in this model and 
were thus omitted from further analysis, although physiologically they are likely to occur.  

Closer approximation, full model: “Pattern shift”, appearance at random positions along the 
Snake cycle 

We model the effects of saccades across the image by stimulating the motion detector array with 
Snake cycles changing their positions randomly (Fig. 3). Due to Kitaoka’s (2003; Kitaoka & 
Ashida, 2003, Fig. 5) arrangement in Snake wheels, saccades can affect the position of a Snake 
cycle as a random shift (Fig. 3) or at any other angle. Assuming that the latter average out, we will 
only compute the effects of lateral shifts here.  

In Fig. 3, we sketch the model structure: As an initial condition, a Snakes sequence could have any 
possible shift relative to the final position which is equal to the position of the detectors Ri. Since 
the problem is circular, we averaged over 40 small shifts of the Snakes sequence until it was 
identical again. The results are shown in Fig. 4, using three different non-linearities. Unsurprisingly, 
no motion illusion appears for a linear transfer function (A). For any (of the tested) saturating 
transfer functions a non-zero (illusory) motion, including the “opposite island”, occurs with the 
pattern shift model just as with the pattern appearance model. Fig. 4C adds an accelerating non-
linearity: illusory motion appears again, but with opposite sign; the same sign reversal occurs also 
in the pattern-appearance model (not depicted). 
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Fig. 3. The simplification of the previous figure 
(pattern appearance: Snakes appearing from 
grey) is now made more realistic: Snakes 
appearing from all possible horizontal shifts of 
a previous Snake pattern. The shift shown for 
(half a cell width) is but one example of the 
possible shifts. The motion detectors are 
arranged exactly as in the first approximation. 

For all tested non-linearities, we found areas in the (g₁, g₂) plane which give non-zero results (and 
thus illusory motion), but the relative areas of positive and negative motion varied slightly. 

 
Fig. 4 – Top: Three different transfer functions (A, linear; B, tangent; C, arc tangent). Bottom: the net 
output of the random-position appearance model for all possible (g1, g2) combinations. 
A. With a linear transfer function, no net motion signal appears. B. We tested a range of saturating 
non-linearities and in all cases there appears a net motion signal for any off-diagonal (i.e., 
asymmetrical) (g1, g2) combination, and also a polarity inversion when crossing the diagonal – as 
also found psychophysically. C. Accelerating non-linearities also lead to a net motion output, with an 
inverted sign (direction) of apparent motion compared to saturating non-linearities. 
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Discussion  
We present a computational model which demonstrates that arrays of standard motion detectors (of 
the correlation- or motion-energy type), followed by a non- linear transfer function, exhibit the 
motion illusion known as the Rotating Snakes illusion. The non-linearity can have nearly any shape, 
as long as it is monotonous. Some properties of psychophysical findings are predicted by the model: 
(1) prediction of the pattern- appearance motion illusion for steady fixation, (2) an illusion under the 
natural viewing situation of performing saccades across the pattern (pattern shift), (3) the presence 
of a relative maximum of illusory motion right at the location in the (g₁, g₂) parameter space where 
it is found psychophysically, and (4) the (recently discovered) inverse illusion in a certain parameter 
region. There are a number of shortcomings and assumptions associated with our simple model 
which will be discussed next. 

While several aspects of the illusion are captured by the model, there is no quantitative prediction, 
and it predicts equal strength for the “island of opposite rotation” which perceptually is markedly 
weaker. 

Initially we had considered that the real-world saccadic condition can also be traced to pattern- 
appearance, invoking saccadic suppression to transform pattern-shift into pattern appearance. This 
may well be the case, but it seems that saccadic suppression is not needed to explain the illusion. 

The most famous version of the “Rotating Snakes” (Kitaoka, 2003) is in color, which we have 
simplified here to a luminance-only version. This is, of course, computationally much more 
tractable and the simplification seems justified, as Conway et al. (2005) found similar illusion 
strengths for the luminance and color variants. 

While the present model needs no free parameters to be fitted, there are a number of inherent 
simplifying assumptions: A major one is that the spatial tuning of the detector inputs being matched 
to the Snake pattern sequence (Fig. 1B). This may indeed be related to the finding that the illusion is 
typically strongest when performing saccades in the neighborhood of the picture. Consequently, 
somewhat larger receptive fields (Strasburger et al., 2011) may become involved, that are spatially 
better tuned to the pattern. Furthermore, optimal matches between the stimulus and the motion 
detector arrangement will be only fleeting, which matches the perception of this illusion. The model 
rests on summation of motion receptors, thus loosing spatial information in the model. But some 
aggregation of motion detectors is required anyway to account e.g. for higher-order motion (Lu & 
Sperling, 1996) or independence of form (Glünder, 1990). 

A very specific shortcoming of the model is the missing prediction of the factual illusion weakness 
in what we call the “island of opposite rotation” as opposed to the standard grey-value region (it 
rather predicts the same strength). A further assumption is connected to our simplified saccade 
model. In the model, we consider the saccade’s motion trajectory as an instantaneous step function. 
However, in reality, saccades will occur more or less randomly when viewing the Snake patterns. 
Thus, our “pattern shift” situation is only one of many possibilities that can occur. Our assumption 
that all other angles and positions will “average out” may well deserve more detailed scrutiny. 
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While the above is a long, and possibly incomplete, list of assumptions, they all appear 
physiologically plausible. We were surprised that this very simple model predicts more properties 
of the Rotating Snakes illusion than any of the previous models, and that it yielded similar results 
for any of the tested, monotonous non-linearities. 

Conclusion 
We demonstrate that an array of standard motion detectors with a non-linear transfer function for 
each detector before summing the individual receptor outputs gives rise to a motion signal, which 
qualitatively shows all the known properties of the “Rotating Snakes” illusion. We submit that more 
complicated models are not required to explain this illusion, since it appears to be a straightforward 
consequence of the non-linearity (which is widely found in the nervous system) when confronted 
with the repeated, spatially asymmetric grey-value sequence of the Rotating Snakes illusion. Taken 
together, this underlines the notion that understanding the mechanisms of illusion can be an 
automatic byproduct of understanding mechanisms of general visual perception. 
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