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Abstract 

Background 

In silico data exploration is a key first step of exploring a research question. There are 

many publicly available databases and tools that offer appealing features to help with 

such a task. However, many applications lack exposure or are constrained with 

unfriendly or outdated user interfaces. Thus, it follows that there are many resources 

that are relevant to investigation of medical disorders that are underutilized.  

Results 

We developed an R Shiny web application, called Kaleidoscope, to address this 

challenge. The application offers access to several omics databases and tools to let 

users explore research questions in silico. The application is designed to be user-

friendly with a unified user interface, while also scalable by offering the option of 

uploading user-defined datasets. We demonstrate the application features with a 

starting query of a single gene (Disrupted in schizophrenia 1, DISC1) to assess its 

protein-protein interactions network. We then explore expression levels of the gene 

network across tissues and cell types in the brain, as well as across 34 schizophrenia 

versus control differential gene expression datasets.  

Conclusion 

Kaleidoscope provides easy access to several databases and tools under a unified user 

interface to explore research questions in silico. The web application is open-source 

and freely available at https://kalganem.shinyapps.io/Kaleidoscope/. This application 

streamlines the process of in silico data exploration for users and expands the efficient 

use of these tools to stakeholders without specific bioinformatics expertise.  
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Background 

Increasing numbers of large biological datasets are being deposited into publicly 

available repositories (1). In conjunction, an ever-increasing number of bioinformatic 

tools are being developed to process, analyze and view a wide spectrum of biological 

datasets (2). However, the rapidly growing availability of databases and bioinformatic 

tools can be an impediment for scientists, often hampering discovery of these tools, 

especially for users who are not well versed in the bioinformatics field (3, 4). 

We have observed that a large number of bioinformatics tools and databases 

that are relevant to psychiatric disorders are still relatively untapped. Even though some 

of these tools are well known, some researchers avoid utilizing them mainly due the 

sheer scale or the complexity of the user interface which can be overwhelming to novice 

users.  

We addressed this issue by developing an interactive R Shiny web application, 

called Kaleidoscope. Kaleidoscope provides a platform for easy access to these 

resources via a user-friendly interface. Integrating multiple databases and tools in a 

single platform facilitates the users interactive exploration of research questions in 

silico. This approach to data exploration can lead to exciting observations that 

supplement existing hypotheses, generate new ones and possibly direct future studies 

(Fig 1) (5-8). This interactive exploratory data analysis platform is particularly targeted 

to a broader range of investigators who are not familiar with these tools. The platform 

solves the issue of outdated or complex user interfaces that impede many 

bioinformatics tools by presenting a simple and standardized user interface across the 

whole platform. Our web application utilizes application programing interfaces (APIs) to 
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access databases to extract, harmonize, and present expression data using meaningful 

visualizations. An easy and fast process of examining datasets is vital to the concept of 

data exploration. The platform is also designed to accommodate user-provided datasets 

to better suit the user’s research interests. This in particular is a huge asset for 

investigators, as the process of finding, curating, formatting, and analyzing datasets is 

time consuming and requires trained individuals. Being aware of these challenges, we 

designed our application to minimize the process of data acquisition and formatting. 

This intended design allows researchers to primarily focus on in silico hypothesis 

exploration without spending unneeded time on the preceding steps. Moreover, as our 

user group grows and users upload their own curated datasets, we expect a sizable 

expansion of the number of datasets hosted in our platform. This promising feature will 

help grow the curated datasets found in the application in a user defined manner.  

Implementation 

Kaleidoscope is an R Shiny web application that integrates multiple databases 

that are relevant to psychiatric disorders; Brain RNA-Seq, BrainCloud, BrainAtlas, 

BrainSpan, STRING, iLINCS, Enrichr, GeneShot, and GWAS Catalog, as well as over 

200 (and counting) disease-related differential gene expression datasets. 

Brain RNA-Seq 

The Brain RNA-Seq provides insight on gene expression of isolated and purified 

cells from human and mouse cortical tissue (9, 10). Our application utilizes the Brain 

RNA-Seq database to incorporate a searchable database of cell-specific mRNA 

expression in rodent and human brain tissues. The Brain RNA-Seq database has its 

own web interface, but it’s limited to only searching one gene at a time. Our platform 
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permits inquiry of multiple genes simultaneously, while also displaying figures that 

represent the ratio of expression across the different cell types that are present in the 

database. This module in our platform can serve as a first step for assessing expression 

levels of target genes in different brain cells to understand their cell-specific function 

and role, while also highlighting the differences of profiles between the two species.  

Search Tool for the Retrieval of Interacting Genes (STRING) 

STRING is a popular database of known and predicted protein-protein interaction 

(PPI) networks (11). These interactions represent either physical or functional 

associations between proteins. This module in our application can be used to grow a 

gene of interest into a network by querying for PPI networks. Through a connection to 

the STRING API, the user has the option to specify the stringency of the predicated 

associations (by choosing the appropriate score cutoff), choosing the desired number of 

connected proteins, and the desired organism. Our application efficiently communicates 

the complex results from STRING by displaying the PPI network together with a figure 

legend, providing context for the different edges in the network. Moreover, a table is 

displayed that lists all of the proteins in the network with a brief description to each 

corresponding protein, as well as the values of each scoring method that STRING uses 

to calculate the combined scores (12).  

BrainCloud 

The BrainCloud database was developed through a collaboration between the 

Lieber Institute and The National Institute of Mental Health (NIMH) to give a global 

insight of the role of the human transcriptome in cortical development and aging (13). 

Using the data generated by BrainCloud, we can observe the patterns of expression in 
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the brain of our target genes across the lifespan of healthy humans. This data is used to 

explore the genetic control of transcription of our targets during development and aging 

using samples from the prefrontal cortex. 

Allen Brain Map   

We utilized the cell type database of the Allen Brain Map which examines the 

transcriptional profile of thousands of single cells with RNA-Seq (14). Currently our 

platform has access to RNA-Seq data, generated from intact nuclei derived from frozen 

human brain specimens, to survey cell type diversity in the human middle temporal 

gyrus (MTG). In total, 15,928 nuclei from 8 human tissue donors ranging in age from 24-

66 years were analyzed (14). Analysis of these transcriptional profiles reveals 

approximately 75 transcriptionally distinct cell types, subdivided into 45 inhibitory neuron 

types, 24 excitatory neuron types, and 6 non-neuronal types (14). A list of target genes 

can be queried across all of these clusters of cell subtypes to examine their expression 

levels or enrichments. A heatmap with unsupervised hierarchical clustering is displayed 

to visualize the differences of gene expression across the target genes and also across 

the different cell subtype clusters. Additionally, the user may get results about whether 

genes are enriched in one cell subtype cluster versus another by comparing the 

proportions of expression across all cell subtypes, with an adjustable difference cutoff.  

In addition, the BrainSpan atlas is integrated into the platform which 

complements the BrainCloud database by exploring the transcriptional mechanisms 

involved in human brain development, but with specific transcriptional profiling of 

different brain regions (15). Currently, 10 brain regions are included in Kaleidoscope. 

Data are displayed as Reads Per Kilobase Million (RPKM) expression values. 
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GTEx 

The Genotype-Tissue Expression (GTEx) database contains data of tissue-

specific gene expression and regulation. The database is constructed based on 

samples that were collected from 54 non-diseased tissues from almost 1000 individuals, 

primarily for molecular assays including whole genome and transcriptome sequencing 

(16). Our application allows the user to input a list of genes to query their expression 

levels across all of the tissues that were analyzed in the GTEx database. The results 

display the median TPM (Transcripts Per Kilobase Million) of each gene in the list 

presented as heatmap, with options of unsupervised hierarchical clustering or log 

transformation. This module is very helpful in capturing the tissue-specific regulation of 

expression of the user’s genes of interest.  

Moreover, the GTEx database contains eQTL (expression quantitative trait loci) 

mapping for almost all studied tissues to identify variant-gene expression associations. 

Our platform has access to eQTL mapping of tissues relative to our field, including 

samples from 5 different brain regions. 

Lookup Replication Studies 

Previously published, peer-reviewed, and publicly available transcriptomics and 

proteomics datasets were carefully curated and selected to probe for patterns of 

differential gene expression between healthy subjects and diseased/perturbed samples. 

These datasets were analyzed using well-established differential expression analysis R 

packages. Specifically, we used Limma for microarray datasets, and EdgeR/DESeq2 for 

RNASeq datasets (17-19). 
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The curated datasets cover several substrates, including stem cells, postmortem 

brain, and animal models. At present the application has over 200 datasets grouped 

under different modules. The modules currently available are schizophrenia, 

depression, antipsychotics, dopamine signaling, insulin signaling, bipolar disorder, 

Alzheimer’s disease, aging, microcystin, and coronavirus. These modules are also 

being expanded as we integrate additional datasets. In addition, users have the ability 

to upload their own curated datasets into the application, thus expanding the different 

diseases hosted in the platform. Loaded datasets are automatically harmonized by 

calculating the empirical cumulative probabilities of the log2 fold change values of 

genes within each dataset (20).  

Kaleidoscope displays the results for this section of the software across multiple 

tabs. The “Results” tab shows a table where each row represent a gene from the input 

list of genes and each column represent a dataset from the selected datasets. The 

values in the table are the log2 fold-change values and p-values. The “Lookup Graph” 

tab shows a figure to visualize the results from the table from the “Results” tab with 

additional information to help the user quickly navigate the results. The x-axis of the 

figure represents genes and the y-axis represents proportion values of number of “hits,” 

log2 fold change values that passed a cutoff threshold which can be adjusted by the 

user. These values represent the number of hits over the number of datasets for each 

target gene, excluding datasets that have missing values. The colors represent the 

number of datasets which are found for each gene. The “Heatmap” tab displays an 

interactive heatmap representing log2 fold change values (Log2FC), fold change values 

(FC), and standardized scores based on the calculations of empirical cumulative 
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probabilities (ECDF). These heatmaps provide unsupervised hierarchical clustering for 

both genes and datasets. The clustering allows patterns of similar changes of 

expression across the list of genes and the datasets that were selected to be identified. 

The “Correlation” tab in this section shows a visualization of the concordance scores 

matrix calculated using either Pearson or Spearman correlation analysis based on the 

log2 fold change values. The user has the option to calculate the concordance scores 

based on the input list of genes or the full list of genes in the datasets. For each 

correlation analysis between two datasets, the test is applied using only the genes that 

were found in both datasets. The colors on the figure denotes the direction of the 

concordance scores, where red represents negative correlation (high discordance) and 

blue represents positive correlation (high concordance). The “References” tab shows a 

table with brief descriptions of each dataset and their references. 

Alternatively, instead of inputting a list of genes, the user has the option to query 

the commonly differentially expressed genes across multiple datasets by sorting the list 

of genes based on their absolute log2 fold change values within each dataset and 

extracting the top list of genes. An additional tab is shown when the user selects this 

type of analysis; it displays a heatmap representing the overlapping hits across the 

queried datasets. The user can adjust the parameters of this analysis by selecting the 

desired number of extracted genes from the datasets and the final number of genes that 

have the most overlap across the selected datasets. 

This section of the application helps the user to “lookup” expression patterns 

from publicly available and curated datasets to find any interesting patterns of gene 

expression changes. Seeing "hits" or above average gene expression differences 
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across multiple datasets is a strong indication that a gene or a panel of genes is 

involved in the disease process. Additionally, it can be used to complement a user’s 

own transcriptome study that is related to any of the existing diseased/perturbed 

modules to conduct quick and easy lookup, replication, or confirmation studies (5). 

The Library of Integrated Network-Based Cellular Signatures (LINCS) 

The LINCS database is a large multi-omics profiling database. For transcriptional 

datasets, it utilizes the L1000. The L1000 is a gene-expression profiling assay based on 

the direct measurement of a reduced representation of the transcriptome (978 

“landmark” genes) under different perturbations; gene knockdown, gene 

overexpression, and drug treatments (21). Kaleidoscope provides the option to generate 

L1000 signatures by extracting the 978 genes and averaging the log2 fold change 

values across the selected datasets. The user is then able to download the L1000 

signature as a tab delimited file, and upload it to the integrative LINCS (iLINCS) portal to 

perform perturbagen connectivity analysis. iLINCS is a web platform developed to 

explore and analyze LINCS signatures and is mainly used to perform in-silico drug 

discovery analysis (22).  

In our application, the user can also query gene knockdown signatures by 

inputting a list of genes and will be connected to iLINCS API. The results are displayed 

as a table with the total number of knockdown signatures found per gene. Also, another 

table is displayed with more information on these gene knockdown signatures by 

specifying the gene knockdown signatures ID, cell line, and a direct link to the signature 

web page on the iLINCS web portal.   

 Genome-Wide Association Study (GWAS) Catalog 
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The GWAS Catalog is supported by the National Human Genome Research 

Institute (NHGRI). The GWAS Catalog database is the largest curated collection of all 

published genome-wide association studies (23). In our application, the user can query 

the GWAS Catalog database by inputting a gene or a list of genes. The results are 

displayed as a table with all significant single-nucleotide polymorphisms (SNPs) 

mapped to the input genes. The table will show the gene name, SNP  ID (rs ID), 

chromosome position, studied disease or phenotype, and a direct link to the study. In 

addition, the type of SNP will be shown as intergenic variant, 3 Prime UTR variant, 

regulatory region variant, etc. Two additional tabs display distinct figures: the first 

displaying the top overlapping disease/phenotype traits, the second an interactive 

sankey graph to represent the flow rate between the list of genes, SNP type, 

disease/phenotype trait. 

Enrichr and GeneShot 

Enrichr and GeneShot are two tools that were developed by The Ma’ayan 

Laboratory, Icahn School of Medicine at Mount Sinai (24, 25). Enrichr is a tool for 

performing gene set enrichment analysis across many databases (24). GeneShot is a 

search engine for search terms and genes mentions based on arbitrary text queries of 

published literature (25). Kaleidoscope utilizes these tools’ APIs to integrate them 

across Kaleidoscope for easy access to gene set enrichment analyses.  

Discussion  

To demonstrate the application’s features, we ran an example session starting 

with a single gene of interest. The purpose of this demonstration is to highlight some of 

the rich information and data that can be extracted using Kaleidoscope. We picked the 
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Disrupted in schizophrenia 1 (DISC1) gene as the starting gene of interest. DISC1 has 

emerged as a strong candidate gene underlying the risk for major mental disorders (26, 

27). We expanded our single gene into a network using the STRING tab, by selecting 

human as the desired species and using 500 as the score cutoff as well as limiting the 

desired number of nodes to 25 (Fig 2A). A table is generated that displays a brief 

description of each gene, and association scores under the different criteria 

(experimental database, co-expression, text mining  etc.) (Supplementary Table 1). 

Using this list of genes from the PPI network, we data mined the other available 

databases in Kaleidoscope. We used the GeneShot tab to search the relevance of 

schizophrenia and our PPI network across previous publications. In Fig 2B the total 

publications that mention each gene and the proportions of these publications that also 

mention schizophrenia is shown. As expected, DISC1 has a high proportion of 

publications that were linked to schizophrenia. Interestingly, some genes in the network 

appeared to be understudied with regards to their association to schizophrenia (Serine 

racemase (SSR), Oligodendrocyte transcription factor 2 (OLIG2), Glycogen synthase 

kinase-3 beta (GSK3B)).  

Next, the Brain RNA-Seq tab was used to explore DISC1 cell type specific gene 

expression. Fragments Per Kilobase of transcript per Million mapped reads (FPKM) for 

DISC1 in both human and mouse are shown for multiple cell types (neurons, astrocytes, 

endothelial cells, oligodendrocyte progenitor cells, etc.) (Fig S1). Additionally, we 

queried the Brain RNA-Seq tab to look at cell-type specific gene expression, using the 

whole network and selecting the option of multiple targets input. The gene expression 

figures for each gene are displayed. Boxplot and proportion figures are also displayed 
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when using the multiple target option. We observed higher levels of expression for this 

network in neurons and oligodendrocytes (Fig 3A-B). Oligodendrocytes have been 

linked to schizophrenia in regards to myelin dysfunction and neurocircuitry abnormalities 

(28).  

We continue to explore the expression levels of our target genes in different cell 

types, this time using the BrainAtlas tab. Inputting our list of genes in that tab yields a 

table and a gene expression heatmap. The table displays the range of count per million 

(CPM) values for each gene across all of the different cell types, using all the sub-

clusters within each cell type. A heatmap is also generated with unsupervised 

hierarchical clustering for both genes and cell type sub clusters (Fig 3C). GTEx was 

also queried to observe tissue specific gene expression levels. Samples from brain 

tissues clustered together, suggesting a similar pattern of expression of gene networks 

in the brain compared to other tissue types. Also, an enrichment of gene expression in 

brain tissues has been observed for many of the genes in our network, including OLIG2, 

NRXN1 and DLG4 (Fig 3D). We then used the lookup tab to search relative gene 

expression changes of the network of genes across different schizophrenia 

transcriptional datasets (29-42). Several figures and tables are displayed, most 

importantly a heatmap of log2 fold change values and table of gene expression changes 

across the different datasets (Fig 4A, Supplementary Table 2). The results indicate a 

clear dysregulation in expression for our network of genes, consistent with previous 

findings of their association with schizophrenia (43-45). Also, a correlation matrix figure 

is shown based on the list of the genes from the DISC1 network and paired based on 

the selected datasets (Fig 4B). Finally, the iLINCS tab was utilized to search for 
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knockdown signatures of the list of genes from the network and generate a table of 

signature IDs, cell line, and direct link to the signature iLINCS webpage for further 

exploration (Supplementary Table 3).  

Conclusion 

As demonstrated here, Kaleidoscope provides an integrated platform to perform 

in silico data exploration of transcriptional signatures. The ability to efficiently explore 

DISC1 related signatures across all of these databases and tools offers insights on its 

protein-protein interactors and their regulation patterns across schizophrenia 

transcriptional datasets. Kaleidoscope has been recently utilized to perform in silico 

replication analyses of publicly available datasets, highlighting its utility (5-8). Our 

platform was used to supplement findings of bioenergetic gene expression 

dysregulation, and to explore adenosine system dysregulation in schizophrenia (5, 6). It 

was also used to explore abnormal regulators of protein prenylation in schizophrenia 

(7). Most recently, Kaleidoscope was utilized to investigate alteration of glutamate 

transporter interacting proteins in schizophrenia, major depression, and amyotrophic 

lateral sclerosis (8). Taken together, these examples show the advantage of having a 

platform that streamlines the process of in silico data exploration, making bioinformatics 

tools accessible to a wider range of users to test and investigate scientific questions and 

findings in silico.    
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Availability and requirements 

Project name: Kaleidoscope 
Webpage: https://kalganem.shinyapps.io/Kaleidoscope/ 
Project home page: https://github.com/kalganem/kaleidoscope 
Operating system(s): Platform independent 
Programming language: R 
Other requirements: e.g. Dependent R packages 
License: GNU GPL. 
Any restrictions to use by non-academics: none  
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API: Application programing interface 
PPI: Protein-protein interaction 
STRING: Search Tool for the Retrieval of Interacting Genes 
MTG: middle temporal gyrus 
RPKM: Reads Per Kilobase Million 
TPM: Transcripts Per Kilobase Million 
eQTL: Expression quantitative trait loci 
SNP: Single nucleotide polymorphism 
LINCS: The Library of Integrated Network-Based Cellular Signatures 
iLINCS: Integrative LINCS 
GWAS: genome-wide association study 
UTR: untranslated region 
FPKM: Fragments Per Kilobase of transcript per Million mapped reads 
CPM: count per million  
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Figure 1. A workflow model for using Kaleidoscope to perform in silico 
exploratory data analyses. Starting with hypotheses and questions, Kaleidoscope 
integrates multiple platforms and tools to streamline the process of in silico data 
exploration. STRING (Search Tool for the Retrieval of Interacting Genes) provides 
protein-protein interaction networks. The Brain RNASeq database is used for cell 
specific gene expression levels in human and mouse brain tissues. BrainCloud is used 
to extract gene expression patterns in the brain across the lifespan of healthy humans. 
Enrichr is integrated to perform gene set enrichment analyses. iLINCS (Integrative 
Library of Integrated Network-Based Cellular Signatures) is queried to search for gene 
knockdown transcriptional signatures and generate L1000 signatures that can be further 
explored using the iLINCS platform. BrainAtlas is used to assess gene expression 
levels in different brain cell types. GTEx (Genotype-Tissue Expression) is used to 
explore tissue specific gene expression patterns. GEO (Gene Expression Omnibus) is 
utilized to extract and curate previously published differential gene expression datasets. 
GWAS Catalog (Genome-Wide Association Study Catalog) is searched for previously 
published genome-wide association studies. The GeneShot tool is used to text mine 
published studies to associate search terms and genes.   
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Figure 2. Protein-protein interaction (PPI) network for the DISC1 protein and 
mentions in the schizophrenia literature. A) The PPI network generated from the 
STRING (Search Tool for the Retrieval of Interacting Genes) database for DISC1 and 
its 25 close interactors (0.500 was used as the minimum required interaction score). B) 
A scatterplot to represent the associations of the DISC1 gene set from the PPI network 
with schizophrenia (number of papers that mention both the gene name and 
schizophrenia over the number of total number of papers that mention that gene).  
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Figure 3. Plots and heatmaps to represent transcription enrichments across 
different cell types and tissues of the DISC1 protein interactors. A) Results from 
the Brain RNA-Seq. Each facet represents a gene, and the values show expression 
levels (log2(FPKM+1)) across the 5 different cell types in human brain tissue. B) 
Boxplots to show the distribution of gene expression levels for the full list of genes. C) A 
heatmap to highlight the difference of gene expression levels in different tissues from 
the GTEx database. D) Heatmap to show the gene expression levels in the different cell 
types from the BrainAtlas with unsupervised hierarchical clustering   
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Figure 4. Differential gene expression of DISC1 protein interactors across 34 
schizophrenia datasets. A) Heatmap with log2 fold change values between cases and 
controls across curated schizophrenia datasets. The datasets are grouped by their 
sample level (Region; samples taken from tissues, Cell; samples taken from pools of 
isolated cells). B) Correlation analysis of log2 fold change values of the DISC1 protein 
interactors between the schizophrenia datasets (Spearman correlation). Blue represents 
high concordance and red represents high discordance.   
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Supplementary Table 1: STRING protein-protein association network for the DISC1 
protein. The table displays a brief description of each protein, and association scores 
under the different criteria. The combined score is computed based on the assumption of 
independence of the other scores (12).  

Protein Combined 
Score Description Experimental Database Gene 

Fusion Textmining CoExpression Phylogenetic Neighborhood 

NDEL1 0.93 
Nuclear distribution protein nudE-like 1; Required for organization of the cellular microtubule array and microtubule anchoring at the centrosome. May regulate microtubule 

organization at least in part by targeting the microtubule severing protein KATNA1 to the centrosome. Also positively regulates the activity of the minus-end directed microtubule 
motor protein dynein. May enhance dynein-mediated microtubule sliding by targeting dynein to the microtubule plus ends. Required for several dynein- and microtubule-

dependent processes such as the maintenance of Golgi integrity, the centripe [...] 
0.38 0 0 0.9 0 0 0 

DTNBP1 0.93 
Dysbindin; Component of the BLOC-1 complex, a complex that is required for normal biogenesis of lysosome-related organelles (LRO), such as platelet dense granules and 
melanosomes. In concert with the AP-3 complex, the BLOC-1 complex is required to target membrane protein cargos into vesicles assembled at cell bodies for delivery into 
neurites and nerve terminals. The BLOC-1 complex, in association with SNARE proteins, is also proposed to be involved in neurite extension. Associates with the BLOC-2 

complex to facilitate the transport of TYRP1 independent of AP-3 function. Plays a role i [...] 
0 0 0 0.93 0 0 0 

PDE4B 0.9 cAMP-specific 3',5'-cyclic phosphodiesterase 4B; Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes. May be involved 
in mediating central nervous system effects of therapeutic agents ranging from antidepressants to antiasthmatic and anti-inflammatory agents; Phosphodiesterases 0.23 0 0 0.87 0 0 0 

FBXW7 0.89 
F-box/WD repeat-containing protein 7; Substrate recognition component of a SCF (SKP1-CUL1-F- box protein) E3 ubiquitin-protein ligase complex which mediates the 

ubiquitination and subsequent proteasomal degradation of target proteins. Recognizes and binds phosphorylated sites/phosphodegrons within target proteins and thereafter 
bring them to the SCF complex for ubiquitination. Identified substrates include cyclin-E (CCNE1 or CCNE2), JUN, MYC, NOTCH1 released notch intracellular domain (NICD), 

and probably PSEN1. Acts as a negative regulator of JNK signaling by binding to phosphorylated [...] 
0.89 0 0 0.09 0 0 0 

FEZ1 0.88 
Fasciculation and elongation protein zeta-1; May be involved in axonal outgrowth as component of the network of molecules that regulate cellular morphology and axon 

guidance machinery. Able to restore partial locomotion and axonal fasciculation to C.elegans unc-76 mutants in germline transformation experiments. May participate in the 
transport of mitochondria and other cargos along microtubules; Belongs to the zygin family 

0.38 0 0 0.81 0 0 0 

PDE4A 0.82 cAMP-specific 3',5'-cyclic phosphodiesterase 4A; Hydrolyzes the second messenger cAMP, which is a key regulator of many important physiological processes; Belongs to the 
cyclic nucleotide phosphodiesterase family. PDE4 subfamily 0.26 0 0 0.77 0 0 0 

CCDC88
A 0.81 

Girdin; Plays a role as a key modulator of the AKT-mTOR signaling pathway controlling the tempo of the process of newborn neurons integration during adult neurogenesis, 
including correct neuron positioning, dendritic development and synapse formation (By similarity). Enhances phosphoinositide 3-kinase (PI3K)- dependent phosphorylation and 

kinase activity of AKT1/PKB, but does not possess kinase activity itself (By similarity). Phosphorylation of AKT1/PKB thereby induces the phosphorylation of downstream 
effectors GSK3 and FOXO1/FKHR, and regulates DNA replication and cell proliferation [...] 

0.12 0 0 0.8 0 0 0 

PAFAH1
B1 0.81 

Platelet-activating factor acetylhydrolase IB subunit alpha; Required for proper activation of Rho GTPases and actin polymerization at the leading edge of locomoting cerebellar 
neurons and postmigratory hippocampal neurons in response to calcium influx triggered via NMDA receptors. Non-catalytic subunit of an acetylhydrolase complex which 

inactivates platelet- activating factor (PAF) by removing the acetyl group at the SN-2 position (By similarity). Positively regulates the activity of the minus-end directed 
microtubule motor protein dynein. May enhance dynein-mediated microtubule slid [...] 

0.12 0 0 0.8 0 0 0 

GSK3B 0.8 
Glycogen synthase kinase-3 beta; Constitutively active protein kinase that acts as a negative regulator in the hormonal control of glucose homeostasis, Wnt signaling and 
regulation of transcription factors and microtubules, by phosphorylating and inactivating glycogen synthase (GYS1 or GYS2), EIF2B, CTNNB1/beta-catenin, APC, AXIN1, 

DPYSL2/CRMP2, JUN, NFATC1/NFATC, MAPT/TAU and MACF1. Requires primed phosphorylation of the majority of its substrates. In skeletal muscle, contributes to insulin 
regulation of glycogen synthesis by phosphorylating and inhibiting GYS1 activity and hence glyc [...] 

0.47 0 0 0.64 0 0 0 

PCNT 0.8 
Pericentrin; Integral component of the filamentous matrix of the centrosome involved in the initial establishment of organized microtubule arrays in both mitosis and meiosis. 

Plays a role, together with DISC1, in the microtubule network formation. Is an integral component of the pericentriolar material (PCM). May play an important role in preventing 
premature centrosome splitting during interphase by inhibiting NEK2 kinase activity at the centrosome 

0.38 0 0 0.69 0 0 0 

NRG1 0.79 
Pro-neuregulin-1, membrane-bound isoform; Direct ligand for ERBB3 and ERBB4 tyrosine kinase receptors. Concomitantly recruits ERBB1 and ERBB2 coreceptors, resulting in 
ligand-stimulated tyrosine phosphorylation and activation of the ERBB receptors. The multiple isoforms perform diverse functions such as inducing growth and differentiation of 

epithelial, glial, neuronal, and skeletal muscle cells; inducing expression of acetylcholine receptor in synaptic vesicles during the formation of the neuromuscular junction; 
stimulating lobuloalveolar budding and milk production in the mammary gla [...] 

0 0 0 0.79 0 0 0 

ERBB4 0.78 
Receptor tyrosine-protein kinase erbB-4; Tyrosine-protein kinase that plays an essential role as cell surface receptor for neuregulins and EGF family members and regulates 

development of the heart, the central nervous system and the mammary gland, gene transcription, cell proliferation, differentiation, migration and apoptosis. Required for normal 
cardiac muscle differentiation during embryonic development, and for postnatal cardiomyocyte proliferation. Required for normal development of the embryonic central nervous 

system, especially for normal neural crest cell migration and normal [...] 
0 0 0 0.78 0 0 0 

PCM1 0.77 Pericentriolar material 1 protein; Required for centrosome assembly and function. Essential for the correct localization of several centrosomal proteins including CEP250, 
CETN3, PCNT and NEK2. Required to anchor microtubules to the centrosome. Involved in the biogenesis of cilia; Belongs to the PCM1 family 0 0 0 0.77 0 0 0 

DIXDC1 0.75 Dixin; Positive effector of the Wnt signaling pathway; activates WNT3A signaling via DVL2. Regulates JNK activation by AXIN1 and DVL2; Belongs to the DIXDC1 family 0 0 0 0.75 0 0 0 

TNIK 0.75 
TRAF2 and NCK-interacting protein kinase; Serine/threonine kinase that acts as an essential activator of the Wnt signaling pathway. Recruited to promoters of Wnt target genes 
and required to activate their expression. May act by phosphorylating TCF4/TCF7L2. Appears to act upstream of the JUN N-terminal pathway. May play a role in the response to 

environmental stress. Part of a signaling complex composed of NEDD4, RAP2A and TNIK which regulates neuronal dendrite extension and arborization during development. 
More generally, it may play a role in cytoskeletal rearrangements and regulate [...] 

0.12 0 0 0.73 0 0 0 

ZNF365 0.75 
Protein ZNF365; Involved in the regulation of neurogenesis. Negatively regulates neurite outgrowth. Involved in the morphogenesis of basket cells in the somatosensory cortex 
during embryogenesis. Involved in the positive regulation of oligodendrocyte differentiation during postnatal growth. Involved in dendritic arborization, morphogenesis of spine 
density dendrite, and establishment of postsynaptic dendrite density in cortical pyramidal neurons (By similarity). Involved in homologous recombination (HR) repair pathway. 

Required for proper resolution of DNA double-strand breaks (DSBs) b [...] 
0.12 0 0 0.73 0 0 0 

NDE1 0.73 
Nuclear distribution protein nudE homolog 1; Required for centrosome duplication and formation and function of the mitotic spindle. Essential for the development of the cerebral 

cortex. May regulate the production of neurons by controlling the orientation of the mitotic spindle during division of cortical neuronal progenitors of the proliferative ventricular 
zone of the brain. Orientation of the division plane perpendicular to the layers of the cortex gives rise to two proliferative neuronal progenitors whereas parallel orientation of the 

division plane yields one proliferative neurona [...] 
0.18 0 0 0.69 0 0 0 

NRXN1 0.73 
Neurexin-1; Cell surface protein involved in cell-cell-interactions, exocytosis of secretory granules and regulation of signal transmission. Function is isoform-specific. Alpha-type 
isoforms have a long N-terminus with six laminin G-like domains and play an important role in synaptic signal transmission. Alpha-type isoforms play a role in the regulation of 

calcium channel activity and Ca(2+)-triggered neurotransmitter release at synapses and at neuromuscular junctions. They play an important role in Ca(2+)- triggered exocytosis 
of secretory granules in pituitary gland. They may effect [...] 

0 0 0 0.73 0 0 0 

SRR 0.73 Serine racemase; Catalyzes the synthesis of D-serine from L-serine. D- serine is a key coagonist with glutamate at NMDA receptors. Has dehydratase activity towards both L-
serine and D-serine 0.46 0 0 0.52 0 0 0 

DAOA 0.73 D-amino acid oxidase activator; Seems to activate D-amino acid oxidase 0 0 0 0.73 0 0 0 

DLG4 0.72 
Disks large homolog 4; Interacts with the cytoplasmic tail of NMDA receptor subunits and shaker-type potassium channels. Required for synaptic plasticity associated with 

NMDA receptor signaling. Overexpression or depletion of DLG4 changes the ratio of excitatory to inhibitory synapses in hippocampal neurons. May reduce the amplitude of 
ASIC3 acid-evoked currents by retaining the channel intracellularly. May regulate the intracellular trafficking of ADR1B (By similarity); Belongs to the MAGUK family 

0 0 0 0.72 0 0 0 

TSNAX 0.72 Translin-associated protein X; Acts in combination with TSN as an endonuclease involved in the activation of the RNA-induced silencing complex (RISC). Possible role in 
spermatogenesis 0 0 0 0.72 0 0 0 

COMT 0.71 Catechol O-methyltransferase; Catalyzes the O-methylation, and thereby the inactivation, of catecholamine neurotransmitters and catechol hormones. Also shortens the 
biological half-lives of certain neuroactive drugs, like L-DOPA, alpha-methyl DOPA and isoproterenol; Seven-beta-strand methyltransferase motif containing 0 0 0 0.71 0 0 0 

OLIG2 0.71 
Oligodendrocyte transcription factor 2; Required for oligodendrocyte and motor neuron specification in the spinal cord, as well as for the development of somatic motor neurons 

in the hindbrain. Cooperates with OLIG1 to establish the pMN domain of the embryonic neural tube. Antagonist of V2 interneuron and of NKX2-2-induced V3 interneuron 
development (By similarity); Basic helix-loop-helix proteins 

0 0 0 0.7 0 0 0 

CCDC14
1 0.69 Coiled-coil domain-containing protein 141; Plays a critical role in radial migration and centrosomal function; Immunoglobulin like domain containing 0.24 0 0 0.61 0 0 0 

DISC1 NA 
Disrupted in schizophrenia 1 protein; Involved in the regulation of multiple aspects of embryonic and adult neurogenesis. Required for neural progenitor proliferation in the 

ventrical/subventrical zone during embryonic brain development and in the adult dentate gyrus of the hippocampus. Participates in the Wnt-mediated neural progenitor 
proliferation as a positive regulator by modulating GSK3B activity and CTNNB1 abundance. Plays a role as a modulator of the AKT-mTOR signaling pathway controlling the 

tempo of the process of newborn neurons integration during adult neurogenesis, includi [...] 
NA NA NA NA    
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GENE KNOCKDOWN SIGNATURES 
GSK3B 15 
COMT 11 
ERBB4 11 
FEZ1 11 

PAFAH1B1 11 
NRG1 10 
PCM1 10 
TNIK 10 

ZNF365 8 
DISC1 2 

DIXDC1 2 
NRXN1 2 

 

Supplementary Table 3: iLINCS gene knockdown signatures table. A tabular summary 
displaying the number of gene knockdown signatures found in iLINCS for each gene in 
the protein-protein interaction (PPI) network for the DISC1 protein. 
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