
“singlesamplernadynamics” — 2020/5/4 — page 1 — #1

Estimating RNA dynamics using one time point for
one sample in a single-pulse metabolic experiment
Micha Hersch 1,2, Adriano Biasini 1, Ana Claudia Marques 1 and Sven
Bergmann 1,2

1Department of Computational Biology, University of Lausanne,CH-1015 Lausanne, Switzerland and
2Swiss Institute of Bioinformatics, CH-1015 Lausanne, Switzerland.

Abstract

Over the past decade, experimental procedures such as metabolic labeling for determining RNA turnover
rates at the transcriptome-wide scale have been widely adopted. Several computational methods to
estimate RNA processing and degradation rates from such experiments have been suggested, but they all
require several RNA sequencing samples. Here we present a method that can estimate RNA processing
and degradation rates from a single sample. To this end, we use the Zeisel model and take advantage
of its analytical solution, reducing the problem to solving a univariate non-linear equation on a bounded
domain. The approach is computationnaly rapid and enables inference of rates that correlate well with
previously published datasets. In addition to saving experimental work and computational time, having a
sample-based rate estimation has several advantages. It does not require an error-prone normalization
across samples and enables the use of replicates to estimate uncertainty and perform quality control.
Finally the method and theoretical results described here are general enough to be useful in other settings
such as nucleotide conversion methods.

1 Introduction
Since the advent of molecular biology, a consensus has emerged that
the regulation of gene expression underlies most biological processes
including development, disease and adaptation [15, 11, 14]. While gene
expression regulation has mostly been associated with activating the
production of RNA (e.g. through transcription factors), it has become
apparent that the regulation of RNA splicing and RNA stability also
plays an important role in determining the expression level of a gene
[1]. Taking advantage of next generation sequencing (NGS), methods
designed to distinguish the effects of RNA production, processing and
degradation at the transcriptome-wide level have been developed. Among
them, RNA metabolic labeling techniques relying on chemically modified
ribonucleotides such as 4-thiouridine (4sU) and 5’-Bromouridine (BrU)
have been widely adopted as their impact on cellular function is
minimal [6]. Briefly, incubating cells with modified ribonucleotides for
a limited period of time (referred to as the pulse), and their concomitant
incorporation in newly synthesized transcripts, allows distinguishing
newly transcribed from preexisting RNA, which can be biochemically
separated and quantified. This quantification can then be used to estimate
RNA turnover. More recently, methods that rely on nucleotide conversion
have been used to the same effect, with the advantage of circumventing
the cumbersome biochemical enrichment and separation step.

In the last decade, several methods to estimates RNA dynamics from
metabolic labeling experiment data have been developed [20, 16, 2].
Typically, labeled transcript abundance are fitted to an exponential
approach to equilibrium, from which the RNA half-life can be estimated
[18, 12]. This requires time-course experiments in order to have enough
points for fitting, as well as a way to normalize RNA concentrations
across samples, either using spike-ins [17], or using internal controls
such as intron concentrations [13]. The INSPEcT method [5] goes beyond
first order dynamics and takes into account the RNA processing rates,

which are estimated along with the degradation and production rates. This
increases the number of parameters in the model and thus the number of
samples needed for the estimation.

In this work, we build on this approach. However, by considering the
intron to exon ratio for each transcript in both the labeled and unlabeled
RNA pools, enabling us to bypass the need for normalization across
samples. Moreover by using the analytical solution to our RNA model,
we can infer processing and degradation rates from a single sample and
time point. This has several advantages, such as reducing the experimental
load and costs, as well as enabling comparisons across samples and
time points. Applying our method to our own experimental data and
using a single sample and time point, we obtain mRNA degradation rates
that correlate well with previously published rates obtained with three
replicates and seven time points [8].

2 Method

2.1 Overview

This paragraph summarizes the general strategy of the method, with
references to relevant equations indicated in parentheses. We use the
Zeisel model of RNA dynamics [21] to model both the unlabeled and
the labeled RNA (1). Using the standard procedure for solving systems
of linear differential equations, we find its general solution and its free
parameters by setting the initial conditions for both the unlabeled (or
pre-existing) and the labeled RNA (3,5), as illustrated in Fig 1. We
can then express, for a given gene, the ratios for both unlabeled and
labeled RNA of intron to exon expression level as functions of the
processing and degradation rate of that gene (8,9). Those two ratios
are independent from the RNA synthesis rate. Using the intron to exon
ratios as observables, we are left with two non-linear equations and two
unknowns, namely the processing and degradation rates. Those equations
are then reparametrized with dimensionless parameters and reduced to a
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Fig. 1. Evolution of labeled and unlabeled , premature and mature

RNA during labeling according to the Zeisel model. Dotted horizontal

lines correspond to steady-state levels, dashed lines filled correspond

the unlabeled RNA and solid lines to labeled RNA. Processing and

degradation rates can be estimated from the ratios of the two dashed

lines and of the two solid lines at a single time point.

single non-linear equation with one unknown (22). This resulting equation
is only defined on a bounded domain (24). Our rates can thus be inferred
by numerically solving that equation on a bounded domain, which is very
fast. In addition, we prove in Appendix 2 that under certain conditions,
that equation has a single solution (but in general it can also have two or
no solution).

2.2 Model

Like previous work [5], we use the Zeisel model of RNA synthesis,
processing and degradation [21].

ṗ = α− βp (1)

ṁ = βp− γm , (2)

where p is the premature RNA, m the mature RNA, and α, β, γ are
RNA the synthesis, processing and degradation rates. This model can be
solved analytically (see appendix 1). In particular, enforcing the boundary
conditions corresponding to the unlabeled RNA, namely that it is a steady-
state when the pulse starts (t = 0) and then pre-mature RNA is not
produced anymore, results in

pu(t) =
α

β
exp(−βt) (3)

mu(t) =
α

γ − β
exp(−βt)−

βα

γ(γ − β)
exp(−γt) , (4)

where the u subscript indicates that this corresponds to the unlabeled
RNA pool.
Enforcing boundary conditions corresponding to the labeled RNA,
namely that it is not expressed at t = 0 leads to

pl(t) =
α

β

(
1− exp(−βt)

)
(5)

ml(t) =
α

γ

(
1 +

β

(γ − β)
exp(−γt)

)
−

α

γ − β
exp(−βt) (6)

where the l subscript indicates that this corresponds to the labeled RNA
pool.

2.3 Inferring processing and degradation rates

We consider that the exonic RNA abundance χ corresponds to the
processed and mature RNA, while the intronic RNA abundance ι

correspond to the processed RNA only. Furthermore, we assume that χ
and ι are suitably normalised for exonic and intronic length so that they
are proportional to the number of transcripts. We can then compute:

ι

χ
=

p(T )

p(T ) +m(T )
, (7)

where T is the duration of the labeling.

In the case of unlabeled fraction, we have

ιu

χu
=

pu(T )

pu(T ) +mu(T )

=
Eβ

β
(
( 1
β
+ 1
γ−β )Eβ −

β
γ(γ−β)

Eγ
)

=
Eβ

γ
γ−βEβ −

β2

γ(γ−β)
Eγ

=
(γ − β)Eβ
γEβ − β2

γ
Eγ

=
γ(γ − β)Eβ
γ2Eβ − β2Eγ

(8)

where we define Eβ = exp(−βT ) and Eγ = exp(−γT ) as
abbreviations.

For the labeled fraction, we have

ιl

χl
=

pl(T )

pl(T ) +ml(T )

=

(
1− Eβ

)(
1− Eβ

)
− β
γ−βEβ + β

γ

(
1 + β

γ−βEγ
)

=

(
1− Eβ

)
γ+β
γ
− γ
γ−βEβ + β2

γ(γ−β)
Eγ

=
γ(γ − β)

(
1− Eβ

)
γ2 − β2 + β2Eγ − γ2Eβ

=
γ(γ − β)

(
1− Eβ

)
γ2
(
1− Eβ

)
− β2(1− Eγ

) . (9)

We notice that this last expression is of the same form as the one for the
unlabeled fraction (8), but replacing exponentials by their complement
to one. Importantly those two fractions do not depend on α, which
(unlike [7]) allows our method to estimate processing and degradation
rates independently from the production rate.

Denoting a = ιu
χu

and b = ιl
χl

as the observable unlabeled and
labeled fractions of intron abundance, we are left with a system of two
equations and two unkowns β and γ, which we now set out to solve.
First, we reparametrize our system with β = kγ and define Ekγ =

Eβ = exp(−kγT ) leading to

a =
(1− k)Ekγ
Ekγ − k2Eγ

(10)

b =
(1− k)

(
1− Ekγ

)(
1− Ekγ

)
− k2

(
1− Eγ

) . (11)

We thus have

a
(
Ekγ − k2Eγ

)
= (1− k)Ekγ (12)

b
((

1− Ekγ
)
− k2(1− Eγ

))
= (1− k)

(
1− Ekγ

)
. (13)
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Summing (12) and (13) yields

Ekγ(a− b) + k2Eγ(b− a) + b(1− k2) = 1− k (14)

⇔ Ekγ − k2Eγ =
(1− k)− b(1− k2)

a− b

=
(1− k)

(
1− b(1 + k)

)
a− b

. (15)

Dividing (12) by (13) and inserting (15) results in

Ekγ

1− Ekγ
=
a

b

Ekγ − k2Eγ(
1− Ekγ

)
− k2(1− Eγ)

=
a

b

Ekγ − k2Eγ

(1− k2)−
(
Ekγ − k2Eγ

)
=
a

b

(1− k)(1− b(1 + k)

(1− k2)(a− b)− (1− k)
(
1− b(1 + k)

)
=
a

b

1− b(1 + k)

(1 + k)(a− b)− 1 + b(1 + k)

=
a

b

1− b(1 + k)

(1 + k)a− 1
= −

a− ab(1 + k)

b− ab(1 + k)
(16)

It follows that

Ekγ
(
b− ab(1 + k)

)
=
(
Ekγ − 1

)(
a− ab(1 + k)

)
(17)

⇔ (b− a)Ekγ = ab(1 + k)− a , (18)

an thus

exp(−kγT ) = Ekγ =
kab+ ab− a

b− a
=
a(bk + b− 1)

b− a
(19)

⇔ kγT = log
( b− a
a(bk + b− 1)

)
(20)

Moreover, from (10), we have that

a =
1− k

1− k2 exp
(
(k − 1)γT

) ⇔ exp
(
(k − 1)γT

)
=

(1− 1−k
a

)

k2

⇔ (k − 1)γT = log
(k + a− 1

k2a

)
(21)

Multiplying (20) by k−1
k

and subtracting (21) results in

0 =
k

k − 1
log
(k + a− 1

k2a

)
− log

( (b− a)
a(bk + b− 1)

)
(22)

Our system of two equations can thus be reduce to a single equation which
does not explicitly depend on T and can be solved numerically. In practice
a and b are approximated by ru and rl, defined as the length-normalized
intronic to exonic read count ratio (or TPM ratio) for the unlabeled and
for the labeled sampled respectively. This equation also provides upper
and lower bounds for k as both k+a−1

a
and bk + b − 1 must be strictly

positive for their logarithm to be defined and

0 < exp(−βT ) = Ekγ =
kab+ ab− a

b− a
< 1 ∀βT > 0 (23)

for (19) to hold. Developing those three conditions results in the following
domain of definition D for k:

max(
1

b
− 1, 1− a) < k <

1

a
− 1 , (24)

where 0 < a < b < 1. Note that the right-hand side of (22) is in general
continuous in k = 1, but not in k = 1− a. Furthermore, it can be shown

Fig. 2. Simulated data. The method correctly estimates processing and

degradation rates. Points with ambiguous optima are not shown.

(see Appendix 2) that for b > 1
2−a , (22) has a single solution in the

domain given by (24), which can be found very efficiently. This enables
the estimation of the processing and degradation rates for a single sample.
Moreover, since the reduced equation is independent from T , uncertainty
on its true value does not affect the relative values of the resulting rates.
Hence replicates can be used to assess the reliability of the estimates and
time courses allow to test whether the rates are constant as assumed by
the model.

If (22) does not have a solution, estimates can be obtained by
minimizing (in log space) the squared Euclidian distance between the
observed (i.e., ru, rl) and derived values of a and b:

f(k, γT ) =
(
log(ru)− log

( (1− k)
exp(−kγT )− k2 exp((k − 1)− γT )

))2
+

(
log(rl)− log

( (1− k)
(
1− exp(−kγT )

)(
1− exp(−kγT )

)
− k2(1− Eγ

)))2

,

The ratios ru, rl must be smaller than one to make sense within our model
and genes where this is not the case should be discarded. The log function
is used to give exon and intron counts equal standing.
The above bivariate function can be reduced to a univariate function f∗

using (20):

f∗(k) = f
(
k,

1

k
log
( rl − ru
ru(rlk + rl − 1)

))
(25)

Once processing and degradation rates are obtained, the (relative)
production rates α can be easily obtained from (4) where mu is
approximated by χu (other species are likely less reliably measured).

3 Results

3.1 Simulated data

In order to confirm that our method can be applied in principle, we
evaluated our method on simulated data, where the data was generated
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unlabeled

Fig. 3. Simulated data. The measurement space can be partitioned into

ambiguous and unambiguous regions. The green line corresponds to

rl = 1
2−ru

. Above that line, rates are correctly and unambiguously

estimated. Boundary cases are sometimes wrongly estimated, probably

due to numerical errors (red dots).

using the exact model used to develop the method (see equations 3 and
following). We then generated 50000 random value for α, β, and γ

ranging betweem exp(−5) and exp(5) and computed the corresponding
values for ι and χ. We then computed ru and rl by taking the ratio.
Estimates β̂ and γ̂ where then inferred by using ru and rl as an input to
the method and compare the original β and γ.
Numerically solving equation (22), yielded either one or two solutions.
The results for the unambiguous cases are shown in Fig 2. We see that in
virtually all cases, the method yields accurate estimates of the processing
and degradation rates. For a couple of points, the method is less accurate
at the upper boundary of the parameter space, probably due limited
floating point precision.

As we are considering single-sample estimates, it is possible to chart
the observable space given by a and b and see when the method provides
unambiguous results. Fig. 3 confirms that for b > 1

2−a the method
provides a unique (and correct) solution as proven in appendix 2. Below
this line (displayed in green), the methods provides ambiguous results as
two distinct set of values β and γ can account for the same value of a and
b (in blue).
It is also possible to visualize the trajectories of the observables a and b for
various values of k, as depicted in Fig. 4. When T = 0, trajectories start
from the top of the space at ( 1

1+k
, 1). When k < 1, as time passes the

system moves down to (a, b) → (1 − k, 1
1+k

). For k ≥ 1, trajectories

move to (0, 1
1+k

). Note that this is the expected case, as the splicing
of mRNA occurs in general faster than its degradation. Note that, in this
case, trajectories cross below the green line, explaining why two solutions
can be found for a single value of (a, b). The speed at which the system
follows those trajectories depends on γ.

3.2 Real data

In order to assess the performance of the method on real data, we applied
our method on the 4sU labeling experiment described in [3]. Briefly, wild
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Fig. 4. Observable space of the dynamical system. Trajectories in the

phase space are solely determined by the k parameter. They start at

time T = 0 at the top (b = 1) and go down. For k < 1 the trajectories (in

blue) remain above the green line defined by y = (2 − x)−1 and do not

cross. For k > 1 (in red), they cross each other below the system follows

the trajectory depends on the actual values of β and γ.

type mouse embrionic stem cell lines were grown for approximately one
day. After addition of 4sU to the growth medium, cells were incubated at
37C for 10 minutes (10 minutes labeling pulse). RNA was then extracted
and processed according to the protocol described in [4]. Reads that did
not map to mouse ribosomal RNA sequences were aligned to intronic and
exonic sequences using STAR V2.5 and quantified using RSEM V1.1.17,
yielding intron and exon expression levels for unlabeled and labeled RNA.

For a single sample, the observable space represented in Figs 3 and 4
is represented (in log coordinates) in Fig 5. We see that, while the
points are centered on the expected region of the observable space, many
transcripts (26%) lie above rl = 1 (in blue) or below the diagonal (in red),
which is not compatible with our model. Those transcripts are discarded
in the further analyses.
The processing and degradation rates were computed either by
solving (22) when rl > (2 − ru)−1 or by optimizing (25) otherwise.
It took a few seconds to estimate several tens of thousands of rates on
a desktop computer. For those cases that had two solutions (6% of the
transcripts), we kept only the one that was first found, in order to treat
each samples independantly for the evaluation. In a real case, the solution
most consistent with the other replicates can be used.

We assessed the precision of our method by comparing the resuling
degration rates to those published for the same cell type by [8].
Those were obtained by using three replicates and seven time points
and applying the SLAM-seq nucleotide-conversion method that, unlike
metabolic labeling, does not require biochemical separation between the
labeled and unlabeled RNA and is thus not affected by noise generated
by the imperfect separation process (although that method has its own
source of noise). From our data, we obtained gene degradation rates
by taking, for each gene, the weighted average degradation rates of the
corresponding transcripts The weights were given by the mean exonic
expression levels (unlabeled and labeled). We expect a lower precision
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Fig. 5. Real data. Each point corresponds to a transcript. Only transcripts

with exonic and intronic TPM higher than 10 are shown. Like in the

previous figure, the green line is defined y = (2 − x)−1. For transcripts

lying between the abscissa (in blue) and the green line, estimates of

processing and degradation rates can be obtained by solving (22). For

transcripts lying between the diagonal (in red) and the green line,

estimates can be obtained by minimizing (25). The observed ratios for the

remaining transcripts are not coherent with the model and are discarded.
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Fig. 6. Degradation rates estimated from a single sample plotted against

degradation rates published in [8] (obtained using slam-seq). The red

line is obtained through weighted linear regression. The weights are set

as 1 − rl as indicated by the transparency of the dots. The (weighted)

correlation of 52% indicates that the estimated rates are meaningfull.

Only genes with a mean exon TPM above 100 are taken into account.

for transcripts close to the rl = 1 line, for which the labeling time
was likely somewhat too short, so to assess the correlation, we weighted
the transcripts by 1 − rl. Fig. 6 compares degradation rates obtained
in our experiments with those reported by [8], keeping only genes
with an average expression value higher than 100 TPM. We expect
a higher precision for highly expressed genes, as this allows for a

●
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Fig. 7. Correlation between degradation rates obtained by [8] and the ones

obtained our single-sample method as a function of expression level. Each

line represents a biological replicate. The dot corresponds to the data

shown in Fig 6. As expected, the correlation is higher for highly expressed

genes, as the intro to exon ratios can be more reliably estimated. In this

experiment, replicate 1 correlates better than the two others, indicating

that it is probably of better quality.

more precises estimates of the intron to exon ratios. This is indeed the
case, and depending on the expression threshold and the sample, the
correlation between our data and the previously published rates, we obtain
a correlation ranging between 30% and 67% for a single sample estimate
(see Fig. 7). As those are experiments performed in different labs using
different methods, those numbers show that our rates obtained on a
single sample and time point are meaningful. For comparison, [9] reports
correlations around 70% by using the same data , but changing only the
method of analysis. Using three replicates, [4] reports a 26% correlation
using the INSPEcT package.

4 Discussion
In this paper, we presented a method to estimates splicing and degradation
rates of RNA transcripts from a single 4sU labeled sample. Methods for
such estimation have been published before, but they usually require
a sufficent number of samples (around a dozen). In contrast to these
methods, our method explicitely uses the analytical solution to the
standard RNA dynamics model given by (26). Moreover, our method is
self-normalizing as it only uses the ratio of intron to exon expresssion
levels. It is thus not affected by differences in sequencing depth of
the various samples. This approach makes our method also faster than
other methods as it boils down to numerically solving on a bounded
domain either a univariate equation or a one-dimensional optimization
for each transcript. However, a caveat of our method is that a sizable
fraction of mostly lowly expressed transcripts (about 25 % in our case)
are inconsistent with the model and their dynamics cannot be estimated,
while the method provides two solutions for another fraction ( 6%) of the
transcripts. However, our theoretical considerations indicate that this issue
is constitutive of the model, and is likely to also impact other methods
(for example through mutliple local extremas in the likelihood function),
although it may be more difficult to detect it. Using multiple samples or
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time-points is likely to help solve this problem.
While using a single sample allows to reduce costs, this is not the only
merit of this approach. In practice most experiments will have biological
replicates, in which case our methods enables obtaining point estimates of
β and γ for each of them. This in turn allows for estimating their variance,
as well as assessing sample quality (e.g. if one of them systematically
gives very different estimates for all genes). Moreover because cell growth
is likely to be limited during (short) labeling time, it is less likely to
interfere in the estimation process than when using time course data,
where it can have an effet [13]. In addition, when used in a time-course
experiment, our method allows to investigate the evolution of those rates
over time and assess whether those rates are stationnary. Finally, the
theoretical results obtained in this paper, could be used to improve other
methods. For example, the method could be used to analyze SLAM-
seq data which would reduce the number of samples but also provide
estimate for the processing rate. Another possible application is single
cell RNA velocity [10], where the Zeisel model of RNA dynamics is also
used, but splicing rates γ are set to be equal for all transcripts. While it
has been documented (and is consistent with our data) that splicing rates
are more homogeneous than degradation rates [16], this is potentially an
approximation that could be improved with our framework to increase the
accuracy of the method.

The method presented in this paper can be adapted for the case when
unlabeled RNA is mixed with labeled RNA in a ”total” rather than a
”unlabeled ” RNA pool. In that case, the intron to exon ratio in the total
RNA pool is constant during labeling time and is given by 1

1+k
, and rates

can be easily obtained from (11). This method is however likely to be
less precise than separating unlabeled from labeling RNA, as additional
information can be gained from the decreasing unlabeled RNA pool (if
the experiments provides reliable results).

Our method could be further improved in several ways. For example,
unlike in [7], we did not consider the effect of leakage of unlabeled RNA
in the labeled RNA pool because of unspecific capture. This leakage has
the effect of dragging rl down towards the diagonal, and could potentially
be estimated from the data as it is shared across all transcripts.
Another improvement would be to embed this method in a probabilistic
framework in order to quantify the estimate uncertainty (as in [9] for a
simpler model) or to determine the optimal labeling time (as in [19]).

Data and code
An R package implementing our method is available on github, together
with the code used to generate the figures as well as the gene expression
data used: https://github.com/BergmannLab/SingleSampleRNAdynamics
The raw data files data are available on the Gene Expression Omnibus
accession number GEO: GSE143277.
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Appendix

1 Derivation of the model solution
This is a first order linear ordinary differential equation in p(t) and m(t)

that can be expressed in matrix form as(
ṗ

ṁ

)
=

(
−β 0

β −γ

)(
p

m

)
+

(
α

0

)
(26)

The solution to this equation is given by(
p

m

)
= k1v exp(λ1t) + k2w exp(λ2t) +

(
α
β
α
γ

)
, (27)

where k1 and k2 are scalar constants determined by the boundary
conditions, λ1, λ2 are eigenvalues of the matrix in (26) and v, w are
the corresponding eigenvectors.
The eigenvalues are given by λ1 = −β and λ2 = −γ. The first
eigenvector v is obtained by solving{

−βv1 = −βv1

βv1 − γv2 = −βv2
⇒ v1 =

γ − β
β

v2 ⇒ v ∝
(
γ − β
β

)
(28)

Similarly the second eigenvector is obtained by solving{
−βw1 = −γw1

βw1 − γw2 = −γw2
⇒ w1 = 0⇒ w ∝

(
0

1

)
.

The solution to (26) is thus given by(
p

m

)
= k1

(
γ − β
β

)
exp(−βt)+k2

(
0

1

)
exp(−γt)+

(
α
β
α
γ

)
.

Expressed by its component this is equivalent to

p(t) = k1(γ − β) exp(−βt) +
α

β
(29)

m(t) = k1β exp(−βt) + k2 exp(−γt) +
α

γ
(30)

We now turn to the boundary conditions to determine k1 and k2. The
boundary conditions are different for the unlabeled and the labeled RNA.

Unlabeled RNA
Like in [5], we assume the system to be in steady-state prior to labeling.
The steady-state is given by solving (26) with ṗ = ṁ = 0.{

0 = −βp+ α

0 = βp− γm
⇒
{
p = α

β

0 = β α
β
− γm

⇒
{

p = α
β

m = α
γ

(31)

During labeling time, we assume that no unlabeled RNA is
synthesized such that α = 0. Assuming that we start labeling at time
t = 0, we thus have

pu(0) =
α

β
⇒ k1(γ − β) =

α

β
⇒ k1 =

α

β(γ − β)
(32)

Moreover we have

mu(0) =
α

γ
⇒

α

γ − β
+k2 =

α

γ
⇒ k2 =

α

γ
−

α

γ − β
=

−βα
γ(γ − β)

This leads us to the solution for the unlabeled RNA

pu(t) =
α

β
exp(−βt) (33)

mu(t) =
α

γ − β
exp(−βt)−

βα

γ(γ − β)
exp(−γt) , (34)

where the u label indicates that this corresponds to the unlabeled RNA
pool.

Labeled RNA
The solution for the labeled RNA could be obtained the same way as
for the unlabeled RNA, but setting α 6= 0 and pl(0) = ml(0) = 0.
However, it is simpler to notice that the total RNA (labeled and non-
labeled) stay at steady-state during the labeling such that we have the
following solution for labeled RNA.

pl(t) =
α

β
− pu(t) =

α

β

(
1− exp(−βt)

)
ml(t) =

α

γ
−mu(t) =

α

γ

(
1 +

β

(γ − β)
exp(−γt)

)
−

α

γ − β
exp(−βt)

where the l label indicates that this corresponds to the labeled RNA pool.

2 Proof of unicity of solution
In this appendix, we prove that (22) has a single solution for b > (2 −
a)−1. We first note that b > (2 − a)−1 ⇔ 1−b

b
< 1 − a, so the lower

bound for k is k− = 1−a. We then define the right-hand side of (22) as

g(x) =
x

x− 1
log
( 1

x2
(1−

1− x
a

)
)
− log

( (b− a)
a
(
b(x+ 1)− 1

))
=

x

x− 1

(
− 2 log(x) + log(a+ x− 1)− log(a)

)
− log(b− a) + log(a) + log

(
b(x+ 1)− 1

)
We then observe that on that lower bound lim

x
>→1−a

g(x) = +∞
because a+ x− 1 tends to zero and x− 1 is negative.
On the other hand, for the upper bound k+ = 1−a

a
, we have

a+ x− 1 =
a2 + 1− a− a

a
=

(1− a)2

a

and

b(x+ 1)− 1 =
b

a
− 1 =

b− a
a

we can deduce that the upper bound of x is a zero of g:

g(
1− a
a

) =
1− a
1− 2a

(
− 2 log(1− a) + 2 log(a)

+ 2 log(1− a)− 2 log(a)
)
− log(b− a)

+ log(a) + log(b− a)− log(a) = 0.

Moreover, the derivative of g is given by:

g′(x) =−
1

(x− 1)2

(
− 2 log(x) + log(a+ x− 1)− log(a)

)
+

x

x− 1

(
−

2

x
+

1

a+ x− 1

)
+

b

b(x+ 1)− 1
. (35)

Then

g′(
1− a
a

) =
−a2

(1− 2a)2

(
− 2 log(1− a)) + 2 log(a)

+ 2 log(1− a)− 2 log(a)
)

+
1− a
1− 2a

( −2a
1− a

+
a

(1− a)2
)
+

ba

b− a

=
1

1− 2a

2a− 1

1− a
+

ba

b− a

=−
a

1− a
+

ba

b− a

=
a2(1− b)

(b− a)(1− a)
> 0 if 0 < a < b < 1. (36)
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k− x0 k+g

h

x

Fig. 8. Sketch of the proof that g(x) has a single zero in D = (k−, k+).

We first show that limx→k− g(x) = ∞, that limx→k+
g(x) = 0 and

limx→k+
g′(x) > 0, so that g must cross the x-axis on D. To show that

it only does it once, we consider a function h(x) that has the same sign as

g(x) when g′(x) = 0. We show that h is convex on D and thus g cannot

have a negative extrema, followed by a positive extrema, followed by a

negative extrema. Hence it cannot have more than one zero on D.

Since g(k+) reaches zero from below, while g(k−) > 0, we can
infer that g(x) has a zero between k− and k+ as illustrated on Fig 8.

To show that this zero is unique, we look at the sign of g′(x).

We can rewrite g′(x) as

g′(x) =
1

(x− 1)2

(
A(x)−B(x)

)
(37)

where

A(x) =
(1− x)

(
x(ab+ b− 1)− (3b− 2)(1− a)

)
(x+ a− 1)(bx+ b− 1)

)
(38)

B(x) = log
(a+ x− 1

ax2

)
(39)

Let x0 be a zero of g′, i.e., the position of a local extrema of g. We
have

g(x0) =
x0

x0 − 1
log
(x0 + a− 1

ax2
0

)
− log

( (b− a)
a
(
b(x0 + 1)− 1

))
=
−x0

(
x0(ab+ b− 1)− (3b− 2)(1− a)

)
(x0 + a− 1)(bx0 + b− 1)

− log
( (b− a)
a
(
b(x0 + 1)− 1

)) (40)

The second equality holds because g′(x0) = 0 by definition of x0. By
multiplying (40) by (bx0+b−1), which is positive, we can then define a

new function h(x) whose sign is the same as the sign of g(x) for x = x0

(see Fig 8 for an illustration).

h(x) = C(x)−D(x) , (41)

where

C(x) =
−x
(
x(ab+ b− 1)− (3b− 2)(1− a)

)
(x+ a− 1)

(42)

D(x) = (bx+ b− 1) log
( (b− a)
a
(
bx+ b− 1

)) (43)

We can now compute the second derivatives of C(x) and D(x).

C′(x) =−
(
2x(ab+ b− 1)− (3b− 2)(1− a)

)
(x+ a− 1)

(x+ a− 1)2

+
x2(ab+ b− 1)− x(3b− 2)(1− a)

(x+ a− 1)2

=−
x2(ab+ b− 1)− 2x(1− a)(ab+ b− 1) + (3b− 2)(1− a)2

(x+ a− 1)2

C′′(x) =−
(
2x(ab+ b− 1)− 2(1− a)(ab+ b− 1)

)
(x+ a− 1)

(x+ a− 1)3
+

2
(
x2(ab+ b− 1)− 2x(1− a)(ab+ b− 1) + (3b− 2)(1− a)2

)
(x+ a− 1)3

=−
2(1− a)2(ab− 2b+ 1)

(x+ a− 1)3
> 0 ∀b >

1

2− a

D′(x) =b log
( b− a

a

)
− b
(
log(bx+ b− 1) + 1

)
D′′(x) =−

b2

bx+ b− 1
< 0 ∀x > k−

Hence

h′′(x) = C′′(x)−D′′(x) < 0 ∀x ∈ D,∀b >
1

2− a
(44)

This means that h is convex, so there cannot be three points x1 < x2 <

x3 such that 0 > h(x1) < h(x2) > 0 > h(x3). Hence the same can be
said of three zeros of g′, so g(x) cannot have more that one zero.
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