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Abstract

Over the past decade, experimental procedures such as metabolic la-
beling for determining RNA turnover rates at the transcriptome-wide scale
have been widely adopted and are now turning to single cell measure-
ments. Several computational methods to estimate RNA processing and
degradation rates from such experiments have been suggested, but they
all require several RNA sequencing samples. Here we present a method
that can estimate RNA synthesis, processing and degradation rates from a
single sample. Our method is computationally efficient and outputs rates
that correlate well with previously published data sets. Using it on a single
sample, we were able to reproduce the observation that dynamic biological
processes tend to involve genes with higher metabolic rates, while stable
processes involve genes with lower rates. This supports the hypothesis
that cells control not only the mRNA steady-state abundance, but also
its responsiveness, i.e., how fast steady-state is reached. In addition to
saving experimental work and computational time, having a sample-based
rate estimation has several advantages. It does not require an error-prone
normalization across samples and enables the use of replicates to estimate
uncertainty and perform quality control. Finally the method and the-
oretical results described here are general enough to be useful in other
contexts such as nucleotide conversion methods and single cell metabolic
labeling experiments.

1 Introduction

Since the advent of molecular biology, a consensus has emerged that the reg-
ulation of gene expression underlies most biological processes including devel-
opment, disease and adaptation [1, 2, 3]. While gene expression regulation has
mostly been associated with activating the production of RNA (e.g. through
transcription factors), it has become apparent that the regulation of RNA splic-
ing and RNA stability also plays an important role in determining the expression
level of a gene [4, 5]. Taking advantage of high throughput RNA quantification
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protocols, methods designed to distinguish the effects of RNA synthesis, pro-
cessing and degradation at the transcriptome-wide level have been developed.
Among them, RNA metabolic labeling techniques relying on chemically mod-
ified ribonucleotides such as 4-thiouridine (4sU) and 5’-Bromouridine (BrU)
have been widely adopted, as their impact on cellular function is minimal [6].
Briefly, incubating cells with modified ribonucleotides for a limited period of
time (referred to as the pulse), and their concomitant incorporation in newly
synthesized transcripts, allows distinguishing newly transcribed from preexisting
RNA, which can be biochemically separated and quantified. This quantification,
initially performed using microarray [7] and later using RNA-seq [8, 9], can then
be used to estimate RNA decay rates. More recently, methods that rely on nu-
cleotide conversion have been used to the same effect, with the advantage of
circumventing the cumbersome biochemical enrichment and separation step.

In the last decade, several methods to estimates RNA dynamics from metabolic
labeling experiment data have been developed [10, 11, 12] (see [13] for a review).
Typically, labeled transcript abundances are fitted to an exponential function
approaching to steady-state equilibrium (during or after the pulse), from which
the RNA half-life can be estimated [14, 15, 16]. This requires time-course exper-
iments in order to have enough points for fitting, as well as a way to normalize
RNA concentrations across samples, either using spike-ins [17], or using in-
ternal controls such as intron concentrations [18]. The INSPEcT method [19]
goes beyond first order dynamics and takes into account the RNA processing
rates, which are estimated along with the degradation and synthesis rates. This
method works by first estimating rates for individual samples by assuming no
degradation during the pulse and then uses those estimates as a starting point
for fitting model of rate evolution for all the rates of all samples. Those meth-
ods rely, for each sample, on a the separate quantification of labeled RNA on
one hand and of total (mixed labeled and unlabeled) and/or unlabeled (or pre-
existing) RNA on the other hand. In its later version, INSPEcT was extended
to estimate rates without labeling the sample [20].

In this work, we build on the INSPEcT approach and derive an exact solution
(when it exists) for the initial rate estimates without making the assumption of
no labeled transcript degradation. This is achieved by considering the intron
to exon ratio for each transcript in both the labeled and unlabeled RNA pools,
thus allowing to bypass the need for normalization across those two samples. We
can thus infer synthesis, processing and degradation rates from a single sample
and time point. Those rates can be used as such, allowing to reduce the exper-
imental load and costs and compare rates across samples and time points. But
they can also be used, as in INSPEcT, as initial estimates for mutliple sample-
based rate estimation. Applying our method to our own experimental data and
using a single sample and time point, we obtain synthesis and processing rates
that are well correlated with the ones obtained using INSPEcT first guess. The
degradation rates, on the other hand, correlate poorly across the two methods,
but those computed with our method correlate better than INSPEcT with pre-
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Figure 1: Evolution of unlabeled and labeled, premature and mature RNA
during labeling according to the Zeisel model. Dotted horizontal lines corre-
spond to steady-state levels, dashed lines correspond the unlabeled RNA and
solid lines to labeled RNA. Processing and degradation rates can be estimated
from the ratios of the two dashed lines and of the two solid lines at a single time
point.

viously published mRNA degradation rates obtained with three replicates and
seven time points [21]. Because it can be reduced to numerically solving an
equation with a single unknown on a bounded domain, it is also faster than
INSPEcT. Moreover, our results are consistent with an adapted gene-specific
mRNA responsiveness and co-transcriptional mRNA processing [22].

2 Method

2.1 Overview

This paragraph summarizes the general strategy of the method, with references
to relevant equations indicated in parentheses. We use the Zeisel model of RNA
dynamics [23] to model both the unlabeled and the labeled RNA (1, 2). Using
the standard procedure for solving systems of linear differential equations, we
find its general solution and its free parameters by setting the initial conditions
for both the unlabeled (or pre-existing) and the labeled RNA (3-6), as illustrated
in Fig 1. We can then express, for a given gene, the ratios for both unlabeled and
labeled RNA of intron to exon expression level as functions of the processing and
degradation rate of that gene (8,9). These two ratios are independent from the
RNA synthesis rate. Using the intron to exon ratios as observables, we are left
with two non-linear equations and two unknowns, namely the processing and
degradation rates. These equations are then reparametrised with dimensionless
parameters and reduced to a single non-linear equation with one unknown (12).
This resulting equation is only defined on a bounded domain (13). Our rates
can thus be inferred by numerically solving that equation on a bounded domain,
which is very fast. In addition, we prove in Appendix C that this equation, under

3

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 16, 2021. ; https://doi.org/10.1101/2020.05.01.071779doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.01.071779
http://creativecommons.org/licenses/by/4.0/


certain conditions, has a single solution (but in general it can also have two or
no solution).

2.2 Model

Like previous work [19], we use the Zeisel model of RNA synthesis, processing
and degradation [23].

ṗ = α− βp (1)

ṁ = βp− γm , (2)

where p is the premature RNA, m the mature RNA, and α, β, γ are RNA
the synthesis, processing and degradation rates. This model can be solved
analytically (see appendix A). In particular, enforcing the boundary conditions
corresponding to the unlabeled RNA, namely that it is at steady-state when
the pulse starts (t = 0) and that subsequently no more pre-mature RNA is
produced, results in

pu(t) =
α

β
exp(−βt) (3)

mu(t) =
α

γ − β
exp(−βt)− βα

γ(γ − β)
exp(−γt) , (4)

where the u subscript indicates that this corresponds to the unlabeled RNA
pool.
Enforcing boundary conditions corresponding to the labeled RNA, namely that
it is not (yet) expressed at t = 0 leads to

pl(t) =
α

β

(
1− exp(−βt)

)
(5)

ml(t) =
α

γ

(
1 +

β

(γ − β)
exp(−γt)

)
− α

γ − β
exp(−βt) (6)

where the l subscript indicates that this corresponds to the labeled RNA pool.

2.3 Inferring synthesis, processing and degradation rates

We consider that the exonic RNA abundance χ corresponds to the premature
and mature RNA, while the intronic RNA abundance ι correspond to the pre-
mature RNA only. Furthermore, we assume that χ and ι are suitably normalised
for exonic and intronic length so that they are proportional to the number of
transcripts. We can then compute:

ι

χ
=

p(T )

p(T ) +m(T )
, (7)

where T is the duration of the labeling.
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In the case of unlabeled fraction, we have

ιu
χu

=
pu(T )

pu(T ) +mu(T )

=
Eβ

β
(
( 1
β + 1

γ−β )Eβ − β
γ(γ−β)Eγ

)
=

Eβ
γ

γ−βEβ −
β2

γ(γ−β)Eγ

=
(γ − β)Eβ

γEβ − β2

γ Eγ

=
γ(γ − β)Eβ
γ2Eβ − β2Eγ

(8)

where we define Eβ = exp(−βT ) and Eγ = exp(−γT ) as abbreviations.
For the labeled fraction, we have

ιl
χl

=
pl(T )

pl(T ) +ml(T )

=

(
1− Eβ

)(
1− Eβ

)
− β

γ−βEβ + β
γ

(
1 + β

γ−βEγ
)

=

(
1− Eβ

)
γ+β
γ −

γ
γ−βEβ + β2

γ(γ−β)Eγ

=
γ(γ − β)

(
1− Eβ

)
γ2 − β2 + β2Eγ − γ2Eβ

=
γ(γ − β)

(
1− Eβ

)
γ2

(
1− Eβ

)
− β2(1− Eγ

) . (9)

We notice that this last expression is of the same form as the one for the un-
labeled fraction (8), but replacing exponentials by their complement to one.
Importantly these two fractions do not depend on α, which (unlike [20]) allows
our method to estimate processing and degradation rates independently from
the synthesis rate.

Denoting a = ιu
χu

and b = ιl
χl

as the observable unlabeled and labeled frac-
tions of intron abundance, we are left with a system of two equations and two
unkowns β and γ, which we now set out to solve. First, we reparametrise our
system with β = kγ and define Ekγ = Eβ = exp(−kγT ) leading to

a =
(1− k)Ekγ
Ekγ − k2Eγ

(10)

b =
(1− k)

(
1− Ekγ

)(
1− Ekγ

)
− k2

(
1− Eγ

) . (11)
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It is shown in Appendix B that system of equations can be simplified to the
following equation in k:

k

k − 1
log

(k + a− 1

k2a

)
− log

( (b− a)

a(bk + b− 1)

)
= 0 , (12)

with the following domain of definition D for k:

max(
1

b
− 1, 1− a) < k <

1

a
− 1 . (13)

The above equation does not explicitely depend on T can be solved numerically
on D. In practice a and b are approximated by ru and rl, defined as the length-
normalized intronic to exonic read count ratio (or TPM ratio) for the unlabeled
and for the labeled sampled respectively.

We further prove in Appendix C that for b > 1
2−a , Eq. (12) has a single

solution in the domain given by (13), which can be found very efficiently. This
enables the estimation of the processing and degradation rates for a single sam-
ple. Moreover, since the reduced equation is independent from T , uncertainty
on its true value does not affect the relative values of the resulting rates. Hence
replicates can be used to assess the reliability of the estimates and time courses
allow to test whether the rates are constant as assumed by the model.

If (12) does not have a solution, estimates can be obtained by minimizing
(in log space) the squared Euclidean distance between the observed (i.e., ru, rl)
and derived values of a and b:

f(k, γT ) =
(

log(ru)− log
( (1− k)

exp(−kγT )− k2 exp((k − 1)− γT )

))2

+(
log(rl)− log

( (1− k)
(
1− exp(−kγT )

)(
1− exp(−kγT )

)
− k2(1− Eγ

)))2

. (14)

The ratios ru, rl must be smaller than one to make sense within our model and
genes where this is not the case should be discarded. The log function is used
to give exon and intron counts equal standing.
The above bivariate function can be reduced to a univariate function f∗ using
(36):

f∗(k) = f
(
k,

1

k
log

( rl − ru
ru(rlk + rl − 1)

))
(15)

The processing and degradation rates are derived from k using (36) where
a and b are again approximated by ru and rl respectively. Then the synthesis
rate α can be easily obtained from (4), where mu is approximated by χu (which
is likely the most reliably measured specie):

γ =
1

kT
log

( rl − ru
ru(rlk + rl − 1)

)
β = kγ α =

γ(γ − β)χu
γEβ − βEγ

(16)
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3 Results

3.1 Simulated data

In order to confirm that our method can be applied in principle, we evaluated
our method on simulated data, where the data was generated using the exact
model used to develop the method (see equations 3 and following). We chose
not to simulate noise or biases in the data, as the aim of the simulation is only
to validate the mathematical developments above and our implementation of
the method. We generated 50000 random value for α, β, and γ ranging between
exp(−5) and exp(5) and computed the corresponding values for ι and χ. We

then computed ru and rl by taking the ratio. Estimates β̂ and γ̂ where then
inferred by using ru and rl as an input to the method and compare the original
β and γ.
Numerically solving equation (12), yielded either one or two solutions. The
results for the unambiguous cases are shown in Fig 2, left. We see that in
virtually all cases, the method yields accurate estimates of the processing and
degradation rates. For a few points, the method is less accurate at the upper
boundary of the parameter space, probably due limited floating point precision.
Indeed if the labeling time is too long with respect to the metabolic rates, virtu-
ally all unlabeled RNA are degraded and the rates cannot be reliably estimated.

As we are considering single-sample estimates, it is possible to chart the ob-
servable space given by a and b and see when the method provides unambiguous
results. Fig. 2, center, confirms that for b > 1

2−a the method provides a unique
(and correct) solution as proven in appendix C. Below this line (displayed in
green), the methods provides ambiguous results as two distinct set of values β
and γ can account for the same value of a and b (in blue). It is also possible
to visualize the trajectories of the observables a and b for various values of k,
as depicted in Fig. 2, right. When T = 0, trajectories start from the top of
the space at ( 1

1+k , 1). When k < 1, as time passes the system moves down to

(a, b) → (1 − k, 1
1+k ). For k ≥ 1, trajectories move to (0, 1

1+k ). Note that this
is the expected case, as the splicing of mRNA occurs in general faster than its
degradation. Note that, in this case, trajectories cross below the green line,
explaining why two solutions can be found for a single value of (a, b). The speed
at which the system follows these trajectories depends on γ.

3.2 Real data

In order to assess the performance of the method on real data, we applied our
method on the 4sU labeling experiment described in [24]. Briefly, mouse em-
bryonic stem cells were plated at a density of 40000 cells/cm2 on gelatin-coated
10cm tissue culture plates and grown for approximately 14 hours. After addi-
tion of 4sU to the growth medium, cells were incubated at 37C for 10 minutes
(10 minutes labeling pulse). RNA was then extracted and processed according
to the protocol described in [25]. Reads that did not map to mouse ribosomal
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Figure 2: Simulated data. Left: the method correctly estimates processing
and degradation rates. Points with ambiguous solutions are not shown. Some
points corresponding to high rates cannot be estimated correctly as the system
as already reached steady-state during the simulated ”pulse”. Center: the mea-
surement space can be partitioned into ambiguous and unambiguous regions.
The green line corresponds to b = 1

2−a . Above that line, rates are correctly and
unambiguously estimated. Boundary cases are sometimes wrongly estimated,
probably due to numerical errors (red dots). Right: Trajectories in the phase
space are solely determined by the k parameter. They start at time T = 0 at
the top (b = 1) and go down. For k < 1 the trajectories (in blue) remain above
the green line defined by b = (2 − a)−1 and do not cross. For k > 1 (in red),
they cross each other below the system follows the trajectory depends on the
actual values of β and γ.
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Figure 3: Real data. Left: Each point corresponds to a transcript with its
transparency reflecting log expression value. Like in the previous figure, the
green line is defined y = (2 − x)−1. For transcripts lying between the abscissa
(in blue) and the green line, estimates of processing and degradation rates can
be obtained by solving (12). For transcripts lying between the diagonal (in
red) and the green line, estimates can be obtained by minimizing (15). The
observed ratios for the remaining transcripts are not coherent with the model
and are discarded. These trancripts (above the blue line) are lowly expressed
compared to the ones below the blue line (see inset). Right:RNA processing
rates are highly correlated to the synthesis rates (72%), which is consistent with
co-transcriptional RNA processing.

RNA sequences were aligned to intronic and exonic sequences using STAR V2.5
[26] and quantified using RSEM V1.1.17 [27], yielding intron and exon expres-
sion levels for unlabeled and labeled RNA.

For a single sample, the observable space represented in Fig 2 (center and
right) is represented (in log coordinates) in Fig 3, left. We see that, while
the points are centered on the expected region of the observable space, many
transcripts lie below the diagonal or above the rl = 1 (or log(rl) = 0) line
(in blue), which is not compatible with our model. We observe that those
incompatible transcripts lying above the rl > 1 line are expressed at a much
lower level than the transcripts lying below this line (see inset). A lower signal to
noise ratio in low expressed genes could explain this difference. However, another
likely explanation pertains to the fact that co-transcriptional processing is not
accounted for by the Zeisel model. While it has been documented that an RNA
molecule is often processed while being synthesized (the ”assembly-line model”)
[22], the Zeisel model considers synthesis and processing as two independent
point events. This discrepancy is likely to be more relevant for short-lived (and
thus low-expressed) transcripts, a sizeable fraction of which is expected to be
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nascent at sequencing time. Those nascent transcripts may contribute to an
intron to exon ratios higher than one when they are incompletely synthesized
(for example if the last exon has not yet been produced). This hypothesis
is corroborated by considering unspliced transcripts length, which putatively
affects synthesis time and thus the probability of being nascent at sequencing
time. Transcripts lying above the rl > 1 line are indeed longer than those lying
below this line (p− value < 10−100, Wilcoxon test).

The transcripts incompatible with our model, amount to 25% of protein-
coding genes with an exon TPM higher than 1, and are discarded from further
analyses. The processing and degradation rates were computed either by solv-
ing (12) when rl > (2− ru)−1 or by optimizing (15) otherwise. For these cases
that had two solutions (6% of the transcripts), we selected the one correspond-
ing to rates most consistent with the other transcripts.

The resulting synthesis and processing rates are depicted in Fig. 3, right. Al-
though processing rates span a smaller range of values, they are highly correlated
(72%), which is not surprising as RNA processing occurs co-transciptionaly [22].
More remarkable is the correlation of synthesis and degradation rates, displayed
in Fig. 4, left. At 65%, it is very similar to the 66% reported by [21] for the
same cell type. This is also consistent with the emerging concept of a coupling
between RNA transcription and decay [28]. Our data indicate that genes span
a large range of dynamics, irrespective of their expression level. Indeed, genes
with high synthesis and degradation rates can have the same steady-state ex-
pression level as genes with low synthesis and degradation rates. However, the
former will reach this steady state faster than the latter. It thus makes sense
to consider our RNA metabolic rates in the functional frame of reference indi-
cated in Fig. 4, left. One axis corresponds to the steady state RNA abundance,
given by the log-ratio of synthesis over degradation rates (or equivalently by the
difference of log of the rates). The second axis correspond to the responsive-
ness of the gene, i.e. how fast it reaches steady state (computed by the sum
of the log of the synthesis and degradation rates). It has been observed before
that genes involved in more reactive and dynamic biological processes such as
chromatin remodeling or transcription regulation tend to have a higher turnover
than genes involved in more stable processes such as basic metabolism [9]. We
checked that our data confirm this observation by looking at the Gene Ontology
(GO,[29])) annotations of biological processes most associated by [9] with high
and low turnover, namely ”transcription” and ”monosaccharide metabolism”.
Despite having similar steady-state abundances, transcripts of genes involved in
transcription indeed have significantly faster dynamics and the ones involved in
monosaccharide metabolism have significantly slower dynamics than the rest of
the genes, as illustrated by the squares in Fig. 4, left and right. Other categories
where our data confirms faster genes include chromatin modifications, cell cycle
and transcription regulation.

We assessed the precision of our method by comparing the resulting degrada-
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Figure 4: Left: Estimated RNA synthesis and degradation rates obtained from
a single sample. These rates can also be considered in a different and maybe
functionally more relevant frame of reference defined by the steady state abun-
dance (first axis) and gene responsiveness (second and perpendicular axis), as
illustrated by the background grid. Genes involved in fast adapting biological
processes (such as transcription) tend to be more responsive than genes in-
volved in stable functions (such as monosaccharide metabolism). The squares
on the axes represent the projections of the mean rates for the respective cate-
gories (gray representing genes that belong to neither of the two categories) and
indicate that mean transcript responsiveness (but not abundance) is strongly
affected by the category. These two GO categories were selected for illustration
because they were previously reported to be mostly enriched in high and low
turn-over genes respectively [9]. Right: Same data as in left, but rotated and
showing only colored dots, for visibility.
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tion rates to those published for the same cell type by [21]. Those were obtained
by using three replicates and seven time points and applying the SLAM-seq
nucleotide-conversion method that, unlike metabolic labeling, does not require
biochemical separation between the labeled and unlabeled RNA and is thus not
affected by noise generated by the imperfect separation process (although that
method has its own source of noise). From our data, we obtained gene degrada-
tion rates by taking, for each gene, the weighted average degradation rates of the
corresponding transcripts The weights were given by the mean exonic expression
levels (unlabeled and labeled). We expect a lower precision for transcripts close
to the rl = 1 line, for which the labeling time was likely somewhat too short,
so to assess the correlation, we weighted the transcripts by 1 − rl. Fig. 5, left,
compares degradation rates obtained in our experiments with those reported
by [21], keeping only genes with an average expression value higher than 100
TPM. We expect a higher precision for highly expressed genes, as this allows
for a more precises estimates of the intron to exon ratios. This is indeed the
case, and depending on the expression threshold and the sample, the correlation
between our data and the previously published rates, we obtain a correlation
ranging between 30% and 67% for a single sample estimate (see Fig. 5, left).
As these experiments were performed in different labs using different methods,
these numbers show that our rates obtained on a single sample and time point
are meaningful. For comparison, [30] report correlations around 70% by using
the same data, but changing only the method of analysis. Using three repli-
cates, [25] report a 26% correlation using the INSPEcT package.

3.3 Comparison with INSPEcT

Since our method estimates metabolic rates from a single sample, we decided
to compare its results to the ”initial guess” provided by the INSPEcT method,
to our knowledge the only other method that does not need multiple samples.
Note however, that those rates are only the initial step of the INSPEcT method,
and should not be confused with the global outcome of INSPEcT, which then
aggregates multiple samples for the estimation. For concision, we will in the sec-
tion refer to our method as SSRE (Single Sample Rate Estimation). The main
differences between the two approaches is that INSPEcT assumes no degrada-
tion on labeled RNA and requires the estimation of a scaling factor accounting
for the difference in RNA concentration between labeled and unlabeld samples,
which SSRE avoids by considering the intron to exon ratio in each sample sep-
arately for each sample. Furthermore, INSPEcT requires the estimation the
time derivative of the RNA abundances, which is avoided in SSRE by taking
advantage of the analytical solution to the Zeisel model.
We used the INSPEcT package for R (more specifically the newINSPEcT func-
tion with parameter preexisting=TRUE and the ratesFirstGuess function) on
the same data. The expression variance required by this function was estimated
from the expression level from all three replicates using Loess regression. It took
about 10 minutes to estimates rates for each replicate (about 50000 transcripts)
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Figure 5: Left: degradation rates estimated from a single sample plotted
against degradation rates published in [21] (obtained using slam-seq). The red
line is obtained through weighted linear regression. The weights are set as 1−rl
as indicated by the transparency of the dots. The (weighted) correlation of 55%
indicates that the estimated rates are meaningful. Only genes with a mean exon
TPM above 100 are taken into account. Right: Correlation between degradation
rates obtained by [21] and the ones obtained our single-sample method as a
function of expression level. Each line represents a biological replicate. The
dot corresponds to the data shown on the left. As expected, the correlation
is higher for highly expressed genes, as the intro to exon ratios can be more
reliably estimated. In this experiment, replicate 1 correlates better than the
two others, indicating that it is probably of better quality.
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Figure 6: Comparion of our method (SSRE) with the INSPEcT ”first guess” on
th same data. Top row: direct comparison of rates obtained with our method
and with the INSPEcT package on a single sample. Synthesis and processing
rates are well correlated but not the degradation rate (Spearman correlation
shown). The red bar indicates the diagonal. Bottom left: bars indicate the
correlation of degradation rates with previously published data [21], as in Fig.
5. The INSPEcT method provides degradation rates with good correlation
only for one of the three replicates (repl. 2), whereas it is the case for all three
replicates using our method. The dots indicate the slope of the regression line in
log-log space (as in Fig. 5, left). Slopes obtained from SSRE estimates are closer
to one, which correspond to the ideal case of a linear relation ship between the
(non-log) rates. Bottom center and right: Rates obtained with INSPEcT also
reproduce the positive correlation between synthesis and processing rates, but
they produce a negative correlation between synthesis and degradation rates,
unlike our method and previously published results.
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using a single 2.8GHz core from a laptop computer, whereas our implementation
of SSRE took about 30 seconds to complete on the same machine.
In addition to direct rate comparison, we decided to compare the methods using
three criteria: (1) correlation with published rate, (2) rate distributions and (3)
reproducibility across replicates. Figure 6 shows that the two methods provides
synthesis and processing rates that are well correlated, while degradation rates
are not. Moreover, the degradation rates obtained by INSPEcT correlate well
to previously published rates only for one of the three samples. In contrast to
degradation rates obtained with SSRE, the correlation with previously publised
rates does not improve when focusing on highly expressed genes, it even become
negative for replicates 1 and 3 (data not shown). This suggests that for SSRE,
degradation rate estimation is likely to improve with higher sequencing depth
(and thus a more precise estimate of the intron to exon ratio). Finally, the
rates computed using the INSPEcT method do not exhibit the previously doc-
umented correlation between synthesis and degradation rates [21]. This leads
us to think that our degradation rates are closer to the real rates than the ones
provided by the INSPEcT ”first guess”. This should not come as a surprised, as
our method does not assume that labeled RNA does not degrade and estimates
degradation and processing rates independently from the synthesis rate.

The synthesis and processing rates provided by the two methods are rela-
tively well correlated, and INSPEcT provides rates that are more consistants
across replicates (see Supplementary Fig D.8.) It is also interesting to note that
SSRE tends to show an upper bound for the processing rate, while INSPEcT
first shows a lower bound for that rate. It is difficult to speculate which (if
any) is more likely true, but an upper bound would be consistent with bio-
physical constraints in a leaky co-transcriptional RNA splicing setting. Fig D.8
also shows that unlike INSPEcT, SSRE computes degradation rates that span
a larger range of values than processing rates, a property also reported in [11]
for a different system.

4 Discussion

In this paper, we presented a method to estimate synthesis, processing and
degradation rates of RNA transcripts from a single 4sU labeled sample. We
validated our method first in silico and then on real data obtained from mouse
embryonic stem cells. Using our method we first replicated, on a different cell
type, previous findings about the enrichment in high or low turn-over genes of
specific cellular processes. Second, we showed that the rates obtained with our
method correlate well (between 30% and 67%) with published rates obtained by
applying SLAM-seq to the same cell types. Methods for such estimation have
been published before, but they usually require a sufficient number of samples
(around a dozen). We compared our method to the initial step of the INSPEcT
method, which handles each sample separately, and obtain similar synthesis
and processing rates, but different degradation rates. Our rates correlate more
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consistently with previously published degradation rates obtained with nuclear
conversion methods on the same system, and even more so for highly expressed
transcripts. Rates obtain with our method also better reproduce previously ob-
served statistical relationships between rates, although synthesis and processing
rates are less consistant across replicates. Taken together these results suggest
that our method provides more reliable degradation rates.

In contrast to other methods, our method explicitly uses the analytical so-
lution to the Zeisel model of RNA dynamics. Moreover, our method is self-
normalizing as it only uses the ratio of intron to exon expression levels. It
is thus not affected by differences in sequencing depth of the various samples.
This approach makes our method also faster than other methods as it boils
down to numerically solving on a bounded domain either a univariate equation
or a one-dimensional optimization for each transcript. Our method could thus
be a suitable alternative to the initial step of the INSPEcT method especially
when using a large number of samples as it is also about 20 times faster.

Similarly to the initial step of the INSPEcT method, a caveat of our method
is that a sizable fraction of mostly lowly expressed transcripts (about 25 % in our
case) are inconsistent with the model and their dynamics cannot be estimated.
Together with the high correlation between synthesis and processing rate, it
suggests that modeling transcription and processing as independent events is a
simplification that could be reconsidered, as the coupling between the two has
been documented [22]. However, this limitation of the Zeisel model is likely to
also affect other methods using it [20, 31].
Another limitation of the method is that, unlike in [20], it does not consider the
effect of leakage of unlabeled RNA in the labeled RNA pool because of unspe-
cific capture. This leakage has the effect of reducing rl towards the diagonal,
and could potentially be estimated from the data as it is shared across all tran-
scripts. Another improvement would be to embed this method in a probabilistic
framework in order to quantify the estimate uncertainty (as in [30] for a simpler
model) or to determine the optimal labeling time (as in [32]).

While using a single sample allows to reduce costs, this is not the only merit
of this approach. In practice most experiments will have biological replicates, in
which case our methods enables obtaining point estimates of α, β and γ for each
of them. This in turn allows for estimating their variance, as well as assessing
sample quality (e.g. if one of them systematically gives very different estimates
for all genes). Moreover, because cell growth is likely to be limited during (short)
labeling time, it is less likely to interfere in the estimation process than when
using time course data, where it can have an effet [18]. In addition, when used
in a time-course experiment, our method allows to investigate the evolution of
these rates over time and assess whether these rates are stationnary. Finally,
the theoretical results obtained in this paper, could be used to improve other
methods. For example, the method could be used to analyze SLAM-seq data
which would reduce the number of samples but also provide estimate for the
processing rate. Another possible application is single cell RNA velocity [31],
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where the Zeisel model of RNA dynamics is also used, but splicing rates γ are
set to be equal for all transcripts. While it has been documented (and is consis-
tent with our data) that splicing rates are more homogeneous than degradation
rates [11], this is potentially an approximation that could be improved with our
framework to increase the accuracy of the method, for example by considering
the strong correlation between the synthesis and processing rates. Finally, our
method could also be used in conjunction with the recent developements in sin-
gle cell metabolic labeling experiments [33, 34].
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A Derivation of the model solution

This is a first order linear ordinary differential equation in p(t) and m(t) that
can be expressed in matrix form as(

ṗ
ṁ

)
=

(
−β 0
β −γ

)(
p
m

)
+

(
α
0

)
(17)

The solution to this equation is given by(
p
m

)
= k1v exp(λ1t) + k2w exp(λ2t) +

( α
β
α
γ

)
, (18)

where k1 and k2 are scalar constants determined by the boundary conditions,
λ1, λ2 are eigenvalues of the matrix in (17) and v, w are the corresponding
eigenvectors.
The eigenvalues are given by λ1 = −β and λ2 = −γ. The first eigenvector v is
obtained by solving{

−βv1 = −βv1

βv1 − γv2 = −βv2
⇒ v1 =

γ − β
β

v2 ⇒ v ∝
(
γ − β
β

)
(19)

Similarly the second eigenvector is obtained by solving{
−βw1 = −γw1

βw1 − γw2 = −γw2
⇒ w1 = 0⇒ w ∝

(
0
1

)
.

The solution to (17) is thus given by(
p
m

)
= k1

(
γ − β
β

)
exp(−βt) + k2

(
0
1

)
exp(−γt) +

( α
β
α
γ

)
.

Expressed by its component this is equivalent to

p(t) = k1(γ − β) exp(−βt) +
α

β
(20)

m(t) = k1β exp(−βt) + k2 exp(−γt) +
α

γ
(21)

We now turn to the boundary conditions to determine k1 and k2. The boundary
conditions are different for the unlabeled and the labeled RNA.

Unlabeled RNA

Like in [19], we assume the system to be in steady-state prior to labeling. The
steady-state is given by solving (17) with ṗ = ṁ = 0.{

0 = −βp+ α
0 = βp− γm ⇒

{
p = α

β

0 = β αβ − γm
⇒

{
p = α

β

m = α
γ

(22)
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During labeling time, we assume that no unlabeled RNA is synthesized such
that α = 0. Assuming that we start labeling at time t = 0, we thus have

pu(0) =
α

β
⇒ k1(γ − β) =

α

β
⇒ k1 =

α

β(γ − β)
(23)

Moreover we have

mu(0) =
α

γ
⇒ α

γ − β
+ k2 =

α

γ
⇒ k2 =

α

γ
− α

γ − β
=

−βα
γ(γ − β)

This leads us to the solution for the unlabeled RNA

pu(t) =
α

β
exp(−βt) (24)

mu(t) =
α

γ − β
exp(−βt)− βα

γ(γ − β)
exp(−γt) , (25)

where the u label indicates that this corresponds to the unlabeled RNA pool.

Labeled RNA

The solution for the labeled RNA could be obtained the same way as for the
unlabeled RNA, but setting α 6= 0 and pl(0) = ml(0) = 0. However, it is
simpler to notice that the total RNA (labeled and non-labeled) stay at steady-
state during the labeling such that we have the following solution for labeled
RNA.

pl(t) =
α

β
− pu(t) =

α

β

(
1− exp(−βt)

)
ml(t) =

α

γ
−mu(t) =

α

γ

(
1 +

β

(γ − β)
exp(−γt)

)
− α

γ − β
exp(−βt)

where the l label indicates that this corresponds to the labeled RNA pool.

B Equation simplification

In this appendix we show how the the system given by equations (10, 11) can be
simplified to Eq. (12) to infer the ratio k between the processing and degradation
rate. Starting from

a =
(1− k)Ekγ
Ekγ − k2Eγ

(26)

b =
(1− k)

(
1− Ekγ

)(
1− Ekγ

)
− k2

(
1− Eγ

) , (27)

we have

a
(
Ekγ − k2Eγ

)
= (1− k)Ekγ (28)

b
((

1− Ekγ
)
− k2(1− Eγ

))
= (1− k)

(
1− Ekγ

)
. (29)
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Summing (28) and (29) yields

Ekγ(a− b) + k2Eγ(b− a) + b(1− k2) = 1− k (30)

⇔ Ekγ − k2Eγ =
(1− k)− b(1− k2)

a− b

=
(1− k)

(
1− b(1 + k)

)
a− b

. (31)

Dividing (28) by (29) and inserting (31) results in

Ekγ
1− Ekγ

=
a

b

Ekγ − k2Eγ(
1− Ekγ

)
− k2(1− Eγ)

=
a

b

Ekγ − k2Eγ
(1− k2)−

(
Ekγ − k2Eγ

)
=
a

b

(1− k)(1− b(1 + k)

(1− k2)(a− b)− (1− k)
(
1− b(1 + k)

)
=
a

b

1− b(1 + k)

(1 + k)(a− b)− 1 + b(1 + k)

=
a

b

1− b(1 + k)

(1 + k)a− 1
= −a− ab(1 + k)

b− ab(1 + k)
(32)

It follows that

Ekγ
(
b− ab(1 + k)

)
=

(
Ekγ − 1

)(
a− ab(1 + k)

)
(33)

⇔ (b− a)Ekγ = ab(1 + k)− a , (34)

an thus

exp(−kγT ) = Ekγ =
kab+ ab− a

b− a
=
a(bk + b− 1)

b− a
(35)

⇔ kγT = log
( b− a
a(bk + b− 1)

)
(36)

Moreover, from (10), we have that

a =
1− k

1− k2 exp
(
(k − 1)γT

) ⇔ exp
(
(k − 1)γT

)
=

(1− 1−k
a )

k2

⇔ (k − 1)γT = log
(k + a− 1

k2a

)
(37)

Multiplying (36) by k−1
k and subtracting (37) results in

0 =
k

k − 1
log

(k + a− 1

k2a

)
− log

( (b− a)

a(bk + b− 1)

)
. (38)
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k− x0 k+g

h

x

Figure C.7: Sketch of the proof that g(x) has a single zero in D = (k−, k+). We
first show that limx→k− g(x) =∞, that limx→k+ g(x) = 0 and limx→k+ g

′(x) >
0, so that g must cross the x-axis on D. To show that it only does it once, we
consider a function h(x) that has the same sign as g(x) when g′(x) = 0. We
show that h is convex on D and thus g cannot have a negative extrema, followed
by a positive extrema, followed by a negative extrema. Hence it cannot have
more than one zero on D.

This equation also provides upper and lower bounds for k as both k+a−1
a

and bk + b− 1 must be strictly positive for their logarithm to be defined and

0 < exp(−βT ) = Ekγ =
kab+ ab− a

b− a
< 1 ∀βT > 0 (39)

for (35) to hold. Developing these three conditions results in the following
domain of definition D for k:

max(
1

b
− 1, 1− a) < k <

1

a
− 1 , (40)

where 0 < a < b < 1.

C Proof of unicity of solution

In this appendix, we prove that (12) has a single solution for b > (2 − a)−1.
We first note that b > (2 − a)−1 ⇔ 1−b

b < 1 − a, so the lower bound for k is
k− = 1− a. We then define the right-hand side of (12) as

g(x) =
x

x− 1
log

( 1

x2
(1− 1− x

a
)
)
− log

( (b− a)

a
(
b(x+ 1)− 1

)) (41)

=
x

x− 1

(
− 2 log(x) + log(a+ x− 1)− log(a)

)
− log(b− a) + log(a) + log

(
b(x+ 1)− 1

)
(42)

We then observe that on that lower bound lim
x

>→1−a g(x) = +∞ because a+x−1

tends to zero and x− 1 is negative.
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On the other hand, for the upper bound k+ = 1−a
a , we have

a+ x− 1 =
a2 + 1− a− a

a
=

(1− a)2

a

b(x+ 1)− 1 =
b

a
− 1 =

b− a
a

we can deduce that the upper bound of x is a zero of g:

g(
1− a
a

) =

1− a
1− 2a

(
− 2 log(1− a) + 2 log(a) + 2 log(1− a)− 2 log(a)

)
− log(b− a) + log(a) + log(b− a)− log(a) = 0. (43)

Moreover, the derivative of g is given by:

g′(x) = − 1

(x− 1)2
(
− 2 log(x) + log(a+ x− 1)− log(a)

)
+

x

x− 1

(
− 2

x
+

1

a+ x− 1

)
+

b

b(x+ 1)− 1
. (44)

Then

g′(
1− a
a

) =
−a2

(1− 2a)2
(
− 2 log(1− a) + 2 log(a) + 2 log(1− a)

− 2 log(a)
)

+
1− a
1− 2a

( −2a

1− a
+

a

(1− a)2
)

+
ba

b− a

=
1

1− 2a

2a− 1

1− a
+

ba

b− a

=− a

1− a
+

ba

b− a

=
a2(1− b)

(b− a)(1− a)
> 0 if 0 < a < b < 1. (45)

Since g(k+) reaches zero from below, while g(k−) > 0, we can infer that g(x)
has a zero between k− and k+ as illustrated on Fig C.7.

To show that this zero is unique, we look at the sign of g′(x).

We can rewrite g′(x) as

g′(x) =
1

(x− 1)2
(
A(x)−B(x)

)
(46)

where

A(x) =
(1− x)

(
x(ab+ b− 1)− (3b− 2)(1− a)

)
(x+ a− 1)(bx+ b− 1)

)
B(x) = log

(a+ x− 1

ax2
)
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Let x0 be a zero of g′, i.e., the position of a local extrema of g. We have

g(x0) =
x0

x0 − 1
log

(x0 + a− 1

ax20

)
− log

( (b− a)

a
(
b(x0 + 1)− 1

))
=
−x0

(
x0(ab+ b− 1)− (3b− 2)(1− a)

)
(x0 + a− 1)(bx0 + b− 1)

− log
( (b− a)

a
(
b(x0 + 1)− 1

)) (47)

The second equality holds because g′(x0) = 0 by definition of x0. By multiplying
(47) by (bx0 + b− 1), which is positive, we can then define a new function h(x)
whose sign is the same as the sign of g(x) for x = x0 (see Fig C.7 for an
illustration).

h(x) = C(x)−D(x) , (48)

where

C(x) =
−x

(
x(ab+ b− 1)− (3b− 2)(1− a)

)
(x+ a− 1)

D(x) = (bx+ b− 1) log
( (b− a)

a
(
bx+ b− 1

)) (49)

We can now compute the second derivatives of C(x) and D(x).

C ′(x) =−
(
2x(ab+ b− 1)− (3b− 2)(1− a)

)
(x+ a− 1)

(x+ a− 1)2

+
x2(ab+ b− 1)− x(3b− 2)(1− a)

(x+ a− 1)2

=− x2(ab+ b− 1)− 2x(1− a)(ab+ b− 1) + (3b− 2)(1− a)2

(x+ a− 1)2

C ′′(x) =−
(
2x(ab+ b− 1)− 2(1− a)(ab+ b− 1)

)
(x+ a− 1)

(x+ a− 1)3

+
2
(
x2(ab+ b− 1)− 2x(1− a)(ab+ b− 1) + (3b− 2)(1− a)2

)
(x+ a− 1)3

=− 2(1− a)2(ab− 2b+ 1)

(x+ a− 1)3
> 0 ∀b > 1

2− a

D′(x) =b log
(b− a

a

)
− b

(
log(bx+ b− 1) + 1

)
D′′(x) =− b2

bx+ b− 1
< 0 ∀x > k−

Hence

h′′(x) = C ′′(x)−D′′(x) < 0 ∀x ∈ D,∀b > 1

2− a
(50)
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Figure D.8: Correlation of rates across two replicates. Top row: Rates obtained
with INSPEcT. Bottom row: rates obtained with our method. The INSPEcT
method provides rates that are more consistent across replicates for synthesis
and processing rates, but not for degradation rates. Spearman correlation is
indicated and the red line shows the diagonal.

This means that h is convex, so there cannot be three points x1 < x2 < x3 such
that 0 > h(x1) < h(x2) > 0 > h(x3). Hence the same can be said of three zeros
of g′, so g(x) cannot have more that one zero. �

D Supplementary figure
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