Abstract
Neurotransmitter is released synchronously and asynchronously following an action potential. The release sites of these two phases are segregated within an active zone, with asynchronous release sites enriched near the center. Here we demonstrate that synchronous and asynchronous release sites are aligned with AMPA receptor and NMDA receptor clusters, respectively. Computational simulations indicate that this spatial and temporal arrangement of release ensures maximal membrane depolarization through AMPA receptors, alleviating the pore-blocking magnesium leading to greater activation of NMDA receptors. Together, these results suggest that release sites are organized to efficiently activate NMDA receptors.
Competing Interest Statement
The authors have declared no competing interest.