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Abstract 

Background: The increasing availability of microbial genomes and environmental shotgun metagenomes 

provides unprecedented access to the genomic differences within related bacteria. The human oral 

microbiome with its diverse habitats and abundant, relatively well-characterized microbial inhabitants 

presents an opportunity to investigate bacterial population structures at an ecosystem scale.   5 

Results: Here, we employ a metapangenomic approach that combines public genomes with Human 

Microbiome Project (HMP) metagenomes to study the diversity of microbial residents of three oral 

habitats: tongue dorsum, buccal mucosa, and supragingival plaque. For two exemplar taxa, Haemophilus 

parainfluenzae and the genus Rothia, metapangenomes revealed distinct genomic groups based on 

shared genome content. H. parainfluenzae genomes separated into three distinct subgroups with 10 

differential abundance between oral habitats. Functional enrichment analyses identified an operon 

encoding oxaloacetate decarboxylase as diagnostic for the tongue-abundant subgroup.  For the genus 

Rothia, grouping by shared genome content recapitulated species-level taxonomy and habitat 

preferences. However, while most R. mucilaginosa were restricted to the tongue as expected, two 

genomes represented a cryptic population of R. mucilaginosa in many buccal mucosa samples. For both 15 

H. parainfluenzae and the genus Rothia, we identified not only limitations in the ability of cultivated 

organisms to represent populations in their native environment, but also specifically which cultivar gene 

sequences were absent or ubiquitous.  

Conclusions: Our findings provide insights into population structure and biogeography in the mouth and 

form specific hypotheses about habitat adaptation. These results illustrate the power of combining 20 

metagenomes and pangenomes to investigate the ecology and evolution of bacteria across analytical 

scales. 

 

Keywords: oral microbiome, metagenomes, pangenomes, Rothia, Haemophilus parainfluenzae, 

population structure, biogeography  25 
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Introduction 

The human microbiome encompasses tremendous microbial diversity. The growing recognition of this 

diversity and its importance for human well-being prompted a major effort to investigate the identity 

and distribution patterns of bacteria throughout the human body, the Human Microbiome Project (HMP 

Consortium, 2012). More recent studies have focused on finer-scale patterns, such as the role of host 30 

individuality in determining microbiome composition, the number and diversity of strains that can co-

exist within a habitat, and the distribution of strains across body sites (Lloyd-Price et al., 2017; Pasolli et 

al., 2019; Tierney et al., 2019).  However, the sheer numbers and genetic diversity of bacteria in even a 

simple real-world microbiome present significant challenges to study. 

One approach to studying bacterial populations is metagenomics --the direct sequencing of the total 35 

DNA obtained from an environmental sample (Quince et al., 2017). By circumventing the need for 

cultivation, metagenomics can afford deeper and more accurate insights into the genetic diversity of 

naturally occurring microbial populations (Chen et al., 2019). The Human Microbiome Project (HMP; 

HMP Consortium, 2012; Lloyd-Price et al. 2017) sequenced metagenomes from hundreds of samples 

from sites all over the human body. However, the use of metagenomic methods alone can be limited by 40 

the challenges inherent in associating short reads back to a single organism without combining 

sequences from separate strains (Nielsen et al., 2014; Quince et al., 2017). 

On the other hand, the genomic diversity and relatedness within a group of bacteria can be studied 

using pangenomes. The pangenome, the sum of all genes found across members of a given group, 

reveals the functional essence and diversity held within that group (Medini et al., 2005; Tettelin et al., 45 

2005; Vernikos et al., 2015). Pangenomics can identify core and accessory genes (genes shared and not 

shared by all, respectively) within a group of related bacteria, as well as the relationships between 

different bacteria based on shared gene content. Notably, relating genomes by gene content allows a 

phylogenetically-naïve approach to compare genomes, so that any phylogenetic or ecological correlation 

that emerges from the comparison is informative (Delmont & Eren, 2018; Snel et al., 1999).  Because 50 

concepts of species pose challenges when working with bacteria, bacterial pangenomes may be 

generated at the genus or family level to illuminate gene sharing and the degree of relatedness within 

these larger groupings (Cornejo et al., 2013; Simon et al., 2017).  However, the environmental 

distribution of groups and genes identified in the pangenome remain unidentified.  
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Combining pangenomes and metagenomes offers a novel perspective into the adaptation of microbial 55 

populations to different habitats. Pangenomes and metagenomes are complementary even when the 

organisms used for the pangenome were not isolated from the same samples whose metagenomes will 

be studied. A pangenome constructed from isolates collected at different times and around the world 

reveals the shared and variable gene content of the different organisms. The isolate genomes can then 

be used for short-read mapping from entirely unrelated metagenomic samples, revealing the 60 

environmental distribution of those same genes and genomes and permitting identification of 

biogeographic patterns. This short-read mapping avoids the limitations of both cultivation and assembly 

(Donati et al., 2016; Truong et al., 2017; Yassour et al., 2018). Thus, by using a set of well-characterized 

genomes from members of a species or genus (i.e., a pangenome of cultivars) as a reference set to 

recruit reads from metagenomes spanning a variety of habitats, the relative frequency of each gene 65 

sequence in naturally occurring populations can be quantified. The ability of short-read mapping 

algorithms to map related but non-identical reads can be exploited to use reference genomes as 

reference points to probe the composition and structure of wild populations (Denef 2019). This 

combination of metagenomes with pangenomes, referred to as ‘metapangenomics’ (Delmont & Eren, 

2018) reveals the population-level results of habitat-specific filtering of the pangenomic gene pool.  70 

The oral microbiome is an ideal system in which to investigate microbial population structures in a 

complex landscape. Different surfaces in the mouth, such as the tongue dorsum, buccal mucosa, and 

teeth, constitute distinct habitats, each with a characteristic microbiome (Aas et al., 2005; Eren et al., 

2014; Hall et al., 2017; Segata et al., 2012). These microbiomes are dominated by a few dozen taxa with 

high abundance and prevalence (Mark Welch et al. 2016, Utter et al. 2016, Mark Welch et al. 2019), 75 

most of which have cultivable representatives from which genomes have been sequenced (Dewhirst et 

al. 2010, homd.org), making the system unusually tractable relative to other natural microbiomes. The 

microbiomes that assemble in the different oral habitats are clearly related to one another – composed 

of many of the same genera, for example – but are largely composed of different species (Mark Welch 

et al. 2019). For example, the major oral genera Actinomyces, Fusobacterium, Neisseria, Veillonella, and 80 

Rothia occur throughout the mouth, but their individual species show strongly differential habitat 

distributions. Individual species within these genera typically have 95-100% prevalence across 

individuals and make up several percent of the community at one oral site, but show lower prevalence 

and two orders of magnitude lower abundance at other oral sites (Eren et al., 2014; Mark Welch et al., 

2016; Mark Welch et al., 2019; Wilbert et al., 2020). The reproducibility of taxon distribution across 85 
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individuals, despite the frequent communication of the habitats with one another via salivary flow, 

suggests that founder effects and other stochastic processes are unlikely to explain the differences in 

species-level distribution and that these differences likely arise from selection. However, some apparent 

“habitat generalist” species, such as Haemophilus parainfluenzae, Streptococcus mitis, and 

Porphyromonas pasteri, can be found throughout the mouth (Eren et al., 2014; Segata et al., 2012). 90 

Altogether, the mouth is colonized by well-characterized bacteria that build distinctive communities in 

the different oral habitats in the absence of dispersal barriers. This setting presents an opportunity to 

investigate the genomic characteristics underlying the differential success of closely related species in 

different habitats. 

Here, we combine pangenomes and metagenomes to investigate how genes are distributed across 95 

populations at distinct sites within the mouth.  We focused on two exemplar oral taxa with high 

prevalence (>95%; Segata et al. 2012, Eren et al. 2014, Mark Welch et al. 2016) and high abundance in 

the mouth: the species Haemophilus parainfluenzae and the genus Rothia. These two taxa represent the 

two oral biogeographic patterns, with H. parainfluenzae representing apparent habitat generalist 

species and the genus Rothia representing genera composed of habitat-specific species. Both Rothia 100 

spp. and H. parainfluenzae are sufficiently abundant – making up on average several percent of the 

microbiota at their sites of highest abundance – that metagenomic read recruitment to reference 

genomes can reliably sample their natural populations. As the basis for analysis of natural populations, 

we constructed pangenomes using genome sequences from previously cultured isolates. We then 

investigated the degree to which each gene in the pangenome is represented in populations from the 105 

healthy human mouth using metagenomic data from the Human Microbiome Project (HMP Consortium, 

2012). We found that genomes can be clustered into distinct, nested genomic groups that show 

differences in abundance between habitats. Our results suggest a framework where bacteria are 

structured into multiple cryptic subpopulations, some of which match observed habitat boundaries.  

Results 110 

Metapangenome workflow and the environmental core/accessory designation.  A metapangenome 

provides an overview of how genes are distributed across reference genomes and across metagenomes. 

A conceptual schematic for how isolate genomes and oral metagenomes are combined into a 

metapangenome is shown in Figure 1 and Additional File 1.  
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Construction of the pangenome rests on the definition of gene clusters, groups of genes that are close 115 

to one another in sequence space at the amino acid level (Figure 1A parts 1, 2). The presence or absence 

of gene clusters in individual genomes can be displayed so that sets of homologous genes are easily 

identified that are shared by all genomes, shared by subsets of genomes, or unique to a particular 

genome (Figure 1A part 3). In parallel with the construction of the pangenome at the amino acid level, 

the distribution of each gene within the human mouth is assessed at the nucleotide level by mapping 120 

metagenomic reads against the entire collection of cultivar genomes (Figure 1B part 1). The result of 

mapping is a value for “depth of coverage,” hereafter simply “coverage,” the number of metagenomic 

short reads that were mapped to a given nucleotide in a given genome; the coverage value serves as an 

estimate of the abundance of the gene in the sample. Critically, this mapping of all samples to all 

genomes is naïve to any assumptions about which genomes occur in which habitats. The detection of a 125 

genome in a metagenome is operationally defined as the finding that at least half of the nucleotides in 

the genome are covered at least once. The coverage for each gene in a genome, for each of a large 

number of samples, can then be shown as a circular bar chart (Fig. 1B part 2), with concentric rings 

showing the coverage recruited from each metagenomic sample.   

Comparative abundance in natural habitats can then be assessed for each gene using a metric to 130 

determine whether genes are core or accessory to an environment, rather than to a set of genomes 

(Delmont & Eren 2018).  This is accomplished by relating the abundance of a gene to the abundance of 

the genome that carries it, with respect to a set of environmental samples (Fig. 1B part 3).  By this 

metric, a gene in an isolate genome is considered environmentally “core” if its median coverage, across 

all mapped metagenomes, is a given fraction of the median coverage of the genome in which it resides. 135 

We used a fraction of one-fourth, following Delmont & Eren (2018). The gene is environmentally 

“accessory” if its coverage falls below this cutoff. This method normalizes gene coverage to the genome 

and so is robust to differences in sequencing depth across samples. The one-fourth threshold is 

arbitrary, but most genes in our samples were either completely covered (detected) in many 

metagenomes and were environmentally core, or recruited no coverage and were environmentally 140 

accessory (Additional File 2, Supplemental Methods). Thus, the specific value of the core/accessory 

cutoff has minimal effect on the identification of genes as environmentally core or accessory. The 

environmental core/accessory metric provides a way of assessing the contribution of the gene to 

population structure in the environment – provided that the pangenome adequately represents the 

nucleotide sequences of genes found in the population.  If the survival of a microbial cell in the 145 
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environment under study depends on having this gene in its genome, the gene should register as 

environmentally core, while if the gene were dispensable or required in only a subset of the cells of the 

population, the gene would register as environmentally accessory. 

The metapangenome (Figure 1C) combines the pangenome with a summary of the mapping 

information. The outermost concentric ring of the metapangenome, here colored in red and blue, 150 

summarizes the environmental core/accessory metric across all genes in a gene cluster as a stacked bar 

chart with the heights normalized to the number of genes in that gene cluster.  The scale of this outer 

ring thus changes from one part of the ring to another, as the number of genes per gene cluster ranges 

from one (as is the case between 10 o’clock and 12 noon on Fig. 1C) to three in the case of this example 

as shown between 3 o’clock and 8 o’clock on the figure.  Thus, the metapangenome format summarizes 155 

the cultivar genome data in a visual format that emphasizes sets of shared or unique genes, and then 

summarizes the metagenomic data in the form of an environmental core/accessory metric for each of 

the genes in this pangenome, assessed across all the mapped metagenome samples. 

The apparent generalist H. parainfluenzae is composed of multiple subgroups 

The species H. parainfluenzae is an apparent oral generalist in that it is both abundant and prevalent at 160 

multiple sites within the human mouth (Lloyd-Price et al. 2017, Mark Welch et al. 2019); however, 

previous reports have suggested that genomically distinct sub-populations may exist within the mouth 

(Lloyd-Price et al. 2017, Costea et al. 2017).  To investigate the genome structure of the global H. 

parainfluenzae population as represented by the sequenced cultivated strains, we downloaded thirty-

three high-quality isolate genomes from NCBI RefSeq. These genomes were sequenced over 8 years at 9 165 

institutions with listed isolation sources ranging from sputum to blood (Additional File 3), with many 

from an unspecified body site. Thus, we consider it likely that each study and institution sampled from 

independent donors. We constructed a pangenome from these 33 genomes (Figure 2, Additional File 4). 

Inspection of this pangenome (4,318 gene clusters in total) shows a large core genome encompassing 

35% of the pangenome (N= 1,493 gene clusters), shown as the continuous black bars between 9 o’clock 170 

and 12 o’clock in Fig. 2.  The dendrogram in the center of the figure organizes the gene clusters 

according to their presence/absence across genomes, and thereby visually separates the core genome 

from the accessory genome.  The accessory genome consists of 943 gene clusters (22% of the 

pangenome) unique to a single isolate genome, shown on the figure between 3 and 5 o’clock, and 1,882 

gene clusters (44% of the pangenome) shared by some but not all isolate genomes, shown between 5 175 
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o’clock and 9 o’clock on the figure. Functionally, while the core and accessory genome contained 

representatives of most COG categories, compositional differences were apparent, mostly due to fewer 

genes of unknown function in the core genome and fewer conserved functions like translation in the 

accessory genome (Additional File 5AB, Supplemental Text).     

When the genomes themselves are clustered according to the number and identity of gene clusters that 180 

they share, they segregate into three groups (Groups 1-3) that are distinguished by shared blocks of 

gene clusters (Fig. 2).  The dendrogram in the upper right of the figure (Fig. 2) shows the clustering 

topography, and the major branch points in this dendrogram separate the groups. Genome 

completeness was >99% and redundancy was <10% in all genomes (Figure 2, middle two grey bar 

charts), suggesting that the observed grouping is not based on the quality of the genome assemblies.  As 185 

the number of gene clusters ranges from 1,773 to 2,071 per genome (Figure 2, top right grey bar chart), 

the core of 1,493 gene clusters represents 72-84% of the gene clusters in each genome and the gene 

clusters found in only a single genome contribute up to an additional 5%.  Thus, collectively, the blocks 

of gene clusters that characterize the subgroups of H. parainfluenzae constitute a relatively small 

fraction of the genome.    190 

Haemophilus parainfluenzae subgroups are habitat-specific 

Mapping of metagenomic data onto the genomes shows that the groups defined by genome content 

have significantly different distributions among oral sites (p < 0.001, permutational multivariate analysis 

of variance using Bray-Curtis dissimilarities, calculated using ADONIS in R; Anderson, 2001).  We applied 

the competitive recruitment approach to the billions of short reads sequenced by the Human 195 

Microbiome Project (HMP; HMP Consortium, 2012; Lloyd-Price et al., 2017) for hundreds of healthy 

individuals for three different oral habitats (tongue dorsum, TD; buccal mucosa, BM; and supragingival 

dental plaque, SUPP).  The mapping information is summarized in the heatmap shown in the upper right 

corner of Figure 2.  For each oral habitat, the coverage of each genome by the median metagenome is 

displayed in the colored bar charts below the heatmap.  200 

Comparison of the pangenome groups with HMP coverage data shows that the middle group of 

genomes, Group 2, is much more abundant in the 188 tongue dorsum metagenomes than genomes in 

the other two groups (Figure 2 heatmap, median coverages). The heatmap in Figure 2 shows that each 

TD metagenome typically provided high coverage to several Group 2 genomes, although there was 

sample-to-sample variation in which genomes were most highly abundant. The median coverage bar 205 
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plots show that reads from the median TD metagenome covered each of the nine genomes in Group 2 

to an average depth of at least 15X, indicating that organisms similar to these strains are in high 

abundance on most people’s tongues. Median coverage of the other twenty-four genomes by TD 

metagenomes is several-fold less (Figure 2). By contrast, dental plaque metagenomes map with higher 

coverage to the genomes in Group 3 (outermost group), whereas buccal mucosa metagenomes map 210 

with similar coverage to all three groups (Fig. 2).  Thus, genomically-defined subgroups of H. 

parainfluenzae have differential abundance across oral habitats, as reflected in differing levels of 

coverage of these genomes by metagenomic reads. Of these, the TD-abundant group of nine genomes 

appears most distinct. 

Analysis of the phylogenetic relationships among H. parainfluenzae genomes, based on single-copy 215 

genes, revealed that groups defined by genome content differed from those defined by evolutionary 

relatedness at the strain level.  We constructed a phylogeny based on nucleotide sequences from 139 

bacterial genes previously identified as present in a single copy in most genomes (Campbell et al., 2013). 

This phylogeny placed the TD-associated genomes in separate clades of the H. parainfluenzae tree 

(Additional File 6A).  Two additional methods of assessing similarity, using 16S rRNA gene sequences and 220 

whole-genome kmer comparisons, provided little phylogenetic signal but indicated substantial 

nucleotide-level divergence among strains, respectively (Additional File 6B). Thus, these analyses 

suggest that genomes of H. parainfluenzae that are enriched in tongue metagenomes share similar gene 

content but do not form a monophyletic evolutionary group. 

Genomic characteristics of the tongue-enriched H. parainfluenzae subgroup 225 

Correspondence between genome content and environmental distribution raises the possibility that the 

success of a particular strain in a given habitat within the mouth may rely on the presence of certain 

genes fixed by selection. Specifically, we asked whether any genes were particularly characteristic of the 

nine H. parainfluenzae strains with high abundance in TD (Fig. 2, middle group of genomes).  Only a 

small set of genes were present in all genomes of the TD group of H. parainfluenzae and not in any of 230 

the other isolate genomes; these genes are marked by a dark blue wedge labeled “TD group core” on 

the figure. We carried out a functional enrichment analysis, as described in Shaiber et al. (2020), to 

compare the prevalence of predicted functions among TD genomes to their prevalence among non-TD 

genomes revealed by the metapangenome. This analysis identified exactly three functions in three gene 

clusters altogether encoding the three subunits of a sodium-dependent oxaloacetate decarboxylase 235 
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enzyme exclusive to the TD group (Additional File 7). This enzyme converts oxaloacetate to pyruvate 

while translocating two sodium ions from the cytoplasm to the periplasm, providing a shunt to 

gluconeogenesis while establishing a potentially useful Na+ gradient (Dimroth & Halpert 1984, Dimroth 

et al. 2001). No complete oxaloacetate decarboxylase operon was detected in any of the other 24 H. 

parainfluenzae genomes (Supplemental Text). No other functions or gene clusters had this universal 240 

presence in the TD-associated group but complete absence from the other H. parainfluenzae genomes. 

Aside from selection, an alternate explanation for the unique occurrence of this oxaloacetate operon in 

the TD-associated genomes could be shared evolutionary history, such as if these genomes were all 

isolated from the same subject. However, not only are the TD-associated genomes not monophyletic 

(Additional File 6A), they come from strains isolated from human sputum, the human toe, and the 245 

oropharynx of a rat and have sequences deposited by four different groups over 8 years (Additional File 

3). Thus, the oxaloacetate operon stands out as a strong candidate for further experimental 

investigation into the source of selective advantage for the group of TD-abundant genomes in the 

tongue dorsum habitat.  

Many H. parainfluenzae core gene clusters contain high proportions of gene sequences scored as 250 

environmentally accessory, particularly in TD (Figure 2, shown as spikes of red in the ‘Environmental 

core/accessory’ layer; Additional File 4). This result likely stems from differences in nucleotide-level 

sequence divergence from gene to gene within the population. These core gene clusters do contain 

sequences that are environmentally core to TD, i.e., the proportion of environmentally accessory 

sequences in these gene clusters is never 100% (Figure 2). Thus, the traits represented by these core 255 

gene clusters are not missing from H. parainfluenzae living in the mouth. Further, metagenomic 

mapping can clearly distinguish between the genomes overall at the nucleotide level, as shown by the 

differential coverage results by habitat (Figure 2 heatmap and median coverage bar chart).  The 

differential abundance among some core genes’ sequence variants thus suggests population-level 

differentiation between different oral habitats. As the pangenome contains proportionally fewer TD-260 

representative genomes, the environmentally accessory gene sequences (red spikes) are higher in TD 

than in BM or SUPP.  Although the metapangenome can identify gene sequences that are depleted in 

TD, it cannot discriminate between neutral and adaptive reasons for their differential abundance. 

Regardless, sequences for many H. parainfluenzae core genes are differentially present in certain 

habitats and may contain signatures of distinct subpopulations. 265 

Pangenomic analysis of oral members of the genus Rothia  
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Having decomposed the species H. parainfluenzae into discrete habitat-resolved subpopulations, we 

applied the same method of analysis to a genus, Rothia, that is composed of multiple habitat-specialized 

species (Mark Welch et al., 2019; Segata et al., 2012). An advantage of constructing pangenomes at the 

genus level is that the genus-level core genes, as well as core and accessory genes of the individual 270 

species and strain groups, become readily identifiable. To assess the similarity of genome content 

among oral species as well as strains within the genus Rothia, we downloaded sixty-seven high-quality 

Rothia genomes from NCBI. Of the genomes for which the isolation source of the strain was reported, 

most were from sputum or bronchoalveolar lavage (Additional File 3). From these 69 genomes we 

constructed a genus-level pangenome consisting of 5,992 gene clusters (Figure 3, Additional File 8).   275 

One immediately evident feature of the oral Rothia genus pangenome is that the individual genomes 

segregate based on gene content into three major groups, each of which shares over 200-400 gene 

clusters that are absent from the others (Figure 3). Taxonomic designations provided by NCBI (depicted 

by coloring the genome layers) show that these groups correspond to the three different recognized 

human oral Rothia species. A large set of gene clusters (n = 1,129, 19% of the pangenome) were present 280 

in all of the Rothia genomes and represent the genus-level core genome. Given that each Rothia 

genome contains between 1,693 and 2,252 gene clusters, the genus core represents half to two-thirds 

of any given Rothia genome. Other sets of gene clusters were characteristic of and exclusive to R. 

mucilaginosa (n = 207, 3% of the pangenome), R. dentocariosa (n = 274, 5%), or R. aeria (n = 455, 8%). 

Taking the species-level core genes into account, the three Rothia species were identified 285 

unambiguously by their conserved gene content, with 77%, 77%, and 81% of the median R. 

mucilaginosa, R. dentocariosa, and R. aeria genomes, respectively, occupied by genus- or species-level 

core genes.  The remaining ~20% of each genome represents accessory genes that were present in one 

or more genomes but not in all genomes of the species. Thus, for the genus Rothia, pangenomic analysis 

recapitulated species designations. 290 

Genomes within a single group also form subgroups. The major group of R. mucilaginosa (Rm) genomes 

can be subdivided into two subgroups defined by 39 gene clusters exclusive to the larger subgroup (grey 

line ‘Rm1’ in Fig. 3) and 38 gene clusters exclusive to the smaller subgroup (grey line ‘Rm2’ in Fig. 3). 

Genomes deposited in NCBI with only a genus-level designation (i.e., Rothia sp.; black layers in Figure 3) 

also fell into each R. mucilaginosa subgroup, increasing confidence in the discreteness of the subgroups. 295 

To investigate whether these gene clusters were localized to a single region, as could result from, e.g., a 

phage insertion, or whether they were scattered through the genome, we reordered the gene clusters 
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(columns) to follow the genome order in an arbitrary R. mucilaginosa group 1 genome (Additional File 

9).  The gene clusters present only in group 1 do not localize to a single region but are scattered 

throughout the chromosome (Additional File 9), suggesting that the differentiation between the groups 300 

is not the result of a single recent chance event and may be instead the result of ecological and 

evolutionary pressures. Thus, R. mucilaginosa is comprised of at least two cryptic subgroups.  

Metagenomic mapping reveals habitat distributions of genome groups 

Metagenomic mapping to the Rothia genomes demonstrated that the different genomic groups occupy 

different environments within the mouth. We carried out competitive mapping to the set of Rothia spp. 305 

cultivars using the same HMP metagenomic datasets as above. The resulting abundance information is 

summarized in the coverage heatmap and bar charts in Figure 3. As in Figure 2, the heatmap shows 

coverage data for hundreds of metagenomes (rows) collected from over a hundred different volunteers 

by the HMP. Two of the Rothia species (R. aeria and R. dentocariosa) were most abundant in SUPP 

samples, where the mean depth of coverage from the median SUPP metagenome was approximately 5X 310 

for the R. aeria genomes and 2 to 3X for most R. dentocariosa genomes (Figure 3).  The third species, R. 

mucilaginosa, was highly abundant in TD and for the most part displayed only negligible coverage from 

SUPP and BM samples.  Outliers were also apparent – two genomes in the R. mucilaginosa group 

received high coverage from approximately one-third of BM metagenomes.  

Whereas the heat map summarizes coverage information for each genome and metagenome as a single 315 

data point, the mapping analysis provides finer-grained information about the frequency of each gene 

sequence in natural populations by relating the abundance of each gene to the abundance of the 

genome that carries it. The three outer multicolored layers of Fig. 3 summarize the outcome of this 

analysis with the Rothia genus pangenome for SUPP, BM, and TD samples. If a cultivar genome does not 

receive enough coverage in a habitat to be considered “detected”, i.e. if more than half of a genome’s 320 

nucleotides received no coverage in every metagenome from a habitat, then the result for genes from 

that genome is shown in gray rather than in color to indicate that the environmental core/accessory 

status could not be assessed. 

Mapping results, as summarized by the environmental core/accessory metric, reinforced the conclusion 

from the coverage heatmap that the genomic groups corresponding to different named Rothia species 325 

occupied different habitats within the mouth. The Rothia genus core genes were environmentally core 

in all habitats except where their surrounding genome was not detected – which occurs because many 
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of the R. mucilaginosa genomes were undetectable in BM and SUPP, and many of the R. dentocariosa 

genomes were undetectable in TD. In contrast, species-specific core genes were only environmentally 

core to specific habitats. The core genes unique to R. mucilaginosa (‘Rm’ gene clusters, Figure 3) were 330 

environmentally core in TD but their parent genomes were not detected in SUPP and BM – with the 

exception of the two R. mucilaginosa genomes that were abundant in BM and one that passed the 

detection threshold in SUPP (thin purple and green lines in Fig. 3). Conversely, the core genes unique to 

R. dentocariosa (‘Rd’, Figure 3) were environmentally core in SUPP and BM but their parent genomes for 

the most part were not detected in TD. Thus, these two species show distinct and complementary 335 

habitat distributions. R. aeria genomes behaved differently: they were detected in SUPP, BM, and TD 

and while their unique core genes (‘Ra’ gene clusters, Figure 3) were environmentally core at all three 

sites, they attained significantly more coverage from SUPP than from TD or BM (Figure 3, “median 

coverages”) reflecting a bias towards SUPP. Thus, the core genes of Rothia species can distinguish their 

distinct habitat ranges. Investigating the predicted functions core to each species also supported the 340 

observed differentiation of species (Supplemental Text, Additional File 5C). 

R. mucilaginosa genomes divide into subgroups  

Subgroups can be distinguished within major species by presence and absence of sets of gene clusters, 

and mapping of metagenomic reads can be used to assess whether these within-species groups have 

similar distribution patterns in the sampled oral habitats.  The large group of R. mucilaginosa genomes 345 

can be subdivided at the pangenome level into two subgroups that differ by a small set of core genes 

(‘Rm1’ and ‘Rm2’ in Figure 3). Their genome-scale abundance as assessed by mapping is similar, with 

both recruiting coverage primarily from TD metagenomes (Fig. 3 heat map) and detected primarily in TD 

(Fig. 3 environmental core/accessory layers).  Similarly, at the finer, gene level of mapping resolution 

both the R. mucilaginosa group 1 core genes and the R. mucilaginosa group 2 core genes were 350 

environmentally core in TD. Further, both subgroups obtained high coverage from many HMP samples. 

Thus, these two R. mucilaginosa subgroups do not appear to be the result of a broad habitat shift such 

as from tongue to teeth or buccal mucosal sites. Instead they may represent co-existing subpopulations, 

perhaps with distinct microhabitats within the TD community or between individual mouths. 

We also detected evidence for habitat shifts between major habitats by a small number of genomes, in 355 

the form of outlier results in the mapping of human oral metagenomes to Rothia cultivar genomes. 

These outliers consist of the two R. mucilaginosa genomes that recruited high coverage from BM 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2020. ; https://doi.org/10.1101/2020.05.01.072496doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.01.072496
http://creativecommons.org/licenses/by-nc-nd/4.0/


 14 

metagenomes (heat map, Fig. 3). The two R. mucilaginosa genomes abundant in BM satisfied the 

detection metric in BM and plaque, and the genes shared only by these two genomes (labeled RmBM in 

Fig. 3) were environmentally core in BM.  This distribution provides evidence that a bacterium similar to 360 

R. mucilaginosa is in buccal mucosa samples at high enough abundance to satisfy the detection metric, 

and that sequences from this bacterium find their closest match in these two R. mucilaginosa genomes 

in our set of sequenced cultivars.  

Two Rothia mucilaginosa genomes represent a BM-adapted subpopulation 

To assess how well the outlier R. mucilaginosa genomes with high coverage and detection in BM 365 

represent a true buccal mucosa Rothia community, we inspected the coverage of one of the two outlier 

genomes, R. sp. E04, in more detail at the gene level (Fig. 4). In Figure 4A, each unit around the near-

complete circle represents a different gene in the genome, and the 90 small tracks show each gene’s 

coverage in the 30 metagenomes per habitat with the highest R. sp. E04 coverage (Supplemental 

Reproducible Workflow). The BM and SUPP metagenomes covered the majority of this genome’s genes 370 

relatively evenly, evidenced by the taller and more dense bars in the purple (BM) and green (SUPP) 

metagenomes, as expected for samples containing populations related to E04 (Fig. 4A). However, this 

pattern was not observed with TD metagenomes (Figure 4A, inner 30 rings); instead the coverage from 

TD metagenomes was low to absent in most regions of the genome and only dense for a handful of 

genes. Similar analysis of the other BM-abundant genome, R. sp. C03, revealed similar results 375 

(Additional File 10).  This pattern suggests the TD coverage results from spurious mapping of isolated 

regions of high similarity or mobility, e.g. phage elements. Particularly, the intermittent TD coverage at 

both the gene level (Fig. 4A) and the nucleotide level (Fig. 4B) indicates these samples do not contain a 

population closely related to R. sp. E04. If the reads from TD metagenomes that do map originate from 

phylogenetically related but non-Rothia or non-R. mucilaginosa populations, their evolutionary distance 380 

should produce higher densities of single-nucleotide variants relative to the R. sp. E04 genome. This is 

observed in Figure 4B where the vertical black lines report the mean Shannon entropy of mapped 

nucleotide variants; high levels of entropy indicate variability at that nucleotide position.  Thus, 

inspection of gene-level coverage of outlier isolate genomes validates these genomes as representatives 

of an R. mucilaginosa population more abundant in buccal mucosa rather than tongue. 385 

The identification of R. sp. E04 as the closest match to the BM-dwelling R. mucilaginosa population 

allows investigation into the genomic characteristics of the BM populations.  There are 22 gene clusters 
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shared by both genomes abundant in BM but absent from other known Rothia isolates. Further, these 

22 gene clusters uniquely shared by R. sp. C03 and E04 are scattered throughout the genome (Figure 4A 

genes ‘RmBM’, Figure 4A genes marked with black tick marks, Additional File 9), suggesting that these 390 

two genomes are not related simply by a single large shared insertion event, but that their set of 

distinctive genes accumulated over time. While these 22 gene clusters do not contain any unique 

predicted functions, only a handful of them were environmentally accessory in TD but environmentally 

core elsewhere (bolded gene clusters in Figure 4C). In other words, the four genes in bold in Figure 4C 

recruited less coverage than their surrounding genomes in the 188 TD metagenomes where other R. 395 

mucilaginosa were abundant (Figure 3 heatmap), yet these four genes had abundance similar to their 

surrounding genomes in the 169 BM and 198 SUPP metagenomes (Figure 4A,B). These four genes thus 

represent prominent candidates for future experimental investigation of their potential role in 

adaptation of a TD-abundant taxon to the new habitat of BM.  However, even in BM and SUPP samples, 

large contiguous portions of the E04 and C03 genomes recruited little to no coverage relative to the rest 400 

of the genome (e.g., filled red arrowhead in Fig. 4A). Thus, although the cultivated strains R. sp. E04 and 

C03 are the best match out of all 69 genomes and provide some insight into the BM-inhabiting R. 

mucilaginosa population, the populations native to BM and possibly SUPP likely harbor many additional 

novel genes. In summary, gene-level mapping reveals features of the distribution of Rothia strains that 

suggest fine-tuned adaptation to each oral site. 405 

Some gene sequences are scarce across all metagenomes while others are intermittently abundant 

More broadly, visualizing the mapping at the gene scale reveals different patterns of abundance for 

genes found in a single cultivated genome. Gene-level mapping highlights that some of this genome’s 

sequences for both core and accessory genes may be at low abundance in the sample relative to the R. 

sp. E04 genome across the numerous metagenomes sampled. Many of the environmentally accessory 410 

genes are also accessory in the pangenome (genes from accessory gene clusters colored grey in the 

innermost ring, Figure 4A), but many genes identified as members of the core genome (bright pink; 

innermost ring) are also environmentally accessory in HMP metagenomes. However, many such genes 

scored as ‘environmentally accessory’ are not uniformly low abundance across all individuals. Rather, 

they are at or below the limit of detection in most samples (i.e., most mouths) but abundant in a few, 415 

(e.g., the gene indicated by a filled black arrowhead in Figure 4A). Thus, the existence of a cultivar 

containing this sequence indicates that cultivation selected a strain with this particular sequence from 

relatively low prevalence, either stochastically or as a result of cultivation bias. On the other hand, some 
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gene sequences are more or less uniformly rare across samples (e.g., the empty black arrowhead in 

Figure 4A). Such uniform rarity could reflect their restriction to a low-abundance niche or selection 420 

against that sequence in the environment, yet a lineage with that gene survived the bottleneck of 

isolation. Altogether, these results illustrate how a given cultivar’s gene sequences may not be 

equivalently representative of environmental populations.  

Discussion 

Metapangenomics provides a means of analyzing complex natural populations from a springboard of 425 

well-characterized isolate genomes.  Starting from the solid foundation of virtually complete genome 

sequences from cultivated isolates, we constructed pangenomes and then used metagenomic read 

mapping to analyze the distribution of each gene in the pangenome in wild populations. Our 

metapangenomic analysis demonstrated that genomes that nominally belong to the same species in fact 

comprise habitat-specific subgroups within H. parainfluenzae and within a species of the genus Rothia.   430 

Our metapangenomic findings elucidate the population structure of H. parainfluenzae and the genus 

Rothia, revealing differential distribution of species across habitats within the mouth that are within 

millimeters of one another and are in continual communication via saliva.  Such biogeographic 

distributions have been suggested by prior studies based on cultivation as well as 16S rRNA gene surveys 

(Costea et al., 2017; Eren et al., 2014; Mark Welch et al., 2019; Wilbert et al., 2020); however, the 435 

metapangenomic mapping approach is more comprehensive than cultivation and relies not on a marker 

gene to define a population but on complete genomes to demonstrate unequivocally the presence of 

different sets of microbes in the different habitats of supragingival plaque, tongue dorsum, and buccal 

mucosa. 

The finding of habitat-specific subgroups shows that the buccal mucosa, in particular, is colonized by a 440 

previously unrecognized, distinctive microbiota.  Among the three sampled oral habitats, dental plaque 

and the tongue dorsum are both characterized by extraordinarily dense, complex, and highly structured 

microbial communities (Zijnge et al., 2010; Holliday et al., 2015; Mark Welch et al., 2016; Wilbert et al., 

2020), whereas the buccal mucosa are more thinly colonized by a generally simpler set of microbes in 

which the genus Streptococcus comprises approximately half the cells.  In this context, the Rothia spp. 445 

detected in 16S rRNA gene surveys on the buccal mucosa could be interpreted as microbes shed from 

the teeth and tongue and lodged transiently on the buccal mucosa or present in the sample as incidental 

contaminants from saliva.  Our finding of a distinctive mapping pattern consistent across hundreds of 
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HMP metagenomes for each of the three sampled oral sites rules out this interpretation and indicates 

that these microbes in fact represent a distinctive subpopulation adapted to the buccal mucosa niche.  450 

Pangenomes that combine metagenome-assembled genomes (MAGs) with reference genomes can offer 

deeper insight into the gene pool and population structure of environmental microbes (Reveillaud et al., 

2019). Given the rapid increase of publicly available MAGs (Almeida et al., 2019; Nayfach et al., 2019; 

Pasolli et al., 2019), pangenomes of critical populations such as the BM-abundant R. mucilaginosa could 

be dramatically expanded. However, combining MAGs with cultivar genomes poses some fundamental 455 

obstacles. Due to the inherent complexity of metagenome-sampled populations and assembly 

algorithms, a MAG is at best a consensus genome of closely-related, perhaps clonal, members of a 

population, as opposed to a cultivar genome from a single cell’s clonal lineage that provides 

comparatively higher confidence that all genes co-occur in the same cell (Nielsen et al., 2014; Quince et 

al., 2017). While assembly and binning algorithms are improving rapidly, poorly refined MAGs can suffer 460 

from significant contamination issues (Chen et al., 2019), which can influence ecological and 

pangenomic insights (Shaiber et al. 2019). Hence, we focused only on high-quality cultivar genomes to 

benefit from higher confidence in their accuracy.  

Niche adaptation at the genomic level  

Metapangenomic analysis reveals the differential abundance of genes across habitats and thus presents 465 

an opportunity to ask whether the presence or absence of particular genes is key to abundance in a 

given environment and whether these genes may encode traits under differential selection pressures.  

Several recent studies have applied functional enrichment or depletion analyses to a pangenome to 

investigate adaptation to the particular habitats from which those genomes were obtained (Cornejo et 

al., 2013; Martino et al., 2016; Simon et al., 2017). Genomic biogeographic patterns also exist at the 470 

global scale, as shown by a recent study that identified differentiation in the motility and metabolic 

potential of European E. rectale populations relative to those from other continents (Karcher et al., 

2020). Another recent study used methods conceptually similar to ours, i.e., using metagenomic 

abundances of reference genes to detect ecologically different subgroups within a population, to 

identify genes important for determining which Bacteroides strains engrafted from human mothers to 475 

infants (Yassour et al., 2018). By summarizing metagenomic recruitment across the entire pangenome, 

we extend such investigations to evolutionary scales, allowing the detection of genomic subgroups with 

novel niche associations and enabling direct investigation of the frequencies of subgroup-specific genes 
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among environmental populations. A limitation of our approach, however, is that it addresses only the 

presence and absence of coding sequences in the genome, and cannot identify regulatory regions, 480 

structural variants, or other more subtle genomic traces of potential significance for niche adaptation. 

Our finding of distinctive subpopulations of H. parainfluenzae is consistent with previous studies that 

have reported that H. parainfluenzae may be divided into at least three biotypes based on classical 

metabolic phenotyping (Kilian, 1976). Further, two recent studies employed population genetic 

approaches using metagenomes to detect H. parainfluenzae subpopulations with different habitat 485 

abundances (Costea et al., 2017; Lloyd-Price et al., 2017).  These and our results point towards this 

apparent generalist population being structured into distinct subpopulations that represent the 

partitioning of the oral niche. Additionally, our metapangenomic approach identified the genomic 

subtypes and specific genes that are associated with the TD-abundant subpopulation, the oxaloacetate 

decarboxylase operon. 490 

The environmental relevance of reference genomes 

Ideally, reference genomes for ecological analysis should accurately represent their native 

environments. However, in practice, most reference genomes are obtained from organisms that have 

been isolated and subjected to repeated subculture under laboratory conditions.  Many organisms are 

unable to grow under such conditions; those that grow may undergo genomic changes due to the 495 

imposition or relaxation of selection pressure under cultivation foreign to their native selective regime. 

Thus, it is important to evaluate the degree to which existing cultivar genomes serve as suitable 

references. 

In general, although most core and some accessory genes of cultivars were well-represented in the oral 

environment, a few core and many accessory genes were uncommon in the oral environment. Genomic 500 

core and accessory genes do not correspond precisely to environmentally core and accessory genes, 

respectively. Particularly, singleton accessory genes were environmentally accessory, relative to their 

surrounding genomes. This result is not unexpected, as the set of accessory genes may be very large in 

an open pangenome whereas the microbiome in any mouth consists of a finite number of strains. 

Indeed, recent studies have shed light on the magnitude of previously-unknown genes contained within 505 

the human microbiome (Pasolli et al., 2019; Tierney et al., 2019). Nonetheless, it indicates that the 

features of any individual strain that are conferred by such accessory genes will be unrepresentative of a 

community in the mouth.  
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A major benefit of our metapangenomic strategy is that it permits us to identify which genes and 

cultivars are most representative of the microbiota growing in a given natural habitat. We used 510 

metapangenomics to query each gene from the Rothia and H. parainfluenzae cultivar pangenomes 

across metagenomes from the human oral cavity and measure the abundance of each cultivar gene 

across environments. These data can serve as a resource to guide the selection of the most 

environmentally representative strains and gene sequences for future experiments.  

Cultivars are a valuable starting point for a metapangenomic analysis because they provide a high-515 

quality foundation for assessing the presence, absence, and precise nucleotide sequence of genes. The 

source from which a cultivar is isolated, however, is not necessarily indicative of its environmental 

distribution; this distribution is more suitably assessed using metagenomic data.  The Baas-Becking 

hypothesis that “everything is everywhere, but the environment selects” (Baas-Becking, 1934) suggests 

that the isolation of a single cell does not necessarily imply the existence of a population. The mapping 520 

of metagenomic data to a cultivar genome, by contrast, does indicate the overall abundance of an 

isolate in a habitat (Kraal et al., 2014; Shaiber et al., 2020), and the depth of coverage provided by 

different samples can indicate that the location of highest abundance of a resident population may not 

be its original site of isolation.  For example, the obligate bacterial symbiont TM7x was first isolated 

from a salivary sample in association with an Actinomyces odontolyticus strain (He et al., 2015). 525 

However, as saliva is a transient mixture of bacteria shed from other oral sites, the ultimate source of 

TM7x remained ambiguous until metagenomic mapping was used to identify dental plaque as its native 

habitat (Shaiber et al. 2020). Many of the genomes we used in this study came from strains isolated 

from sputum and non-oral sources such as blood, gallbladder, and skin (Additional File 3). Nonetheless 

these genomes proved to be valuable references to probe the oral distribution of populations related to 530 

these genomes using metagenomic mapping. Based on our mapping results that show the high 

prevalence and abundance of oral populations similar to the isolate genomes, we infer that the strains 

isolated from blood and other non-oral samples are migrants dispersed from resident oral populations. 

Mapping metagenomic short reads onto reference genomes can be used to investigate the relative 

divergence between a sampled population and the reference genome (Simmons et al., 2008; Denef 535 

2018). The specific patterns of single-nucleotide variants (SNVs) among even closely-related strains 

provide one of the most powerful ways to distinguish and track highly-related strains, e.g., from mothers 

to infants (Yassour et al., 2018). In this study, we compared the relative frequencies of SNVs between 

different habitats as a proxy for relatedness to infer which sites had populations that were most similar 
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to the reference strain. However, we did not explicitly search for specific SNVs that were enriched in one 540 

habitat vs. another. Future studies of nucleotide and codon variants across habitats will reveal the 

importance of nucleotide- and amino-acid level changes for habitat specialization (Delmont et al., 2019).  

We take no position on the species concept 

Darwin, recognizing the difficulty in discriminating ‘doubtful species’ (Darwin, 1859) declined to discuss 

the various definitions that had been given to the term species in his day, and indeed hoped that science 545 

would ‘be freed from the vain search for the undiscovered and undiscoverable essence of the term 

species.’ He noted that the amount of difference needed to confer the rank of species was at times 

‘quite indefinite’, that ‘no clear line of demarcation’ could be drawn between species and sub-species, 

and therefore the term species was one ‘arbitrarily given for the sake of convenience’ adding, ‘…to 

discuss whether they are rightly called species or varieties, before any definition of these terms has 550 

been generally accepted, is vainly to beat the air.’   

Metapangenomics does not alter Darwin’s general conclusion; rather, it confirms and refines it at the 

genomic level. Our results indicate that for some taxa, such as the genus Rothia, pangenome analysis 

broadly supports the currently recognized species definitions, while for other taxa such as H. 

parainfluenzae habitat-associated subpopulations are detected that may or may not warrant species-555 

level recognition. Even grouping whole genome sequences by hierarchic clustering based on gene 

composition results in ‘no clear line of demarcation.’ Rather, we observed a spectrum of genome cluster 

relatedness.  

Conclusions 

In conclusion, our results reveal the detailed association between the environmental distribution and 560 

genomic diversity of oral bacterial populations. These patterns reveal that seeming generalist species 

are composed of cryptic subpopulations and that potentially only a small number of genes are 

associated with each subpopulation. More broadly, diversification to fully exploit available ecological 

niches is observed at many levels, from recognized species distinguished by many genes down to closely 

related subpopulations. 565 

Methods 
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Metapangenomes were prepared using publicly-available genomes annotated as belonging to the genus 

Rothia, a gram-positive oral facultative anaerobe in the phylum Actinobacteria; and genomes annotated 

as the species Haemophilus parainfluenzae, a facultative gram-negative anaerobe in the phylum 

Proteobacteria. A flowchart linking the major methods and analyses is provided in Additional File 1, and 570 

a detailed narrative methods with reproducible code is available in the Supplemental Methods. 

Genomic and metagenomic data acquisition 

Genomes were downloaded from NCBI RefSeq based on the associated names using the assembly 

summary report obtained from ftp://ftp.ncbi.nlm.nih.gov/genomes/ASSEMBLY_REPORTS/. Sequence 

names were simplified to contain only the strain identity and a unique contig id for all contigs, and then 575 

concatenated into a single FASTA file containing all genomes of interest. This file was used as the 

starting point for the anvi’o pangenomic analysis (Eren et al., 2015).  

For the genus Rothia, 67 of the 73 genomes present in RefSeq were used. Genomes were inspected for 

potential errors and contamination which were identified based on expected genome size and gene 

count, fragmentary assemblies composed of short contigs, aberrantly high coverage of specific genes of 580 

unknown function (e.g., >1000x coverage for genes that are neither rRNA not mobile elements), and 

existing literature (Breitwieser et al., 2019). Of the six genomes not used, R. nasimurium was discarded 

for not being recognized as an oral resident by the HOMD, while R. sp. Olga and R. sp. ND6WE1A were 

discarded as non-oral isolates with aberrantly large unique gene contents (potentially contaminant 

genes). One R. dentocariosa genome was discarded for aberrant coverage and two R. dentocariosa 585 

genomes (OG2-1 and OG2-2) for containing potential contaminant genes based on aberrant coverage 

and for being identified as contaminated by Breitwieser et al. (2019). For Haemophilus parainfluenzae, 

all 33 genomes in RefSeq passed the contamination inspection and were used for analysis. Metadata 

from NCBI available for each strain is provided in Additional File 3. 

Raw short-read metagenomic data from the Human Microbiome Project (HMP; HMP Consortium, 2012) 590 

were downloaded for tongue dorsum (TD, n= 188), buccal mucosa (BM, n= 169), and supragingival 

plaque (SUPP, n= 194) using the HMP data portal at https://portal.hmpdacc.org/. These short-read data 

had undergone the HMP quality-control pipeline which includes trimming of low-quality bases and 

subsequently discarding of reads below 60bp (HMP Consortium, 2012). 

Metapangenomic workflow 595 
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The metapangenome was constructed for each taxon using anvi’o with methods modified from Delmont 

et al. (2018; Additional File 1). Open reading frames (ORFs) were identified on the downloaded contigs 

using Prodigal (Hyatt et al., 2010) and converted into an anvi’o-compatible database using the command 

anvi-gen-contigs-db. ORFs were exported and functionally annotated with InterProScan (version 5.30-

69) using Pfam, TIGRFAM, ProDom, and SUPERFAMILY (Haft et al., 2001; Bru et al., 2005; Wilson et al., 600 

2008; El-Gebali et al., 2019). Coverage of each taxon’s genomes was determined in each HMP 

metagenome using bowtie2 (Langmead & Salzberg, 2012) with default parameters (--sensitive). 

Coverage of units encompassing multiple nucleotides, e.g., a gene or genome, is calculated from the 

per-nucleotide bowtie2 coverages by dividing the sum of nucleotide coverages in that unit by the 

number of nucleotides, as is the standard method for reporting a unit’s coverage. Short reads from each 605 

metagenome were mapped against all genomes for that taxon; thus, the bowtie2 matched each read to 

the best-matching genomic locus, randomly choosing between multiple loci if they were equally best. 

Thus, coverage at highly conserved regions is affected by the total population abundance in that sample, 

while the coverage at variable loci reflects that particular sequence variant’s abundance. These per-

sample coverages were then incorporated into the anvi’o database, and per-ORF coverages and 610 

summary metrics (max, min, mean, median) were determined. Single-nucleotide variants (SNVs) were 

also called per nucleotide if that nucleotide was covered at least 10x. 

To compute pangenomes we used the anvi’o workflow for pangenomics (see http://merenlab.org/p for 

a tutorial). Briefly, this workflow uses BLASTP (Altschul et al., 1990) to compute amino acid-level identity 

between all possible ORF pairs, from which removes weak matches by employing the --minbit criterion 615 

with default value 0.5 which requires that the bitscore of BLAST be at least half the maximum possible 

bitscore given the length of the sequences. The workflow then uses the Markov Cluster Algorithm (MCL) 

(van Dongen & Abreu-Goodger, 2012) to group ORFs into putatively homologous gene groups (gene 

clusters; Supplemental Text), and aligns amino acid sequences in each gene cluster using MUSCLE 

(Edgar, 2004) for interactive visualization. For display of the pangenome, the order of the genome layers 620 

was determined by clustering the genomes based on the frequency with which each gene cluster 

appeared in each genome, also shown as a dendrogram above the genome layers (e.g., top right of 

Figure 2, Figure 3). Dendrogram branch length is fixed to an arbitrary constant. 

Each gene’s environmental core/accessory status was determined for any genomes covered at least 1x 

over half the genome length in at least one sample. A gene was classified as environmentally core with 625 

respect to an oral site if the median coverage of that gene by samples from that oral site was at least 
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one-fourth the median coverage by those same samples of the genome from which it came (Delmont & 

Eren, 2018); otherwise the gene was classified as environmentally accessory. If the genome was not 

confidently detected (if less than half of the nucleotides in the genome were covered) in any 

metagenome, all genes were reported NA instead of environmentally core or accessory. 630 

A phylogenomic tree for the H. parainfluenzae isolates was constructed in RAxML (Stamatakis 2014) 

with the GTRCAT model and autoMRE boostrapping option using a nucleotide alignment of 139 

concatenated single-copy core genes obtained with the anvi-get-sequences-for-hmm-hits program. 

Single-genome mapping 

Per-sample coverage of a single genome was determined from the results of the metapangenomic 635 

analysis. For each oral habitat, coverage data for each strain’s genome was extracted from the 

metapangenomic data using the command anvi-script-gen-distribution-of-genes-in-a-bin, with the same 

environmental detection threshold as above (0.25). Per-habitat analyses were combined using a custom 

wrapper script employing anvi’o functions, subsetting to show coverage for the 30 samples per oral 

habitat with the highest median coverages, while retaining the environmental core/accessory 640 

determination from all samples, not just the selected 30 samples (Supplemental Methods). 

For visualization of nucleotide-level coverage in Figure 4B, coverage was obtained using the anvi-get-

split-coverages for the splits containing the gene(s) of interest and plotted with a custom R script 

(Supplemental Methods). SNV information from each metagenome was reported using anvi-gen-

variability-profile command (variability information was recorded during the mapping step described 645 

earlier) which outputs the Shannon entropies of each variable position. Higher Shannon entropy signifies 

more environmental variability while low entropy signifies less variability. The mean of the observed 

Shannon entropies from all reporting metagenomes was then plotted for each position by oral habitat. 

Functional enrichment analyses 

Functional enrichment analyses were carried out following the pipeline described in Shaiber et al (2020). 650 

The analysis uses the anvi-get-enriched-functions-per-pan-group function, which de-replicates the 

predicted functions of each genome and then carries out a series of functional contrasts between 

specified groups of genomes.  For the H. parainfluenzae analysis, the three groups displayed in Figure 2 

were used as the groups, and both TIGRFAM functions were used. The analysis identifies enriched and 
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depleted functions by group based on the prevalence of each function in genomes belonging that group 655 

vs. the prevalence of that function in genomes outside that group.  

Figures were generated with anvi’o (Eren et al., 2015) and cleaned for publication in Inkscape 

(https://inkscape.org/). 

 

660 
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Figure Legends 855 
Figure 1: Metapangenomic workflow (A) Pangenome construction. (1) All putative protein-
coding gene sequences (colored block arrows) are extracted from each bacterial genome 
(colored bacilli above genes) to be included in the pangenome and (2) clustered into 
homologous gene clusters via blastp results grouped by the Markov Clustering Algorithm 
(sequence variants cartoonized as shades of the same color). (3) These gene clusters become 860 
the central dendrogram of the pangenome. Note that the gene clusters are organized by 
occurrence in genomes, not based on the order found in a particular genome. The detection of 
each gene cluster in a genome is visualized by filling in to indicate the presence or absence of 
each gene cluster across the genomes. The genomes are ordered by a dendrogram (top right) 
based on each genome’s gene cluster content.  (B) Metagenomic mapping. (1) The exact 865 
genomes as above in (A) are used as a reference onto which reads from metagenomes are 
mapped. Gene-level coverage for each gene is then calculated. (2) These coverages are plotted 
for all genes from a given genome to show that genome’s gene-level representation in those 
samples. (3) Environmental representation is evaluated for each gene to decide whether that 
gene is environmentally core (gene’s median coverage > 0.25 of the genome’s median coverage 870 
across metagenomes from that environment) or environmentally accessory (gene’s median 
coverage < 0.25 of the genome’s median coverage). (C) Metapangenome construction. The 
environmental representation from (B) is then summarized for all genes and then overlaid onto 
the pangenome created in (A) – the inner layers show the genomic representation of the 
pangenome, and the outer layer shows the environmental representation of the pangenome. 875 
This outer layer summarizes the fraction of genes in each gene cluster that were 
environmentally core or accessory in those metagenomes (callout).  
Figure 2: Metapangenomic analysis of Haemophilus parainfluenza reveals hidden diversity 
and habitat-specific subgroups. The inner radial dendrogram shows the 4,318 gene clusters in 
the pangenome, clustered by presence/absence across genomes. The 33 genomes of H. 880 
parainfluenzae strains are plotted on the innermost 33 layers (black 270˚ arcs), spaced to 
reflect discernable groups based on genomic composition. Gene clusters within a given genome 
are filled in with black; gene clusters not present remain unfilled. Genomes are ordered by gene 
cluster frequency (top right dendrogram), with radial spacing added between major groups to 
improve visibility. The outermost three layers show the proportion of genes within each gene 885 
cluster determined to be environmental accessory (red) or core in HMP metagenomes from TD 
(blue), BM (violet), and SUPP (green), from inside to outside, respectively. If a genome was not 
well detected (<0.5 of nucleotides covered by all metagenomes) all its genes were NA (grey) 
instead of environmentally core or accessory. Extending off the pangenome above 3 o’clock are 
bar charts of relevant information for each genome, with the y-axis limits in parentheses. Above 890 
the genome content summaries, each genome’s median coverage across all TD, BM, and SUPP 
metagenomes is shown in the colored bar graph. Per-sample coverage of each genome is 
shown in the heatmap above, where each row represents a different sample, and cell color 
intensity reflects the coverage. Coverage is normalized to the maximum value of that sample 
(black = 0, bright = maximum; colors as before for each site).  895 
Figure 3: Genomes in the Rothia genus metapangenome are organized by gene content into 
groups that reveal associations to specific habitats. Tips on the inner radial dendrogram, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2020. ; https://doi.org/10.1101/2020.05.01.072496doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.01.072496
http://creativecommons.org/licenses/by-nc-nd/4.0/


 31 

setting the angular axis, correspond to gene clusters organized by presence/absence across 
genomes. The angular distance thus holds the entirety of the Rothia pangenome, 6,160 distinct 
gene clusters. The inner 69 layers (270˚ arcs) represent genomes, colored by NCBI’s taxonomic 900 
assignments, and organized by their gene cluster frequencies (top right vertical dendrogram). 
Each genome’s gene cluster content is displayed by filling in cells (gene clusters) for genomes in 
which that gene is present. Gaps in radial spacing of layers delineate major groups determined 
by inspection of the pangenome and dendrogram. Groups of gene clusters are annotated with 
text and a grey arc – “Genus core” are gene clusters core to the genus Rothia; “Rm”, R. 905 
mucilaginosa; “Rm1”, R. mucilaginosa subgroup 1; “Ra + Rd”; both R. aeria and R. dentocariosa; 
“Rd”, R. dentocariosa; “Rm2”, R. mucilaginosa subgroup 2; “Ra”, R. aeria; “Rm BM”, BM-
abundant R. mucilaginosa.  The outermost colored three layers show the proportion of genes 
within each gene cluster deemed environmental accessory (red) or core for HMP metagenomes 
from tongue dorsum (blue), buccal mucosa (violet), and supragingival plaque (green). If a 910 
genome was not well detected (<0.5 of nucleotides covered by all metagenomes) all its genes 
were NA (grey) instead of environmentally core or accessory. Above the genome content 
summaries, each genome’s median coverage across all TD, BM, and SUPP metagenomes is 
shown in the colored bar graph. Per-sample coverage of each genome is shown in the heatmap 
above, where each row represents a different sample, and cell color intensity reflects the 915 
coverage. Coverage is normalized to the maximum value of that sample (black = 0, bright = 
maximum; colors as before for each site).  
 
Figure 4. Gene-scale metapangenomic analysis suggests candidate gene-level drivers of 
habitat adaptation. A) Gene-level coverage of Rothia sp. E04. Units along the angular axis are 920 
R. sp. E04 genes, arranged in order found in R. sp. E04 with contigs joined arbitrarily. The 
innermost ring labels whether each gene was shared with all of R. mucilaginosa group 1 (pink), 
only between the BM-enriched strains R. spp. E04 and C03 (black; also shown with black lines 
outside figure), or otherwise (light pink). The innermost 30 layers show coverage of each gene 
for 30 TD metagenomes with the highest coverage; middle 30, BM metagenomes; outer 30, 925 
SUPP metagenomes. Each layer’s y-axis shows coverage by an individual sample, with y-axes 
scaled independently for each layer. The three outermost layers show whether genes were 
determined as environmental accessory (red) or core in TD (blue), BM (violet), or SUPP (green). 
Arrowheads show examples of gene abundance patterns: uniformly low-to-absent coverage 
across metagenomes (empty black) vs stochastically abundant but typically environmentally 930 
accessory (filled black). B) Nucleotide-level coverage for a 20kb contiguous stretch of R. sp. 
E04’s genome that includes a candidate gene driver of the BM adaptation, GC_00004770. This 
stretch is shown by the labelled black arc in (A). Each trace shows a single sample’s coverage, 
colored according to its oral site. Black bars show the mean Shannon entropy for variant sites 
covered at least 10x. Grey boxes above the SUPP traces mark genes, with GC_00004770 935 
highlighted in black. C) Table of the 22 gene clusters unique to R. sp. E04 and R. sp. C03 (also 
marked with black ticks in panel A). The columns labelled “Environmental Core/Accessory” 
show the fraction of genes in each gene cluster that are core (colored according to that 
habitat’s color) or environmentally accessory (red). The corresponding Pfam function is listed 
for gene clusters for which a function could be predicted. The gene clusters environmentally 940 
core in BM and SUPP but not in TD are bolded.   
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Additional File 1. Flowchart of key methods and bioinformatic analyses performed. Boxes 945 
represent datasets (color coded by category / filetype), and arrows show the programs used to 
connect or transform the data. The shaded portion on the right (starting with “Individual 
metagenomes”) was performed for each oral site independently (i.e. once each for tongue 
dorsum, buccal mucosa, and supragingival plaque), and then the habitat-specific 
metapangenomes were combined onto a single pangenome, as described in the Methods.  950 
Additional File 2. Gene detection in metagenomes is largely bimodal. For all metagenomes 
covering at least half the nucleotides in a genome, the detection (fraction of each gene 
receiving any coverage at all) of all genes that genome was counted. For A) H. parainfluenzae 
and B) Rothia spp., the number of metagenomes (y axis) providing each observed gene 
detection is plotted as a histogram. The genes were split into two categories (colors) – those 955 
determined to be environmentally accessory genes (EAG) or environmentally core genes (ECG) 
by having a median coverage less than or at least 0.25x the parent genome’s median coverage, 
respectively. C) and D) show the probability density function for H. parainfluenzae and Rothia, 
respectively, using the same gene detection data shown in A and B. Detection is shown on the 
x-axis, and the y-axis shows the probability of the metagenomes producing that detection. The 960 
distribution of detections for EAGs are shown in orange and ECG in blue. 
Additional File 3. Accession information and metadata for genomes used in in this study. 
Genomes are listed in the same order as in Figures 2 and 3, from inside to outside. 
Additional File 4. Summary of H. parainfluenzae gene clusters. Each row in the table describes 
a different gene, listing the genome from which it came, the gene cluster to which it belongs, its 965 
predicted function, and other summary information. 
Additional File 5. Functional similarities in the pangenome. A) COG categories of the different 
H. parainfluenzae pangenome fractions (x-axis). The pangenome was apportioned into the core 
genome (gene clusters found in all genomes), the singleton accessory genome (gene clusters in 
exactly one genome), and the intermediate accessory genome (the remaining gene clusters). 970 
The height of each bar shows the number of COG-annotated gene clusters per pangenome 
portion, colored by COG category. Only gene clusters annotated with a single COG category, or 
none, were included. B) Enrichment of TIGRFAM functions in by group of H. parainfluenzae 
genomes detected in the pangenome (Figure 2). Each group or combination of groups is listed 
along the x axis. The y-axis is the count of TIGRFAM genes enriched by group, with each gene 975 
colored by its aggregate proportional enrichment. Aggregate enrichment was calculated for 
each TIGRFAM by subtracting the mean proportional occurrence of each function in the 
group(s) in which it was not enriched from the mean of its proportional occurrence in the 
group(s) in which the TIGRFAM was enriched. C) The same analysis as in B is shown but for 
species of the genus Rothia. 980 
Additional File 6. Comparison of genome relatedness by gene content with phylogenomics, 
16S, and sourmash. A) Phylogenomic tree based on 139 concatenated single-copy core genes. 
Tip names colored in red correspond to those of Group 2 in Figure 2. B) Pangenome is arranged 
as in Figure 2, but the yellow heatmap shows 16S % similarity and the red heatmap shows 
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sourmash similarity. Each heatmap’s order from bottom to top matches the order from left to 985 
right. 
Additional File 7. Functional enrichment results for H. parainfluenzae. Each row reports the 
enrichment of a TIGRFAM function in a group or groups of H. parainfluenzae genomes, 
according to the groups labelled in Figure 2.  
Additional File 8. Summary of Rothia gene clusters. Each row in the table describes a different 990 
gene, listing the genome from which it came, the gene cluster to which it belongs, its predicted 
function, and other summary information. 
Additional File 9. Syntenic arrangement of Rothia mucilaginosa genomes relative to a R. 
mucilaginosa subgroup 1 genome (R. sp. E04). Gene clusters from R. mucilaginosa genomes 
are arranged in syntenic order according to R. sp. E04 (red arrow); gene clusters not found in R. 995 
sp. E04 are omitted. Red arrows above and below mark the 22 gene clusters uniquely shared by 
both R. sp E04 and R. sp C03 (blue arrow). The order and spacing of layers is identical to that 
Figure 2 but linearized. 
Additional File 10. R. sp. C03 gene-level recruitment of HMP metagenomes. Layout as in 
Figure 4A but for R. sp. C03. Genes shared with R. sp. E04 are marked to also show that the 1000 
genes unique to the BM-enriched subgroup are also well distributed throughout the genome. 
Additional File 11. Comparison of varying MCL inflation factors on pangenome structure. 
Identical pangenomes were run but with varying MCL inflation factors. The left and right 
columns of pangenome plots show the H. parainfluenzae and Rothia pangenomes, respectively. 
The MCL inflation parameter used for each pangenome shown is listed next to the central 1005 
dendrogram. 
Additional File 12. Functional enrichment results for Rothia species. Each row reports the 
enrichment of a different TIGRFAM function in one or more Rothia species.  
 

1010 
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Supplementary Table 1: Number of gene clusters per pangenome with varying MCL inflation 
factors.  
 

 Rothia genus H. parainfluenzae 
MCL Inflation 

factor 
4 6* 8 8 10* 12 

Num. gene 
clusters 

5,855 5,992 6,090 4,303 4,318 4,338 

% change from * -2.29% 0% 1.64% 0.35% 0% 0.46% 
* MCL inflation factor selected for use in all subsequent analyses presented 
  1015 
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Supplemental Text 
 
Detecting and defining homology in a pangenome 
 
A crucial element underlying construction of a pangenome is being able to identify and group 1020 

homologous genes. Within a group of closely related genomes, amino acid sequences of 

homologous genes are likely to be largely conserved across genomes while non-homologous 

genes both within and across genomes are distinct. Thus, clusters for a species- or genus-level 

pangenome may be unambiguous.  Nonetheless, ambiguous homology and errors in clustering 

may occur.  We used two methods to investigate the overall robustness and validity of our 1025 

homology definitions – first, determining the robustness of the pangenome to various amino 

acid similarity thresholds, and second, assessing the level of functional heterogeneity within our 

gene clusters. 

Our pangenome construction approach compares amino acid sequences for all gene pairs, 

prunes weak hits, and resolves the network of hits with the Markov Cluster Algorithm (MCL) to 1030 

determine gene clusters. MCL uses a hyperparameter, “inflation,” to adjust the clustering 

sensitivity, i.e., the tendency to split clusters. To gauge robustness of the pangenome to the 

inflation parameter of the MCL algorithm, we varied the inflation parameters by ± 2.  The 

resultant number of gene clusters was quantitatively similar (Supplementary Table 1), differing 

by <0.5% for H. parainfluenzae and <2.5% for Rothia, and the pangenome arrangement was 1035 

qualitatively similar in that the overall pattern and relative size of the genus core (in the case of 

Rothia), species cores, and accessory genome remained nearly identical (Additional file 11). 

Gene clusters are defined purely by amino acid sequence similarity. Although functional 

similarity is not part of the definition, nevertheless, intuitively one expects to produce gene 

clusters that are composed of genes with similar function. We assessed the validity of this 1040 

expectation by assessing the fraction of gene clusters whose constituent genes were annotated 

with different COG functions.  Heterogeneity of functional annotation within a gene cluster was 

rare in our data; for H. parainfluenzae, only 2.6% (75 out of 2892 gene clusters with predicted 

COG functions) of gene clusters had within-cluster functional heterogeneity, and Rothia was 

comparably low at 3.5% (96 of 2757 gene clusters with COG annotation). 1045 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 31, 2020. ; https://doi.org/10.1101/2020.05.01.072496doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.01.072496
http://creativecommons.org/licenses/by-nc-nd/4.0/


 36 

 

For the specific gene clusters that we focused on in this manuscript, we used two additional 

tests to assess the internal consistency of the gene clusters – functional annotation and 

manually inspection of sequence alignments. 

 1050 

Gene clusters may be legitimately split according to amino acid sequence, and yet still 

represent homologous genes carrying out the same function.  For gene clusters identified as 

unique to a group of interest, our functional annotation test consisted of comparing the 

predicted function of that gene cluster to functions of gene clusters characteristic of other 

groups. For example, of the gene clusters that were shared exclusively to Rothia sp. strains E04 1055 

and C03 (the two genomes enriched in buccal mucosa metagenomes), three had functional 

annotation. However, other gene clusters with identical predicted functions were found in 

other Rothia genomes; therefore we did not hypothesize that these three gene clusters 

conferred functions potentially important for differential survival in the buccal mucosa 

environment. The sequence divergence within those gene clusters may confer differential 1060 

fitness between habitats, however, we do not feel confident enough to put forward that 

hypothesis given this data. 

 

Additionally, the internal consistency of a gene cluster can be investigated by inspecting the 

alignment of its constituent amino acid sequences.  An alignment of homologs should produce 1065 

clearly conserved regions across the majority of the sequence with few gaps. For instance, in 

our investigation of the Haemophilus parainfluenzae, we noticed that the TD-abundant strains 

were characterized by three gene clusters encoding the three subunits of oxaloacetate 

dehydrogenase. A single non-TD strain (Haemophilus parainfluenzae C2004002729) also 

contained one of the three gene clusters. By inspecting the sequence alignment, which can be 1070 

obtained from the aa_sequence column of Additional File 7 by searching for “oadA” or 

“GC_00001928” in Additional File 7, we discovered that the sequence from the non-TD genome 

was aberrant relative to the other sequences with numerous gaps and many mismatches. 

Based on the poor alignment, the inclusion of this non-TD gene sequence in the gene cluster 
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likely reflects mis-assignment to this gene cluster. We therefore consider the oxaloacetate 1075 

decarboxylase operon as exclusive to the genomes of TD-abundant strains.  

 

Functions of the core and accessory genome for H. parainfluenzae and Rothia 

In addition to comparing differences between genomes based on gene content, we also investigated 

functional differences between core and accessory genes and between species of Rothia and strains of 1080 

H. parainfluenzae.  

 

To investigate functional similarities and differences between core and accessory genes, we assessed 

the frequencies of each COG category in core, singleton accessory, and intermediate accessory genes as 

identified based on the pangenome. For simplicity we compared only genes assigned an single COG 1085 

category and omitted genes that were assigned multiple COG categories. For H. parainfluenzae, the core 

consisted of gene clusters shared by all 33 genomes; the singleton accessory genome, gene clusters 

found in exactly one genome; and the intermediate accessory genome, gene clusters occurring in 2-32 

genomes. Overall, each portion of the pangenome contained genes belonging to each COG category 

(Additional File 5A) but the frequencies differed. For example, genes involved in translation (J) and 1090 

nucleotide metabolism (F) were both more numerous and proportionally more enriched in the core 

genome. On the other hand, defense mechanisms (V) and the mobilome (X) were more abundant in 

both the singleton and the intermediate accessory genome. 

  

To investigate functional enrichment in one set of genomes compared to another, we recorded the 1095 

proportion of genomes containing each TIGRFAM function. From this proportional data, the enrichment 

of each function in each group was determined using a logistic regression by the method of Shaiber et 

al. (2020). The full enrichment data is presented in Additional File 7 for each gene. To obtain a high-level 

view of which group(s) were more similar based on shared functions, we aggregated the enrichment 

scores by subtracting the mean proportional occurrence of each function in the group(s) in which it was 1100 

not enriched from the mean of its proportional occurrence in the group(s) in which the TIGRFAM was 

enriched (Additional File 5B). For example, if a function was enriched in Groups 1 and 2 with a 

proportional occurrence of 1 and 0.8 in Groups 1 and 2 but also 0.1 in Group 3, the aggregate 

enrichment would be (0.8 + 1)/2 – 0.1 = 0.8. This aggregate enrichment of each function is shown in 

Additional File 5B. The three genes of the oxaloacetate operon unique to Group 2 stand out clearly, but 1105 

more broadly the functional similarity between groups can be estimated. Group 2 and Group 3 share 
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more genes with higher enrichment than do Group 1 and Group 2, or Group 1 and Group 3. This 

observation agrees with the arrangement of genomes based on gene cluster content shown as the 

dendrogram arranging genome layers in Figure 2, which places Group 2 sister to Group 3. 

 1110 

Functional enrichment analysis indicated that Rothia species with similar gene cluster content also 

contained similar functions. Predicted TIGRFAM functions were used to apply the same functional 

enrichment analysis as for H. parainfluenzae, but this time the groups were the three Rothia species 

(Additional File 5C, Additional File 12). Unlike the H. parainfluenzae analysis, the number of genomes per 

group varied much more substantially, with 48 R. mucilaginosa, 15 R. dentocariosa, and 4 R. aeria 1115 

genomes. Yet, R. dentocariosa and R. aeria were still more functionally similar than either were to R. 

mucilaginosa based on aggregate enrichment scores (Additional File 5C), agreeing with the similarity of 

R. dentocariosa and R. aeria genomes based on gene cluster content (Figure 3 dendrogram). 

      

The functions enriched in each species also revealed possible sources of niche differentiation. Two 1120 

functions were found in all 15 R. dentocariosa genomes but no other Rothia species, a PTS-system 

sucrose transporter component and a transcription repressor gene (Additional File 12). Further, of the 

13 functions core to all R. dentocariosa and R. aeria genomes but absent from all R. mucilaginosa 

genomes, three were cytochrome related (Additional File 12). As both R. dentocariosa and R. aeria 

appear most abundant in plaque (Figure 3 heatmap), these cytochrome differences relative to R. 1125 

mucilaginosa could potentially reflect selection by the different oxygen conditions of their respective 

microhabitats within tongue and plaque habitats. 
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